
11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 1/6

Yehuda Naveh Follow

Feb 25 · 6 min read

Classical Simulators for Quantum Computers

Gadi Aleksandrowicz, Yael Ben-Haim, Yehuda Naveh, Jay M. Gambetta

Why use classical simulators?

Nowadays we have actual quantum computers that can be accessed via

a cloud service, so why do we need classical simulators to simulate

quantum computers? After all, if quantum computers could be

e�ciently simulated on classical computers we wouldn’t need quantum

computers at all.

The thing is, quantum computer time is a scarce resource. When

building and testing a new quantum circuit or algorithm, we want to

run it many times, to verify things work. We want to test it over various

noise scenarios. We don’t want to wait until the quantum computer is

available after every change we make in the circuit we’re building. And

we certainly can’t control the noise in a real quantum machine. And of

course, current quantum machines are limited in the number of qubits

and the noise levels they provide.

Which simulators to use?

Writing a simple quantum computing simulator is easy; when �rst

learning quantum computing, we can think “Oh, the mathematical

formulation is actually very easy! We can write a short script in Python

which performs quantum computing right now!” and indeed, if we

want to adopt the simplest viewpoint possible, we can think of

quantum computing as nothing but “a vector is multiplied by a

sequence of matrices” — where the (2^n)-sized vector represents our

n-qubit quantum state at any point in time, and the matrices represent

the quantum gates composing the circuit. However, our needs are

rarely this simple.

We may want to capture “snapshots” of the quantum states in the

middle of computations; we may want to perform measurements and

determine the rest of the circuit according to the result; we may want to

simulate quantum noises, to see how sensitive our algorithm is to noise

(or how well it manages to �x it). Maybe we want the density operator

of the system and not only the result of a speci�ed number of

measurements. And obviously, we want it to be fast and consume as

https://medium.com/@yehuda_naveh?source=post_header_lockup
https://medium.com/@yehuda_naveh

11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 2/6

small amounts of classical memory as possible. We can achieve all of

this, but usually one comes at the expense of the other.

Let us consider two examples. If a circuit is composed exclusively from

so-called Cli�ord gates (everything that can be built from the

Hadamard, Phase, CNOT, and Measurement gates) then the

Gottesman–Knill theorem tells us how to simulate this circuit on a

classical computer in polynomial time. The simulator (“stabilizer

simulator”) uses a vastly di�erent representation of the quantum state

— instead of storing a large vector, it stores the generators of a group

stabilized by that state vector. This representation is very e�cient, both

memory- and time-wise; but it can only represent a very restricted set

of quantum states — ones obtained from |0>^n by the operation of

Cli�ord gates only.

For the second example, let’s look at the next section

The JKU simulator

Qiskit is designed to include third-party simulators contributed by the

quantum community at large. A prime example of such a simulator is

the one created by Alwin Zulehner and Robert Wille from the quantum

computation team at Johannes Kepler University in Linz, Austria. Let’s

call this the JKU simulator. This simulator stores quantum states using a

data structure which is based on classical decision diagrams. This

representation is more complex than simply storing a state vector, but if

the vector has regular multiplicities, then it results in much more

e�cient storage space and manipulation time, while remaining able to

deal with any quantum circuit, not limited, e.g., to Cli�ord gates.

The JKU simulator gives better run-times on many circuits, even

random ones; but on circuits which create extremely diverse quantum

states with few repeating values its e�ectiveness diminishes compared

to a standard, state vector simulator. Both simulators are outperformed

by the stabilizer simulator, in the cases it can be used.

As we see, di�erent simulators are suitable for di�erent purposes. In

fact, this is exactly the behavior we expect from a problem that is

inherently exponential. So rather than sticking with any one simulation

approach, we would like to have at our disposal a full portfolio of

simulators.

Picture 1: Comparison of state vector and JKU simulators

https://qiskit.org/
http://iic.jku.at/eda/research/quantum/

11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 3/6

How to use simulators?

But with a portfolio of di�erent simulators, we don’t want to download

each simulator separately, and then learn how to use it and interface to

it manually; we want things to just work, and we want them to work

with the same look-and-feel, the same interface. Enter Qiskit. Using

Qiskit, writing a quantum circuit is extremely simple — simply create a

Python code doing what you want, or write a QASM �le and load it.

Tinkering with the con�guration is easy. Adding noises is easy. Sending

the circuit to a real quantum computer is easy — and running simulators

is easy: create the circuit you want, decide on your backend simulator,

call “execute”, and you are done. Under the covers, a very di�erent

simulation scheme can run. But from your point of view, all you needed

to change is the name of the simulator.

Picture 2: Full code example of running Qiskit simulator backends

from qiskit import ClassicalRegister, QuantumRegister,

QuantumCircuit, execute

 from qiskit_jku_provider import JKUProvider

 JKU = JKUProvider()

 qubits_num = 5

(a) Random circuit

(b) Aqua VQE problem

https://qiskit.org/
https://github.com/Qiskit/openqasm#openqasm

11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 4/6

 q = QuantumRegister(qubits_num, “q”)

 c = ClassicalRegister(qubits_num, “c”)

 qc = QuantumCircuit(q, c, name=’ghz’)

 # Create a 5-qubit GHZ state

 qc.h(q[0])

 for i in range(qubits_num — 1):

 qc.cx(q[i], q[i+1])

 # Insert a barrier before measurement

 qc.barrier()

 # Measure all qubits in the standard basis

 for i in range(qubits_num):

 qc.measure(q[i], c[i])

 jku_backend = JKU.get_backend(‘qasm_simulator’)

 job = execute(qc, backend=jku_backend, shots=1024, seed=42)

 result = job.result()

 print(result.get_counts())

Being able to run every simulator you want is only part of the story;

most of the time we don’t want to run a speci�c simulator — we provide

the circuit, and we’d like someone to choose the best simulator for us.

Or maybe switch to another simulator if the run on one simulator takes

too long or explodes in memory. At this point in time, you may run a

simple script that does just that. As additional simulation schemes

become part of Qiskit, Qiskit will also provide the smart way of doing

such portfolio choices on any relevant subsets of the simulators.

In many cases we don’t create circuits ourselves; for example, the Qiskit

Aqua package provides a set of advanced algorithms using a quantum

simulator (or a real quantum computer) as one major building block.

When we run such algorithms, the simulators are called on the complex

quantum circuits created automatically by the algorithms. Here again,

having multitude simulation schemes can help �nd the best approach

to solve any Aqua problem we may wish to experiment.

How to make your simulator a Qiskit simulator?

Suppose you have written a wonderful new classical simulator of a

quantum computer and want people to use it. Your next step is to

contact the Qiskit team. Then we may together follow the JKU

simulator path to success: Us at the Qiskit team collaborated with the

JKU creators in adding the JKU simulator as a Qiskit provider simulator.

Qiskit users can now seamlessly enjoy the smartness of the simulator’s

https://qiskit.org/aqua

11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 5/6

algorithm and data structures with the ease of use and �exibility of

Qiskit. The JKU team in return increases their opportunity to create

impact, while retaining all credit for the cases their simulator was able

to solve problems which were hard for other simulation schemes.

As is usual for exponential problems, the JKU simulation approach can

only be good on a limited subset of circuits. So if your simulator works

in su�ciently di�erent ways than existing simulators in Qiskit, we have

all reasons to hope that it will be the winner on a di�erent subset of

circuits. We would love to have it then as part of the Qiskit simulation

portfolio. We invite you to repeat the success of the JKU/Qiskit

framework. Submit your simulator as a Qiskit provider by following the

scheme outlined in this tutorial, and help cover as much of the

quantum circuit simulation space as possibly can.

Ready to get started?

To get started with Qiskit, click here to �nd the installation and setup

guides, as well as many tutorials, including the simulator example

described above. We look forward to welcoming you to the Qiskit

contributors team!

https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/terra/creating_a_provider.ipynb
https://github.com/Qiskit/qiskit-tutorial/blob/master/INSTALL.md

11.3.2019 Classical Simulators for Quantum Computers – Qiskit – Medium

https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2 6/6

