
Universität zu Köln
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1 Introduction and summary of results

1.1 Introduction

1.1.1 The challenge of under-determined inverse problems

Inverse problems have a long-standing history in science. In its simplest form this data analysis
problem requires inferring an n-dimensional vector x ∈ Cn from linear measurements of the
form

yk = 〈ak, x〉. (1.1)

Here, a1, . . . , am ∈ Cn denote the measurements and y1, . . . , ym the corresponding data ac-
quired. If the measurements a1, . . . , am span Cn, this task is trivial: perform linear inversion.

This situation changes drastically, if we consider an under-determined set of m < n mea-
surements. Problems of this type arise in many different areas of science, where the problem
dimensions n are extremely high and/or massive data acquisition is challenging. Concrete
examples include high resolution biomedical imaging, seismology, radio frequency analysis,
quantum state/process estimation and many more. See for instance [Gro+10; HFY12; LDP07].

In general, such inverse problems do not have a unique solution. Additional assumptions are
required to enable uniqueness. Compressibility is one such assumption. In concrete applica-
tions it is often justified, or at least a justifiable approximation.

Sparsity is one of the simplest notions of compressibility. A vector x ∈ Cn is s-sparse, if
it has s non-vanishing components with respect to a certain basis. In order to exploit such a
model assumption, it makes sense to search for the sparsest vector z ∈ Cn that agrees with our
measurements:

minimize sparsity(z) (1.2)

subject to 〈ak, z〉 = yk 1 ≤ k ≤ m.

However, such a constrained sparsity minimization is known to be NP-hard in general. In fact,
there is not even an obvious heuristic algorithm for solving (1.2).

Low rank is another notion of compressibility, applicable to matrices. It may be viewed as a
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1 Introduction and summary of results

“non-commutative analogue” of sparsity: a matrix has rank r, if and only if its vector of singular
values is r-sparse. Low rank matrix reconstruction problems have many applications. Examples
include kernel-based learning methods [CST00], principal component analysis [Jol02], and
quantum state/process estimation [Gro+10]. Moreover, it gained fame through the “Netflix-
prize” of $1 000 000. This was an open competition for the best algorithm to predict user
ratings, based a small set of available ratings. The algorithm which won the prize in 2009
used a low rank model assumption [KB11]. However, once more we face the problem that
constrained rank minimization is NP hard in general.

Another important instance of a challenging inverse problem is phase retrieval, see for in-
stance [Wal63]. It occurs naturally in X-ray crystallography, astronomy, diffraction imaging—
see for example [Mil90]. This problem will feature prominently in this work. Its discrete
version asks for inferring a compex signal vector x ∈ Cn from m measurements of the form:

ỹk = |〈ak, x〉| 1 ≤ k ≤ m. (1.3)

This problem is ill-posed, because all phase information is lost in the measurement process.
If one had access to the complex phases φk of 〈ak, x〉 this problem reduces to solving a linear
system of equations:

Φỹ = Ax, (1.4)

where Φ = ∑m
k=1 φkeke∗k and A = ∑m

k=1 eka∗k subsumes the measurement process. Here,
e1, . . . , em denotes the standard basis of Rm. Crucially for phase retrieval, we do not know Φ
in (1.4). One approach to recovering x is performing a least-squares minimization over both
unknowns:

minimize
Φ,x

‖Φỹ− Ax‖2 , (1.5)

where Φ ∈ U(m) is unitary and diagonal in the standard basis and x ∈ Cn. Problems of this
type are non-convex, and, in fact, NP hard in general.

However, in contrast to, for instance, constrained sparsity minimization (1.2), there are
heuristics for solving (1.5). One such heuristics is alternating minimization, see e.g [Fie82].
These are iterative algorithm, where one alternates between keeping x fixed and minimizing
Φ and, vice-versa: fixing Φ and optimizing over x. Very few theoretical guarantees regarding
their performance are known. Nonetheless, alternating minimization algorithms are used in
many applications, see for instance [MCKS99].

Given the importance of the problem and the lack of mathematical understanding, obtaining
theoretical guarantees for phase retrieval is highly desirable. In order to do so, we will fol-
low a different direction: Interpret phase retrieval as a particular instance of low rank matrix
reconstruction.
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1.1 Introduction

1.1.2 Convex signal reconstruction

Convex signal reconstruction is a novel scientific discipline that allows for analyzing under-
determined inverse problems in a mathematically rigorous way. To this end, techniques from
various branches of math are combined. Pioneering works include Refs. [Can+06; CR06;
CRT06] by Candès, Romberg and Tao, as well as and Ref. [Don06] by Donoho. They show
that a sparse vector x ∈ Cn may be reconstructed exactly from considerably fewer than n linear
measurements (1.1). For instance, a measurement process containing

m ≥ Cs log
(n

s

)
(1.6)

standard Gaussian measurement vectors suffices to reconstruct any s-sparse vector x ∈ Cn with
high probability (w.h.p.). This sampling rate m turns out to be essentially tight. Moreover, the
actual reconstruction can be achieved by performing

minimize
z∈Cn

‖z‖`1
(1.7)

subject to 〈ak, z〉 = yk 1 ≤ k ≤ m.

This can be viewed as a convex relaxation of problem (1.2). It may be reformulated as a linear
program, see e.g. [Bar02; BV04]. Hence, it is computationally tractable. Today, the idea of
using a constrained `1-minimization to promote sparsity is known as compressed sensing. It
has received considerable scientific attention over the past decade. We refer to [EK12; FR13]
for an overview.

Subsequently, similar ideas have been used to address other important estimation problems.
The reconstruction of low rank matrices X ∈ Mn×n is one of them. It has been shown that

minimize
Z∈Mn×n

‖Z‖1 (1.8)

subject to tr (AkZ) = yk 1 ≤ k ≤ m

is a convex optimization problem that does promote low rank, see e.g. [FHB01]. Here, ‖Z‖1
denotes the nuclear norm of Z, that is the sum singular values: ‖Z‖1 = ∑n

k=1 σk(Z). The
nuclear norm may be viewed as a “non-commutative” analogue of the `1-norm: It is the `1-
norm of the vector of singular values. Moreover, (1.8) may be re-phrased as a semidefinite
program [Bar02; BV04] which assures computational tractability. Similarly to compressed
sensing, one can prove that a number of

m ≥ Crn (1.9)

Gaussian measurements yk = tr (AkX) suffice to reconstruct any rank-r matrix w.h.p. [CP11b;
FCRP08]. Note that it requires roughly rn parameters to describe a n× n-matrix with rank r.
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1 Introduction and summary of results

From this perspective, the sampling rate (1.9) may be viewed as optimal.

Phase retrieval also admits a convex relaxation. To see this, we square the measurements in
(1.3):

yk := ỹ2
k = |〈ak, x〉|2 = tr (aka∗k xx∗) (1.10)

These quadratic measurements are linear in the outer product X = xx∗ of x ∈ Cn. In turn,
an order of O

(
n2) linearly independent measurements Ak = aka∗k allow for reconstructing

X = xx∗ via linear inversion [BBCE09]. Knowledge of X then specifies x ∈ Cn up to a global
phase. On first glance, a quadratic number of measurements seems necessary. Formula (1.10)
reinterpretes the n-dimensional non-linear phase retrieval problem as a linear inverse problem
on Hn—the n2-dimensional real-valued vector space of hermitian n× n-matrices. However,
lifted phase retrieval does exhibit additional structure: the object of interest X = xx∗ ∈ Hn is
guaranteed to have unit rank. In analogy to low rank matrix reconstruction, one may promote
this key feature via minimizing the nuclear norm [CESV15]:

minimize
Z∈Hn

‖Z‖1 (1.11)

subject to tr (aka∗k Z) = yk 1 ≤ k ≤ m.

Following its inventors [CESV15; CSV13], we call this approach to phase retrieval PhaseLift.
Subsequently, it was proven that a number of

m ≥ Cn (1.12)

measurements allows for reconstructing any X = xx∗ w.h.p., provided that each measurement
ak ∈ Cn is chosen uniformly from the complex unit sphere Sn−1 [CL14]. Random Gaussian
measurements also allow for drawing the same conclusion. We emphasize that this sampling
rate (1.12) scales linearly in n, the actual dimensionality of phase retrieval.

Note that alternating minimization (1.5) and PhaseLift (1.11) are two very different ap-
proaches to the same problem. Alternating minimization is a heuristic for the “vector level”,
where phase retrieval is challenging non-convex problem. PhaseLift, on the other hand, solves
an under-determined, but linear, inverse matrix problem by exploiting techniques from low rank
matrix reconstruction.

In practical applications, the dimensionality n of phase retrieval is typically very large. For
large problem dimensions, alternating minimization heuristics have a considerable lower run-
time than PhaseLift, see for instance Table 1 in [NJS13]. Arguably, the merit of PhaseLift is
more conceptual than practical: its convex structure allows for a rigorous mathematical anal-
ysis. In turn, theoretical reconstruction guarantees obtained via PhaseLift lend credence to
commonly employed heuristics, in the sense that they highlight the problem’s tractability.
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1.1 Introduction

1.1.3 Stability towards noise corruption

Let us now turn our attention to an important issue: noise corruption. In practical applications,
linear measurements of the form (1.1) are affected by noise:

yk = 〈ak, x〉+ εk 1 ≤ k ≤ m.

We measure the strength of such corruptions by the `2-norm of the noise vector ε =

(ε1, . . . , εm)
T ∈ Cm and assume that it is bounded by a known constant η ≥ ‖ε‖`2

. Be-
yond that, we shall make no further assumptions on η. In particular, we do not require η to be
stochastic.

The convex optimization algorithms treated so far are ill-equipped to handle noisy measure-
ments. Their constraints demand exact reproduction of the noise-corrupted measurements yk.
Having access to η allows for overcoming this issue by further relaxing the equality constraints.
For instance,

minimize
z∈Cn

‖z‖`1
(1.13)

subject to ‖Az− y‖`2
≤ η

is a noise-robust reformulation of (1.7). Here, A = ∑m
k=1 eka∗k subsumes the measurement

process and y = (y1, . . . , ym)
T encompasses the acquired data. For m = Cs log

( n
s

)
random

Gaussian measurements ak ∈ Cn one can prove w.h.p. that such a reconstruction is stable to-
wards noise corruptions. For instance, Ref. [BDDW08] in conjunction with Ref. [C0̀8] assures
that the minimizer z] of (1.13) obeys

∥∥∥z] − x
∥∥∥
`2
≤ Cη.

Low rank matrix reconstruction from noisy measurements yk = tr (AkX) + εk admits a
similar relaxation:

minimize
Z∈Mn×n

‖Z‖`1
(1.14)

subject to ‖A(Z)− y‖`2
≤ η.

Here, A : Mn×n → Rm denotes the measurement operator A(Z) = ∑m
k=1 ektr (AkZ). For

Gaussian measurement matrices Ak ∈ Mn×n this reconstruction is again stable w.h.p.:
∥∥∥Z] − X

∥∥∥
2
≤ Cη. (1.15)

See, for instance, [CP11b; OMFH11] in conjunction with [RFP10]. Here ‖·‖2 denotes the
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1 Introduction and summary of results

Frobenius norm on Mn×n: ‖Z‖2 =
√

tr (ZZ∗).

1.2 The challenge of structured measurements

While these initial breakthroughs of convex signal reconstruction are truly remarkable, they do
have drawbacks. All results mentioned above rely on measurements chosen randomly from
“generic” distributions: Gaussian measurements for compressed sensing and matrix recon-
struction, and measurements choosen uniformly from Sn−1 for PhaseLift. The associated re-
construction guarantees only hold with high probability over the particular realizations of these
measurements. This is undesirable for several reasons:

(i) While true with high probability, checking whether a concrete measurement instance
does indeed allow for convex signal reconstruction is a hard task.

(ii) Relying on generic measurements obscures the specific properties of measurement en-
sembles that enable convex signal reconstruction.

(iii) Perhaps most importantly, the lack of any structure in generic measurements renders the
task of practical implementations hard and, more often than not, even infeasible.

Identifying deterministic sets of highly structured measurement ensembles that allow for
proving reconstruction guarantees deterministically would solve all these issues. Unfortunately,
this seems to be an extremely hard task and is a major open problem. To this date, essentially
all deterministic constructions of measurements are unsatisfactory, because they suffer from at
least one of the following drawbacks: (i) they require a considerably larger number of mea-
surements than random measurements: In compressed sensing, this deficit is known as the
“quadratic bottleneck”, because deterministic constructions require m ≥ Cs2 instead of (1.6),
(ii) contrived and complicated structure of the measurements, and (iii) weak stability towards
noise corruption, see e.g. [Kec15].

Acknowledging the hardness of such a task, we focus on a less ambitious and more realistic
goal:

Central goal

Prove convex reconstruction guarantees for measurements that are chosen ran-
domly from small and structured ensembles.

Ideally, such a compromise has two advantages: (i) the residual amount of randomness al-
lows for employing strong probabilistic proof techniques and (ii) the ensemble’s structure fa-
cilitates practical implementation.
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1.2 The challenge of structured measurements

For compressed sensing, the discrete Fourier basis

fk =
n

∑
j=1

e−
2πik(j−1)

n ek ∈ Cn, 1 ≤ k ≤ n (1.16)

was early on identified to fulfill this purpose [CRT06]. Fourier basis measurements occur nat-
urally in many applications, where raw data acquisition happens in the Fourier domain. A
prominent example for this feature is medical MRI imaging, see for instance [LDP07]. Also,
different problems in wideband radio frequency signal analysis are of this form, see e.g. the mo-
tivation provided in [Can+06]. with respect to the standard basis, Fourier vectors (1.16) have
full support and coefficients with constant modulus 1√

n . This in turn implies that the coherence
parameter [CP11a]

µ := max
1≤j≤n

∣∣〈ej, fk〉
∣∣2 =

1
n
∀1 ≤ k ≤ n. (1.17)

of the Fourier basis is minimal. Intuitively, this incoherence assures that Fourier measurements
are sufficiently “spread out”, or “global”. In compressed sensing, incoherence rules out the
undesirable property that a measurement reveals too little information about the sparse vector
of interest1.

Pauli matrices allow for drawing similar conclusions [Gro11; Liu11] in low rank matrix
reconstruction. There are four elementary Pauli matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
. (1.18)

In dimension n = 2d, n2 different Pauli matrices arise by taking all possible d-fold tensor
products of (1.18). Such a construction can be generalized to dimensions that are not a power
of two, see e.g. Ref. [Gro06] and references therein. These n2 Pauli matrices are hermitian and
unitary. If we re-scale them by 1/

√
n, the resulting matrices W1, . . . , Wn2 form an orthonormal

basis of Hn with respect to the Hilbert-Schmidt inner product (X, Y) = tr (X∗Y). Hoelder’s
inequality then implies

ν := max
x∈Sn−1

|(xx∗, Wk)|2 ≤ max
x∈Sn−1

‖xx∗‖1 ‖Wk‖∞ =
1
n
∀1 ≤ k ≤ n. (1.19)

Consequently, the re-scaled Pauli basis is incoherent with respect to any rank-one projector
xx∗ ∈ Hn. This may be viewed as a non-commutative analogue of the incoherence relation
(1.17).

1Let us consider the task of reconstructing a standard basis vector x = ej ∈ Cn from discrete Fourier basis
measurements as a concrete example. Then, its basis expansion x = ∑N

k=1 x̃k fk with respect to the Fourier basis
is guaranteed to have full support. In turn, any Fourier measurement 〈 fk, x〉 reveals “some” information about
x, namely x̃k 6= 0. For some special cases, this intuition can be made precise via entropic uncertainty relations
which we briefly introduce in the outlook-section.
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1 Introduction and summary of results

Such incoherence properties facilitate mathematical proofs. Nonetheless, these “de-randomized”
reconstruction guarantees [CRT06; Gro11; Liu11] typically require much higher technical ef-
forts and deliver slightly weaker results.

For phase retrieval via PhaseLift, the task of identifying the “right” structural properties
is more involved. Obviously, Pauli matrices are not applicable, while measuring the discrete
Fourier basis does not provide sufficient information to recover phases. Moreover, PhaseLift
has the interesting feature that the measurement matrices Ak = aka∗k are constrained to unit
rank. If we normalize them to unit Frobenius norm (‖Ak‖2 = ‖ak‖2

`2
= 1), this in turn implies

ν = max
x∈Sn−1

|(xx∗, aka∗k )|2 = max
x∈Sn−1

|〈x, ak〉|4 = 1 ∀ak ∈ Sn−1.

On the contrary to Fourier vectors (1.17) and Pauli matrices (1.19), these measurements can
never be incoherent. This turns out to be a considerable technical obstacle. For measurements
ak chosen uniformly from Sn−1 it may be overcome by proving

∣∣(xx∗, aka∗k
)∣∣2 = O

( 1
n

)
is

true for any fixed x ∈ Sn−1 with extremely high probability [CL14; CSV13]. In turn, such a
strong notion of “probabilistic incoherence” allows for employing proof techniques from low
rank matrix reconstruction [Gro11]. However, this notion of probabilistic incoherence can only
worsen, if we move on to smaller and less generic measurement ensembles. And it is not even
clear what good candidates for such ensembles would be.

Addressing these open problems regarding PhaseLift is particularly important to this thesis.
To this end, we formulate the following objectives:

(I) Identify specific properties of measurement ensembles that enable PhaseLift.

(II) Prove reconstruction guarantees for measurements chosen from such ensembles,

(III) Find concrete examples.

We shall treat these questions separately in the next three sections.

1.3 Spherical designs as a general purpose tool for
de-randomization

In this section, we focus on the first objective: finding structural properties on measurement
vectors that enable PhaseLift to succeed. As the number of measurements required for detecting
lost phases is strictly larger than the signal space dimension n, one cannot expect that measuring
a single orthonormal basis suffices. On the other hand, Candès et al. [CL14; CSV13] prove that
m = Cn measurements chosen uniformly from the complex unit sphere Sn−1 do enable phase

10



1.3 Spherical designs as a general purpose tool for de-randomization

retrieval w.h.p.

The concept of spherical t-designs provides an interpolation between these extreme cases.
Roughly speaking, a spherical t-design is a finite subset {w1, . . . , wN} of the complex unit
sphere Sn−1 in Cn with the following defining property: Sampling uniformly from this set
reproduces the first 2t moments of the uniform distribution over Sn−1. Many equivalent defini-
tions capture this property, the most explicit one being

1
N

N

∑
k=1

(wkw∗k )
⊗t =

∫

v∈Sn−1
(vv∗)⊗t dv. (1.20)

Here, ⊗ denotes the canonical tensor (Kronecker) product of matrices. Introduced in a seminal
paper by Delsarte et al. [DGS77], they have since been studied in algebraic combinatorics
[Sid99], coding theory [NRS01] and quantum information theory [AE07; RBKSC04; Sco06].

For t = 1 this definition is equivalent to that of a tight frame. For larger t, they correspond to
equally weighted cubature formulas of the Grassmannian [DLHP05] G (1, Cn). In this sense,
they may be viewed as rank-one instances of tight t-fusion frames [BE13]. We refer to [EGK15]
for a concise comparison between spherical designs and tight t-fusion frames. As t scales up,
t-designs give better and better approximations to vectors distributed uniformly over Sn−1.

For phase retrieval, we already know that the structure of a tight frame (t = 1) alone is not
sufficient, while Sn−1-uniform measurements (t = ∞) provably perform optimally [CL14].
Choosing the parameter t appropriately, allows us to interpolate between two extremes in a
controlled way. We illustrate this intuition pictorially in Figure 1.1.

After having realized that demanding the structure of a 1-design alone is insufficient, a natu-
ral next step is to consider phase retrieval from spherical 2-designs. Interestingly, the defining
property of such a set is almost equivalent to a prominent structural requirement in convex
optimization: isotropy, see e.g. [CP11a]. A matrix-valued ensemble A ∈ Mn×n is isotropic, if

E [A tr(A∗Z)] = Z ∀Z ∈ Mn×n. (1.21)

This requirement, which is equivalent to the notion of a (matrix valued) tight frame, assures
that choosing measurement matrices A1, . . . , Am uniformly at random from A results in a
measurement process that is well-conditioned in expectation. While strict isotropy is in general
not necessary, it does usually simplify mathematical proofs2.

For PhaseLift, strict isotropy in the sense of (1.21) is impossible to attain. To see this,

2Consider compressed sensing as an illustrative example: Candès and Plan [CP11a] have identified incoherence
(1.17) and isotropy as sufficient assumptions to assure sparse reconstruction w.h.p. Subsequently, Gross and
myself could show that isotropy is not a necessary assumption and may be further generalized [KG14].

11



1 Introduction and summary of results

tight frames

“generic” Sn−1-uniform vectors

· · · t = 10 t = 9 · · · t = 4 t = 3 t = 2 t = 1t = ∞

Figure 1.1: Caricature of the intuition behind spherical t-designs: the parameter t endows the
set of all tight frames with a finer structure.

consider measurements chosen uniformly from Sn−1. Such an ensemble obeys

E [A tr (AZ)] = E [aa∗tr (aa∗Z)] ∝ Z + tr(Z)I ∀Z ∈ Hn, (1.22)

see for instance Lemma 8 in [GKK15a]. And a similar relation is true for Gaussian measure-
ment vectors ak ∈ Cn, see Eq. (4.1) in [CSV13]. The identity-term in (1.22) is unavoidable,
because very phaseless measurement obeys (Ak, I) = tr

(
aka∗k I

)
= ‖ak‖2

`2
> 0.

Importantly, Formula (1.22) is equivalent to the demand that a is chosen uniformly from a
spherical 2-design [AFZ15]. This highlights how well suited the notion of spherical 2-designs
seems to be for analyzing phase retrieval [KGK15].

In fact, it was conjectured that Condition (1.22) suffices to assure non-trivial reconstruc-
tion results [EK13] for PhaseLift. However, this turns out to be not the case, see [GKK15a].
By means of a concrete counterexample, we show that choosing phaseless measurements uni-
formly from a spherical 2-design may require a total number of m = O(n2) measurements in
order to correctly distinguish two vectors x, y ∈ Cn.

It is worthwhile to point out that the above no-go result does not exclude the possibility that
certain realizations of 2-designs can perform better, if additional structural properties can be
exploited. It states that solely demanding a 2-design structure is insufficient. We provide a
concrete example for such a measurement process in subsection 1.5.2.

The applicability of spherical t-designs is by no means limited to the problem of phase
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1.4 Main results on phase retrieval

retrieval. In [GKK15a], it has been one of the intentions of my co-authors and me to advertise
spherical designs as a general-purpose tool for partially “de-randomizing” constructive results
that initially relied on generic randomness. Already, this has partly come to fruition in [Kue15],
where we apply this idea to a particular scenario of matrix reconstruction that takes into account
typical features of quantum mechanical experiments.

1.4 Main results on phase retrieval

We are now in a position to describe the first main results obtained as part of this thesis. In
this section, I summarize three papers that I have co-authored during my PhD. They provide
increasingly tight and stable reconstruction guarantees for PhaseLift from spherical t-designs.

We know from the previous section that a minimal requirement for achieving this goal—
without having to make further assumptions on the ensemble—is t ≥ 3. An important first step
towards this goal was achieved by the following result:

Theorem 1 (Simplified version of Theorem 1 in [GKK15a]). Fix t ≥ 3 and x ∈ Cn. Then,
performing PhaseLift with

m ≥ Ctn1+ 2
t log2(n)

measurements chosen uniformly from a spherical t-design allows for reconstructing x with high
probability.

Ignoring logarithmic factors, this sampling rate m is proportional to O
(

n1+ 2
t

)
. Already

for t = 3, this implies a sub-quadratic scaling which is non-trivial. If we allow the design
order t to grow logarithmically with the problem dimension (as t = 2 log(n)), a sampling rate
m ≥ Cn log3(n) suffices. Up to logarithmich factors, this scaling is optimal.

However, comparing this statement to the original result of Candès et al. reveals that the
transition from Sn−1-uniform measurements to t-designs comes at a prize:

(i) Non-optimal sampling rates: The sampling rate m only becomes optimal (up to logarith-
mic factors), if we allow the design order t to grow with the problem dimension.

(ii) Non-uniform reconstruction guarantee: The result in [CL14] assures that a concrete real-
ization of the measurements w.h.p. allows for reconstructing any unknown vector x ∈ Cn

(uniform reconstruction). In contrast, Theorem 1 only promises that a concrete real-
ization of the measurement process is w.h.p. capable of reconstructing a single vector
x ∈ Cn (non-uniform reconstruction).

(iii) No stability towards noise corruption: The Sn−1-uniform result is stable towards noise

13



1 Introduction and summary of results

corruption. Although highly plausible, in its current form Theorem 1 has no stable refor-
mulation.

While certainly undesirable, drawbacks of this kind are typical for “de-randomizations” of
reconstruction statements that initially relied on generic randomness. Moreover, the appar-
ent trade-off between sampling rate m and design-order t seems to reflect our intuition about
spherical t-designs: the degree t interpolates between “maximal structure” and “maximal ran-
domness”. In consideration of these facts, the next result should come as a surprise:

Theorem 2 (Simplified version of Theorem 2 in [KRT15]). Fix 1 ≤ r ≤ n. Then, with high
probability

m = Crn log(n)

4-design measurements Ak = aka∗k allow for reconstructing any hermitian rank-r matrix X ∈
Hn via constrained nuclear norm minimization. This reconstruction is stable under additive
noise corruption.

This is actually a statement about matrix reconstruction. It is uniform in the sense of point (ii)
discussed above: one randomly choosen measurement process w.h.p. suffices to reconstruct any
hermitian rank-r matrix. It reduces to PhaseLift, if we set r to one. This special case overcomes
all the drawbacks from Theorem 1. In particular, up to a single log-factor, m = Cn log(n)
scales almost linearly—and thus optimally—in the problem dimension n. However, unlike
Theorem 1, this statement does require a 4-design. Comparing this to the no-go result for
2-designs leaves open the behavior for t = 3. We will come back to this in subsection 1.5.3.

Let us now turn our attention to PhaseLift, and more generally: matrix reconstruction from
rank-one projective measurements, in the presence of noise:

yk = tr (aka∗k X) + εk, or y = A(X) + ε, (1.23)

where y, ε ∈ Rmand A(Z) = ∑m
k=1 ektr

(
aka∗k Z

)
. Theorem 2 implies stable reconstruction of

any rank-r X from noisy measurements (1.23) via

minimize
Z∈Hn

‖Z‖1

subject to ‖A(Z)− y‖`2
≤ η.

In analogy to the results introduced in Section 1.1.3, the minimizer Z] of this optimization is
guaranteed to obey ∥∥∥Z] − X

∥∥∥
2
≤ C

√
n(n + 1)η, (1.24)

provided that η ≥ ‖ε‖`2
. If this parameter is chosen too small, the reconstruction proofs don’t

apply. Choosing it too large worsens the reconstruction quality (1.24) unnecessarily.

14
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We overcome this issue in [KKRT15] by exploiting an additional structural constraint:
Positive-semidefiniteness. PhaseLift re-interprets the task of inferring x ∈ Cn from phaseless
measurements as a linear inverse problem on Hn: Reconstruct X = xx∗ from a particular fam-
ily of linear measurements Ak = aka∗k . Thus, both the matrix of interest and the measurements
are positive semidefinite (X, Ak ≥ 0) by definition.

Theorem 3 (Simplified version of Corollary 6 in[KKRT15]). Fix r ≤ n and 1 ≤ p ≤ ∞. A
number of m ≥ Crn log(n) noisy 4-design measurements (1.23) w.h.p. allows for approximat-
ing any positive semidefinite matrix X ∈ Hn with rank at most r via solving

minimize
Z≥0

‖A(Z)− y‖`p
. (1.25)

The resulting minimizer Z] obeys

∥∥∥Z] − X
∥∥∥

2
≤ C′

√
n(n + 1)

‖ε‖`p

m1− 1
p

. (1.26)

Note that this reconstruction guarantee depends on the true noise strength ‖ε‖`p
, rather than

on an upper bound η that needs to be guessed in advance. Also, the additional freedom of
choosing 1 ≤ p ≤ ∞ allows for adjusting reconstructions to the expected noise type. For
instance, it may be advantageous to choose p = 1 for Poisson noise and p = ∞ for quantization
errors.

We also point out that the dimensional pre-factors
√
(n + 1)n ' n in (1.24) and (1.26)

are due to normalization. By definition, 4-design vectors have unit norm and hence ‖Ak‖2 =

‖ak‖4
`2
= 1. This is not the case for other “typical” measurements. For instance, the Frobenius

norm a random Gaussian n × n matrix amounts to roughly n. If we re-scale the 4-design
measurements by

√
(n + 1)n ' n, the dimensional factors in (1.26) and (1.24) vanish.

Finally, we want to point out that Theorem 2 and Theorem 3 remain valid, if we replace 4-
design measurements with complex standard Gaussian measurements. In fact, a sampling rate
of

m ≥ Crn

suffices for rank-one Gaussian measurements [KKRT15; KRT15]. This may be viewed as a
generalization of uniform PhaseLift [CL14] to matrix reconstruction. Measurements of this
form admit an interpretation as quantum mechanical measurements. Interestingly, for a brief
period of time, these results provided actually the best possible known bounds on “sample com-
plexity” for quantum state estimation [Haa+15; OW15]. Refs. [Haa+15; OW15] gave improved
constructions—however at the expense of having to employ so-called ”coherent measurements
across samples”, which are seen as more demanding to implement physically. We defer the
interested reader to these references for a precise definition of the terms used here.
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1 Introduction and summary of results

1.5 Concrete realizations of structured spherical designs

Our results from the previous section highlight that measurement vectors chosen uniformly
from Sn−1 are not required for performing phase retrieval via PhaseLift. However, the practical
relevance of these statements hinges on the availability of explicit constructions.

Explicit constructions of spherical designs are known for any degree t and any dimension
n. However, these constructions are typically inefficient, in the sense that they require an
exponentially large number of vectors, see e.g. [HHH05; SZ84]. Moreover, these constructions
typically lack the type of structure that would be important in practical applications.

1.5.1 Approximate spherical designs and randomized constructions

While tight and “structured” 2-designs are widely known [KR05; Kön99; Sch60; Zau99],
tighter analytic designs for t ≥ 3 are notoriously difficult to find. This lack of existence may
be overcome by relaxing the definition of a t-design:

(i) Allow for non-uniform weights pk 6= 1
N in (1.20). Doing so, results in weighted spher-

ical t-designs {pk, wk}N
k=1. These are also known as cubatures of strength t, see e.g.

[EGK15]. Constructions for such sets containing only O
(
n2t) vectors are available

[Kup06].

(ii) Approximate spherical designs {pk, wk}N
k=1 arise, if one relaxes strict equality in (1.20)

to closeness in some norm. Typically, Schatten-norms are used to measure the inaccuracy
θp of a given relaxation:

∥∥∥∥∥
N

∑
k=1

pk (wkw∗k )
⊗t −

∫

v∈Sn−1
(vv∗)⊗t dv

∥∥∥∥∥
p

≤ θp.

Such relaxations are well-established in quantum information science and randomized
constructions do exist [AE07; BHH12] and we refer to [KRT15] for further information.

Theorem 4 (Simplified version of Theorem 28 in [KKRT15]). The assertions of Theorem 2 and
Theorem 3 remain true, if one chooses measurements from a weighted, approximate 4-design
with accuracy θ∞ ≤ 1

16r2 , or θ1 ≤ 1
4 . For weighted designs {pkwk}N

k=1, uniform sampling must
be replaced by choosing measurement vectors independently according to the weights pk.

While we have not explicitly done the calculations, it is plausible that Theorem 1 also re-
mains true for approximate, weighted t-designs.
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1.5 Concrete realizations of structured spherical designs

Figure 1.2: Caricature of a typical masked illumination experiment (courtesy of M.
Soltanolkotabi [CLS15]).

1.5.2 Coded diffraction patterns

Coded diffraction patterns are a simplified model of techniques used in diffraction imaging.
There, the phase retrieval problem arises naturally, because detectors can only capture light
intensities, not phases. A typical diffraction imaging experiment aims at identifying the struc-
ture of a microscopic probe, for instance a protein. To this end, the probe is illuminated by
coherent X-ray light. The resulting diffraction pattern is then recorded at detectors, or a pho-
tographic plate. Fresnel and Fraunhofer approximations to the diffraction equation often allow
for relating microscopic features of the probe to diffraction pattern via a 2D-Fourier transform.
However, observing the absolute values of a single Fourier transform is insufficient to recover
phases.

To overcome this, one typically repeats this process under different physical conditions. Con-
ceptually, one of the simplest examples for such a procedure is masked illumination: on inserts
different masks, or phase plates, between the sample and the recording screen, see e.g. [Liu+08]
and Figure 1.2 for an illustration. Alternative techniques for achieving similar goals are well-
established and we refer to [CESV15] for a concise overview. To illustrate how important
these problems are in practice, we note that Watson and Crick used vital information from such
diffraction patterns to identify the double-helix structure of DNA.

Motivated by these current procedures, Candès, Li and Soltanolkotabi [CLS15] introduced
the following measurement model for discrete phase retrieval: They describe modulations (via
masks, or otherwise) by random matrices Dl ∈ Mn×n that are diagonal with respect to the
standard basis: Dl = ∑n

k=1 d(l)k eke∗k . In turn, they approximate diffraction patterns by measur-
ing all inner products with discrete Fourier vectors. Let x ∈ Cn be a vector which may carry
important information about the microscopic structure of a probe. Then, this model associates
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1 Introduction and summary of results

n measurements

yk,l = |〈 fk, Dlx〉|2 = tr (Dl fk f ∗k D∗l xx∗) 1 ≤ k ≤ n (1.27)

with the l-th modulated diffraction pattern. Following [CLS15], we call one such measurements
coded diffraction patterns. Note that—even if Dl is random—the n different measurements
(1.27) exhibit a high degree of structure in that each measurement vector is similar to a Fourier
vector:

Dl fk =
1√
n

n

∑
j=1

b(l)k ω jkek with ω = e
2πi
n .

Also, they are correlated in the sense that the same random numbers b(l)1 , . . . , b(l)n feature in
every Dl fk, 1 ≤ k ≤ n. Soltanolkotabi et al. could show that for certain random models of Dl ,

L = C log4(n)

independent coded diffraction patterns allow for recovering a fixed x ∈ Cn with high probabil-
ity. This amounts to a total sampling rate of m = Ln = Cn log4(n).

Their random model assumes that each d(l)k is an independent instances of a bounded (|d| ≤ c
almost surely), symmetric random variable d ∈ C obeying E

[
d2] = 0 and

E
[
|d|4
]
= 2E

[
|d|2
]2

. (1.28)

A concrete example [CLS15] for a complex-valued random variable that fulfills these properties
is d = b1b2, where b1 and b2 are independent and distributed as

b1 =





1 with prob. 1
4

−1 with prob. 1
4

−i with prob. 1
4

i with prob. 1
4

and b2 =

{
1 with prob. 4

5√
6 with prob. 1

5

.

One key ingredient of proving such a statement is the fact that the bk’s are centered. This
allows for applying Hoeffding’s inequality [Hoe63] to establish

|〈 fk, Dlx〉|2 =
1
n

∣∣∣∣∣
n

∑
j=1

bjxjω
jk

∣∣∣∣∣

2

≤ C log(n)
n

for any fixed x = ∑n
j=1 xjej ∈ Cn with very high probability. This is a rather strong notion of

probabilistic incoherence.
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1.5 Concrete realizations of structured spherical designs

A few months after this original paper appeared on the pre-print server, we succeed in im-
proving this statement [GKK15b]. In particular, we managed to further reduce the required
sampling rate to

L = C log2(n).

This is close to optimal. Indeed, we also established a converse lower bound: C′ log(n) such
coded diffraction patterns are necessary to guarantee injectivity [GKK15b].

Also, as a minor improvement, we drop their “simplifying assumption” that d must obey
E
[
d2] = 0. Instead, we require d to be a bounded, real-valued random variable obeying

(1.28), as well as E [d] = E
[
d3] = 0. A particular example for a random variable fulfilling all

these requirements is

d ∼





√
2 with prob. 1/4,

0 with prob. 1/2,

−
√

2 with prob. 1/4.

Finally, we point out that the moment condition (1.28) together with E [d] = 0 is equiva-
lent to near-isotropy (1.22) of the measurement model. This in turn implies that these coded
diffraction patterns form a spherical 2-design, albeit a very particular one. The additional struc-
tural properties of this design allow for establishing close-to-optimal reconstruction proofs for
PhaseLift.

1.5.3 Stabilizer states

In this section we consider stabilizer states—a ubiqutous tool in quantum information theory
[Got97; NC10]. They also feature prominently in discrete Weyl-Heisenberg theory, where they
correspond to the smallest orbit of the quotient group. Real-valued versions of stabilizer states
arise as generators of Barnes-Wall lattices [NRS02] and have been studied extensively in coding
theory, see e.g. [NRS06].

In a sense made precise below, stabilizer states can be viewed as a generalization of discrete
Fourier vectors. Here, we will introduce them from a quantum information perspective. Stabi-
lizer states are joint eigenvectors of Pauli matrices (1.18). For the particular case of a “single
qubit” (n = 2), they form a set Stab(2) of six normalized vectors:

s1 =e1, s2 = e2, s3 =
1√
2
(e1 + e2) , s4 =

1√
2
(e1 − e2) , (1.29)

s5 =
1√
2
(e1 + ie2) , s6 =

1√
2
(e1 − ie2) .

This is a union of three orthonormal bases which contains the standard basis (s1, s2) and the
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1 Introduction and summary of results

Fourier basis (s3, s4) of C2. Note that s1 is the unique joint eigenvector of σ0 and σ3 with
eigenvalue +1. Also, σ0 = I and σ3 commute. Likewise, s2 is the unique joint +1-eigenvector
of the commuting matrices σ0 and −σ3. The remaining stabilizer states s3, . . . , s6 ∈ C2 admit
a similar unique description.

Such a definition of stabilizer states can be generalized to arbitrary dimensions. However,
for the sake of brevity, we shall restrict ourselves to power-of-two dimensions. It is useful to
introduce the following notation. Let us re-label the elementary Pauli matrices (1.18) in the
following way:

σ(0,0) =

(
1 0
0 1

)
, σ(0,1) =

(
0 1
1 0

)
, σ(1,1) =

(
0 −i
i 0

)
, σ(1,0) =

(
1 0
0 1

)
.

This notation allows us to identify every 2 × 2 Pauli matrix with a 2-dimensional vector
(p1, q1) ∈ F2

2. Likewise, in dimension n = 2d, every Pauli matrix is uniquely specified by a
2d-dimensional vector (p, q) := (p1, . . . , pd; q1, . . . , qd) ∈ F2d

2 of length 2d:

W(p, q) = W(p1, . . . , pn; q1, . . . qn) = σ(p1,q1) ⊗ · · · ⊗ σ(pd,qd).

Such a description turns out to be extremely useful. For instance, two Pauli matrices
W(p, q), W(p′, q′) ∈ Hn commute, if and only if the symplectic inner product of their
description vanishes:

[
(p; q), (p′; q′)

]
:= 〈p, q′〉 − 〈q, p′〉 =

d

∑
k=1

pkq′k −
d

∑
k=1

qk p′k = 0. (1.30)

The vector space F2d
2 together with the non-degenerate symplectic product (1.30) is called

phase space due to its resemblance to the phase space appearing in classical mechanics.

In turn, a set of n = 2d commuting n × n-Pauli matrices corresponds to a n-dimensional
subspace M ⊂ F2n

2 that is isotropic: [(p; q), (p′; q′)] = 0 ∀(p; q), (p′; q′) ∈ M. This obser-
vation allows us to generalize the definition of stabilizer states from C2 to C2n [Got97]. In the
language adopted here and in [KG15] we obtain the following description:

Theorem 5. Let n = 2d be a power of two. Then, up to a global phase, every stabilizer
state s ∈ Stab(n) ⊂ Cn is specified by a vector (v; w) ∈ F2d

2 and a d-dimensional isotropic
subspace M ⊂ F2d

2 :

ss∗ =
1
n ∑

(p;q)∈M
(−1)[(v;w),(p,q)]W(p; q).

We emphasize, that Theorem 5 allows for a succinct description of every n-dimensional
stabilizer state in terms of at most 2

(
log2

2(n) + log2(n)
)

bits. In turn, the “low complexity”
of stabilizer states allows for generating them algorithmically with relative ease. To this end, let
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1.5 Concrete realizations of structured spherical designs

us label the standard basis in Cn by y ∈ Fn
2 . In turn, every stabilizer state s ∈ Cn is uniquely

specified by an affine subspace S + t ⊂ Fn
2 , a vector l ∈ Fn

2 and a quadratic form q : Fn
2 → F:

s =
1√
|S| ∑

y∈S
i〈l,y〉(−1)q(y)ey, (1.31)

see [DDM03] and also Theorem 5 in [GN07]. There is a one-to-one correspondence between
this triple (S + t, l, q) and (M, (v; w)) from Theorem 5.

If we set l = 0 ∈ Fn
2 , S = {0} and q(y) = 0 ∀y ∈ Fn

2 , we recover the standard basis:
st = et ∀t ∈ Fn

2 . Conversely, if we choose S = Fn
2 , t ∈ Fn

2 becomes irrelevant and setting
l = 0 and q(y) = 〈k, y〉 with k ∈ Fn

2 results in the discrete Fourier basis over Z×n
2 :

sk =
1√
n

n

∑
y∈Fn

2

(−1)〈k,y〉ey = fk1 ⊗ · · · ⊗ fkd ,

where f0 = 1√
2
(e1 + e2)

T and f1 = 1√
2
(e1 − e2)

T. In this sense, stabilizer states are a gener-
alization of both standard basis and Fourier basis.

The standard basis description (1.31) of stabilizer states in particular allows for generating
random stabilizer states efficiently. We have used such algorithms in different numerical exper-
iments, see for instance Figure 1.3.

Beyond that, multi-qubit (n = 2d) stabilizer states exhibit structural properties similar to
their single-qubit counterpart (1.29). The set Stab(n) ⊂ Cn of all stabilizer states is a union of

|Stab(n)|
n

=
d

∏
j=1

(
2j + 1

)
= O

(
2

1
2 d2
)

different orthonormal bases. Each basis is uniquely determined by a d-dimensional isotropic
subspace M ⊆ F2d

2 , while different vectors (v; w) ∈ F2n
2 single out the individual basis vec-

tors. As pointed out above, the standard basis and the discrete Fourier basis over Z×d
2 are two

particular instances of these bases.

Using the rich geometric structure of stabilizer states, we were able to prove the following
statement:

Theorem 6 (Simplified version of Corollary 1 in [KG15]). Let n = 2d be a power of two. Then,
the set Stab(n) ⊆ Cn of all stabilizer states forms a spherical 3-design. They do, however, not
constitute a spherical 4-design.

This statement is wrong for dimensions n that are not a power of two. Sidelnikov could prove
an analogous statement for real-valued stabilizer states [Sid99] which also requires power-of-
two dimensions. However, the structure of real-valued spherical designs is surprisingly differ-
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ent from their complex-valued counterparts. In turn, it is not obvious how to generalize the
techniques from Sidelnikov to the complex case and our proof technique [KG15] is completely
different from [Sid99].

Theorem 6 assures that the set of all stabilizer states obeys the requirements of Theorem 1—
our first main result for phase retrieval via PhaseLift. Said result assures that a fixed x ∈ Cn

may be reconstructed from
m ≥ Cn

5
3 log2(n) (1.32)

random stabilizer state measurements w.h.p While non-trivial, the sampling rate (1.34) is far
from being optimal. Very recently, in a fruitful collaboration with Zhu, Gross and Grassl we
were able to considerably improve this statement. These results are not yet published and we
present parts of them in chapter 3 below. The key idea is to approach stabilizer states via their
symmetry group. Stabilizer states are the smallest orbit of the Clifford group C(n) ⊂ U(n):

Stab(n) = {Ce1 : C ∈ C(n)} .

The Clifford group is defined as the group of operations that—up to phase factors—map Pauli
matrices onto themselves under conjugation. It arises naturally in quantum information. For
instance, the important field of quantum error correction relies practically exclusively on con-
structions that arise from Pauli matrices and Clifford actions. We refer to [LB13] and references
therein for further information.

This symmetry group features prominently in different fields: For instance it is known as
the quotient group in finite Weyl-Heisenberg analysis and the metaplectic representation of
Sp (F2, d) in mathematical physics, see e.g. [Fol16].

In order to improve (1.32), we fully characterized the irreducible representations of the di-
agonal representation C 7→ C⊗4 of the Clifford group. I want to emphasize that this character-
ization is mainly due to my collaborators, in particular Zhu and Gross. Since stabilizer states
are an orbit of the Clifford group, this result allowed us to conclude the following formula for
stabilizer states [ZKGG16]:

1
|Stab(n)| ∑

s∈Stab(n)
(ss∗)⊗4 =

(
n + 2

3

)(
P1 +

4
n + 4

P2

)
. (1.33)

Here, P1, P2 ∈ H⊗4
n denote orthogonal projections that obey P1 + P2 = PSym4 , where PSym4

denotes the projector onto the totally symmetric subspace of (Cn)⊗4. We refer to Section 3.2 in
[GKK15a] for a precise definition. This precise knowledge of the fourth moments of stabilizer
states allowed us to apply proof techniques similar to [KRT15] and [KKRT15] and establish
the following statement:

Theorem 7 (Simplified version of Theorems 2 and 3 in [KZG16b]). Let n = 2d be a power of
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1.5 Concrete realizations of structured spherical designs

two and fix 1 ≤ r ≤ n. Then, w.h.p.

m = Cr2n log(n) (1.34)

random stabilizer measurements Ak = aka∗k allow for reconstructing any rank-r matrix X ∈
Hn via constrained nuclear norm minimization. This reconstruction is stable towards noise
corruptions. If X is in addition positive semidefinite, noise robust reconstruction may be done
by solving

minimize
Z≥0

‖A(Z)− y‖`p
∀1 ≤ p ≤ ∞

We point out that the sampling rate (1.34) is quadratic in the rank parameter r. For phase re-
trieval via PhaseLift this non-linearity is irrelevant, because every matrix of interest X = xx∗ ≥
0 is proportional to a rank one projector. In turn, Theorem 7 reproduces the strongest PhaseLift
reconstruction statement available to date [CL14] up to a single log-factor. We emphasize that,
unlike measurement vectors chosen uniformly from Sn0−1 [CL14], stabilizer states have an
exceedingly rich structure in the following sense:

(i) They admit a concise description in terms of finite symplectic geometry.

(ii) They form the smallest orbit of a big and well-studied symmetry group—the Clifford
group.

Numerical experiments conducted in [GKK15a] highlight the almost optimal behavior of sta-
bilizer states for phase retrieval, see Figure 1.3.

We conclude this section by pointing out that Theorem 7 remains valid, if we replace stabi-
lizer states by any other Clifford orbit. In fact, several other Clifford orbits admit a better rank
scaling in the sampling rate m.

1.5.4 Orthonormal basis measurements

Here, we shall focus on reconstructing a matrix X from a collection of orthonormal basis
measurements:

yk = tr (bkb∗k X) 1 ≤ k ≤ n, (1.35)

where b1, . . . , bn ∈ Cn denotes an orthonormal basis. Since two orthonormal bases are related
via a unitary transformation U ∈ U(n), we may equivalently write

yk = tr (U fk f ∗k U∗X) 1 ≤ k ≤ n, (1.36)

where f1, . . . , fn denotes the orthonormal basis of discrete Fourier vectors. Viewed from this
perspective, orthonormal basis measurements are very similar to coded diffraction patterns
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Figure 1.3: Phase Diagram for PhaseLift from (projected) stabilizer states. The red line indicates
m = 4d− 4—a sufficient criterion for injectivity of generic measurements [CEHV15].

(1.27). However, here the modulation is due to a unitary rotation U, instead of a diagonal
mask Dl . For maximal randomness, in the sense that each U is chosen Haar-uniformly from
U(n), Voroninski could establish reconstruction results [Vor13]. He proved that a constant
number of such generic orthonormal basis measurements suffices to reconstruct a rank-one ma-
trix X = xx∗ with high probability. We point out that each orthonormal basis measurement
encompasses n different measurements. Thus the total number of measurements amounts to
m = Cn, which is optimal up to multiplicative factors. Although not stated explicitly, it is
plausible that this result may be extended to hermitian matrices with higher rank.

By combining the proof techniques from [GKK15b] (coded diffraction patterns) and
[GKK15a] (spherical designs) we were able to de-randomize this statement also generalize
it to arbitrary rank:

Theorem 8 (Simplified version of Theorem 2 in [Kue15]). Let X ∈ Mn×n be a hermitian
matrix of rank r an suppose that each U in (1.36) is chosen independently from a unitary
t-design (t ≥ 3). Then, with high probability

L ≥ Ctn
2
t r log2(n)

orthonormal basis measurements allow for reconstructing X via nuclear norm minimization.

On first sight, this result bears strong similarities with Theorem 1 above. However, it is a
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statement about matrix reconstruction and not not only valid for PhaseLift (r = 1).

Also, unlike coded diffraction patterns, the orthonormal basis measurements considered here
do not admit a strong notion of probabilistic incoherence. So far, this lack of incoherence
together with the fact that that the individual measurements are not independent has prevented
us from further improving this result.

A concrete example for such a measurement procedure are stabilizer states in power of two
dimension. In turn, Theorem 8 implies that measuring

L ≥ C′rn
2
3 log2(n)

random stabilizer bases allows for rank-r matrix reconstruction. Measurements of this type are
not only feasible, but also typical, for several quantum mechanical experiments. Meeting the
structural requirements of these types of experiments has been my main motivation to study
matrix reconstruction from orthonormal basis measurements.

1.6 Miscellaneous results convex reconstruction problems

The previous two sections were devoted to the main results of this thesis. In this section, I
present further results on convex signal reconstruction that were obtained throughout the course
of my PhD. Several of these projects address features that are typical for PhaseLift—such as
anisotropic measurements and positivity constraints—in more generality.

1.6.1 Compressed sensing from anisotropic measurements

We have already introduced minimal coherence (1.17) and isotropy (1.21) as desirable proper-
ties for performing convex signal reconstruction. For sparse vector reconstruction from mea-
surements that are independent realizations of a random vector a ∈ Cn these amount to

µ = max
1≤k≤n

|〈ek, a〉|2 (coherence parameter) and E [aa∗] = I (isotropy).

Candès and Plan could show that these two requirements suffice for establishing compressed
sensing reconstruction guarantees [CP11a]. They prove that w.h.p. a fixed s-sparse vector can
be reconstructed from

m ≥ Cµs log(n)

random isotropic measurements with coherence parameter µ.

A concrete example for such a measurement ensemble are re-scaled Fourier basis vectors
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√
n f1, . . . ,

√
n fn ∈ Cn. They are isotropic and admit a minimal coherence parameter µ = 1.

Consequently, m = Cs log(n) random Fourier basis measurements w.h.p. suffice to recon-
struct a s-sparse vector via `1-norm minimization (1.7).

We could further generalize this result by considerably relaxing the isotropy condition. To
this end, we introduce the following condition number:

κ := κ
(

E [aa∗]
1
2

)
=

λmax

(
E [aa∗]

1
2

)

λmin

(
E [aa∗]

1
2

)

Note that isotropy is equivalent to demanding κ = 1. In turn, we need to adjust the coherence
parameter

µ̃ := max
{

max
1≤k≤n

|〈ek, a〉|2 , max
1≤k≤n

∣∣∣〈ek, E [aa∗]−1 a〉
∣∣∣
2
}

and arrive at the following statement.

Theorem 9 (Simplified version of Theorem 2 in [KG14]). Let x ∈ Cn be an s-sparse vector
and suppose that measurement vectors are chosen independently from an ensemble a ∈ Cn

with condition number κ and coherence parameter µ̃. Then, w.h.p.

m ≥ Csκµ̃ log(n)

such measurements suffice to reconstruct x via constrained `1-minimization (1.7).

1.6.2 The role of positivity assumptions

In the context of phase retrieval, we have already seen that exploiting its positive semi-definite
structure is advantageous for noise-robustness. It allowed us to replace the “usual” algorithmic
reconstruction [KRT15] by Algorithm (1.25) [KKRT15]. This latter algorithm is considerably
simpler. And, perhaps more importantly, posing it does not require an a-priori bound η ≥ ‖ε‖`2

on the noise strength.

Here, we show that similar conclusions may be drawn for sparse reconstruction of entry-wise
non-negative vectors x ≥ 0. The study of sparse reconstruction under such a positivity con-
straint has a long and rich history that actually pre-dates compressed sensing, see e.g. [DT05].
Subsequently, different aspects of non-negativity in compressed sensing have been analyzed,
see e.g. [BEZ08] and [SH+13]. To the best of our knowledge, these works focus on the ideal-
ized scenario of reconstructing positive, sparse vectors from noiseless measurements.

In [KJ16] we put our emphasis on non-negative compressed sensing from noisy measure-
ments. We combine the geometric insights from [BEZ08] with the notion of a robust null space
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property3 [FR13] to arrive at the following conclusion:

Theorem 10 (Simplified version of Theorem 1 in [KJ16]). Suppose that a real-valued mea-
surement process A : Rn → Rm obeys the robust NSP for s-sparse vectors and its row-span
intersects the positive orthant: ∑m

k=1 tkak > 0 for some t ∈ Rm. Then, solving

z] = arg min
z≥0

‖Az− y‖`2
(1.37)

allows for stably reconstructing any non-negative s-sparse vector x ∈ Rn from noisy measure-
ments Ax = y + ε.

∥∥∥z] − x
∥∥∥
`2
≤ C′

‖ε‖`2√
m

.

Note that Algorithm (1.37) is actually a simple non-negative least squares regression
(NNLS). When using standard tools, such as CVX [GB14; GBY08], its runtime is consid-
erably lower than constrained `1-minimization (1.7). Perhaps more importantly, NNLS does
not require any assumptions on the noise ε to assure stable reconstruction. This is not the case
for constrained `1-minimization, where an appropriate choice of η is essential.

As a concrete example, we consider Bernoulli-random measurements:

Theorem 11 (Simplified version of Theorem 2 in [KJ16]). A measurement process containing

m ≥ Cs log(n)

independent 0/1-Bernoulli vectors ak ∈ Rn meets the requirements of Theorem 10 with high
probability.

It is plausible that the number of measurements required may further be improved to m ≥
Cs log(n/s). For such measurement processes, we have run numerical simulations to com-
pare NNLS to “traditional” `1-minimization, see Figure 1.4. They highlight the advantage of
exploiting positivity. This 0/1-measurement model also has potential applications in current
engineering problems. We discuss one such application—activity detection in large wireless
networks—in [KJ16].

Finally, we point out that we proved a robust NSP for 0/1-Bernoulli matrices in order to
arrive at Theorem 11. This result alone allows for concluding strong (i.e. uniform and stable)
compressed sensing results—regardless of positivity. To the best of our knowledge, we were
the first to derive such strong results for 0/1-Bernoulli measurements. This lack of results is

3The null space property is somewhat “folklore”. We refer to loc. cit. for a discussion about its origin.
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Figure 1.4: Comparison of NNLS and BPDN for 0/1-Bernoulli matrices in the noisy setting.

likely due to the fact that such measurements are not isotropic:

E [aa∗] =
n

∑
k,l=1

E [bkbl ] eke∗l =
1
4 ∑

k 6=l
ekel +

1
2

n

∑
k=1

eke∗k =
1
4

I +
1
4
~1~1∗.

This anisotropy renders traditional strong proof techniques, such as establishing the famous
restricted isometry property (RIP) [C0̀8], infeasible. However, in accordance with the previous
subsection, Theorem 11 highlights that isotropy is not required for deriving strong compressed
sensing results.

1.6.3 Matrix reconstruction via minimizing the diamond norm

Low rank matrix reconstruction is typically carried out via a constrained nuclear norm mini-
mization (1.8). In some sense [FHB01], the nuclear norm is the tightest convex relaxation of
rank. However, this may not necessarily be the case if we restrict our attention to strict subsets
of low rank matrices.

Motivated by applications in quantum information science, we focus on matrices with a bi-
partite structure: X ∈ Hn1 ⊗ Hn2 . For such matrices, we identify a novel convex surrogate for
rank. It is based on the diamond norm—an important distance measure in quantum information
theory:

‖X‖� = max {‖(I⊗ A)X(I⊗ B)‖1 : ‖A‖ = ‖B‖ = √n2} (1.38)

It is easy to see that ‖·‖� is a norm and, although not obvious, it can be computed via a
semidefinite program that satisfies strong duality [Wat13]. Also, note that the pair A = B = I
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is admissible in the maximization (1.38) and consequently

‖X‖1 ≤ ‖X‖� ∀X ∈ Hn1 ⊗ Hn2 . (1.39)

In [KKEG15] we provide analytical evidence in favor of the diamond norm as a convex sur-
rogate for rank. We use the fact that the geometry of convex reconstruction schemes is well
understood, see e.g. [Tro15]. Starting with a convex regularizer f (e.g. the nuclear norm), ge-
ometric proof techniques like Tropp’s Bowling scheme [Tro15] (see also [KRT15]) bound the
reconstruction error in terms of the descent cone of f at the matrix X that is to be recovered.
These arguments suggest that the reconstruction error would decrease, if another convex regu-
larizer with smaller descent cone would be used. In this sense, the following result implies that
the diamond norm may be an improved regularizer for certain classes of matrices:

Theorem 12 (Simplified version of Corollary 8 in [KKEG15]). Let X ∈ Hn1 ⊗ Hn2 be a
matrix that saturates (1.39) , i.e. ‖X‖1 = ‖X‖�. Then the descent cone of the diamond norm
(1.38) in X is contained in the descent cone of the nuclear norm at the same point. Moreover,
we completely describe the set of all matrices X ∈ Hn1 ⊗ Hn2 obeying ‖X‖� = ‖X‖1.

We demonstrate numerically, that the diamond norm indeed outperforms the nuclear norm
in a number of relevant applications, including quantum process reconstruction. Quantum pro-
cesses may be described by bipartite matrices X ∈ Hn1 ⊗ Hn2 which obey ‖X‖� = ‖X‖1 by
definition. Moreover, many idealized quantum processes that are relevant in quantum compu-
tation are described by matrices X with unit rank. Our results suggest to employ a constrained
diamond norm minimization in order to reconstruct such processes from few random measure-
ments. Numerical simulations conducted in [KKEG15] suggest that this is indeed favorable:
For correct reconstruction, constrained diamond norm minimization requires fewer measure-
ments than nuclear norm minimization.

1.7 Further results in quantum information theory

The main focus of this project is convex signal reconstruction, with an emphasis on phase
retrieval and matrix reconstruction. As a field, convex reconstruction combines techniques from
various branches of mathematics, including convex optimization, linear algebra and probability
theory. These mathematical techniques lend themselves to tackling various different types of
problems. This section is devoted to presenting insights into different problems in quantum
information science. These were all obtained by applying such techniques.
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1.7.1 A causal interpretation of Bell inequality violations

Bell inequalities are an elegant method to single out certain properties of quantum mechanical
systems that cannot be explained classically [Bel64]. At their heart are experiments that in-
volve two experimenters at different locations who simultaneously perform measurements on
a shared physical system. Under natural assumptions, such as locality (the results obtained by
one observer cannot be influenced by any action of the other), measurement independence (ex-
perimenters are free to choose which properties to measure) and realism (one can consistently
assign a value to any physical property—independently of whether or not it is measured), the
causal structure of this setup alone implies strong constraints on the statistical data that can
arise. The resulting constraints are called Bell inequalities. Famously, quantum mechanical
experiments can violate these constraints, see e.g. [CS78].

However, when trying to reproduce these results in a quantum experiment, practical limita-
tions make it very challenging to assure that the underlying assumptions – space-like separation,
locality and measurement independence – are met exactly. These practical limitations motivate
studying how stable Bell inequalties are towards violating one, or more, of these assumptions.

To address this issue, we have re-visited typical “Bell experiments” and tried to explain
the observations classically via Bayesian networks. Doing so allows us to construct and subse-
quently analyze alternative causal structures, e.g. one that does allow for non-local interactions.
It turns out that the resulting problems can often be re-cast as linear programs. Subsequently,
the versatility of linear programming allowed us to draw several conclusions [CKBG15], for
instance: Novel “causal” interpretations of Bell inequality violations.

1.7.2 Bayesian quantum state estimation with fidelity

A finite, n-dimensional quantum system is fully described by its quantum state: a positive
semidefinite matrix that has unit trace. The task of estimating such a description of a physical
system from empirical data is called quantum tomography.

In recent years it has become increasingly popular to approach this task via Bayesian estima-
tion theory. The key idea is to choose a prior distribution over quantum states and subsequently
update it based on the measurement data. Doing so results in a posterior distribution dρ. Sub-
sequently, point estimators ρ̂ are obtained by specifying a loss function L : Hn × Hn → R and
minimizing the expected posterior loss:

minimize
σ≥0

Eρ [L(ρ, σ)] (1.40)

subject to tr(σ) = 1.
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A prominent loss function is the following generalization of mean square error: L (ρ, σ) =

‖ρ− σ‖2
2. For such a loss function, (1.40) results in the Bayesian mean estimator ρ̂ = Eρ [ρ]

[BK10].

However, Frobenius distance ‖ρ− σ‖2 is not a prominent distance measure in quantum in-
formation science. Instead, the fidelity [Uhl]

F(ρ, σ) =
∥∥√ρ
√

σ
∥∥2

1 ∈ [0, 1]

is by far the most commonly used figure of merit for comparing quantum states. Interestingly,
the point estimator maximizing the expected fidelity is only known for a single qubit (n = 2)
[Bag+06]. In [KF15] we address this lack of knowledge by providing upper bounds on the
maximal expected fidelity achievable by any estimator:

Theorem 13 (Simplified version of Theorem 2 in [KF15]). The maximal average fidelity
achieved by any estimator ρ̂ obeys

Eρ [F(ρ, ρ̂)] ≤1− 1
4

tr
(

Eρ

[
ρ2]−Eρ [ρ]

2
)

.

Such a result is useful for benchmarking the fidelity performance of different estimation
techniques.

We complement our theoretical findings with numerical experiments. These demonstrate
the relative tightness of our bounds. Moreover, they reveal that the Bayesian mean estimator
[BK10] is an excellent point estimator. Despite not being designed for maximizing expected
fidelity, it achieves values that—according to our bounds—are close to optimal.

1.7.3 Comparing experiments to fault-tolerance thresholds

The possibility of eventually constructing a working quantum computer hinges on the availabil-
ity of robust control mechanisms that allow for compensating faulty computations. A strong
theoretical guarantee for being able to do so, is the “Threshold Theorem” [Kit97]. In a nut-
shell, it states that if the error rate remains below a certain threshold, potentially noisy and even
faulty computations can be fully compensated using quantum error correction. The figure of
merit that quantifies this threshold is the diamond norm difference between the identity map
I : Hn → Hn and the error channel E : Hn → Hn occurring. This makes it imperative to
estimate diamond distances ∆(E) = ‖I − E‖� from experimentally available data. However,
doing so is a non-trivial task.
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Instead, the average error rate of a noise channel

r(E) := 1−
∫

Sn−1
〈w, E(ww∗)w〉dw

is a prominent figure of merit. It can be estimated efficiently by performing techniques like
“direct fidelity estimation” [FL11] and “randomized benchmarking”, see e.g. [MGE11].

To date, the best known general bound that relates these two error measures is

r(E) ≤ ∆(E) ≤
√

n(n + 1)r(E) ∀E : Hn → Hn, (1.41)

which is rather discouraging. Current results on fault-tolerant quantum computation require a
threshold of order 10−4 [AC07]. In principle, experimenters need to be able to achieve average
error rates of order 10−8 in their working devices.

In [KLDF15] we address this problem. Concretely, we consider several realistic noise mod-
els of “incoherent noise” and show that these admit a linear relation:

r(E) ≤ ∆(E) ≤ 3r(E).

Conversely, we show that “coherent noise”—such as unitary errors E(X) = UXU∗—
essentially saturate the upper bound in (1.41). We derived these relations by exploiting the
semidefinite program formulation of the diamond norm [Wat09].

From a practical perspective, these results are encouraging. On the contrary to “incoherent”
errors, such as leakage, “coherent” noise effects can typically be corrected. We point out that
our findings from subsection 1.6.3 may be useful for such a task. They allow for reconstructing
particular “coherent” processes from a reduced number of random measurements.

1.7.4 Distinguishing quantum states

Quantum state discrimination is the task of correctly distinguishing between two quantum
states, say ρ and σ, by performing a single quantum measurement. Helstrom’s theorem [Hel76]
that the maximal probability of success for such a task is bounded by

psucc ≤
1
2
+

1
4
‖ρ− σ‖1 ,

if both states occur with equal probability. This amounts to a an optimal bias of βHelstrom =
1
4 ‖ρ− σ‖1. Moreover, he showed that this bound is achievable by performing a particular
quantum measurement that depends on ρ and σ. However, such a particular measurement is
optimized to distinguish ρ from σ and may fail completely at distinguishing other state pairs.
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Addressing this lack of universality in Helstrom’s theorem, Matthews, Wehner and Winter
[MWW09] turned this problem around: instead of fixing the states and optimizing the mea-
surement procedure, they consider the performance of a fixed measurement at distinguishing
arbitrary pairs of states ρ, σ ∈ Hn. In particular, they could show that a 4-design measurement
performs surprisingly well at this task:

β4D ≥
1

6
√

rank(ρ− σ)
‖ρ− σ‖1 ∀ρ, σ.

This is close to optimal, in the sense that it reproduces the performance of the uniform measure-
ment encompassing all xx∗ with x ∈ Sn−1. Conversely, a 2-design measurement may perform
considerably worse:

β2D ≥
1

2(d + 1)
‖ρ− σ‖1 .

This bound cannot be further improved in general.

Our novel results about the fourth moments of stabilizer states (1.33) [ZKGG16] have en-
abled us to infer similar results for measurements that consist of all stabilizer states.

Theorem 14 (Simplified version of Theorem 4 in [KZG16a]). If the dimension n = 2d is a
power of two, stabilizer measurements obey

βstab ≥
1

4rank(ρ− σ)
‖ρ− σ‖1 ∀ρ, σ.

Note that this result critically depends on the rank of the states ρ and σ considered. If
both states are approximately pure, i.e. rank(ρ) ' rank(σ) ' 1, we can conclude βstab ≥
1
8 ‖ρ− σ‖1, which almost reproduces the 4-design behavior. Conversely, if ρ− σ has full rank
then stabilizer states may perform as bad as 2-designs: 1

4d ‖ρ− σ‖1 ≤ βstab ≤ 1
d+1 ‖ρ− σ‖1.
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2 Publications

2.1 List of publications

This cummulative dissertation is based on thirteen publications. Out of these, eight have been
published in peer-refereed journals, three in peer-refereed conference proceedings and one is
currently under review at physical review letters. I am the main contributor to eight of these
articles and provided important contributions to the remaining five.

[GKK15a] D. Gross, F. Krahmer, R. Kueng, A partial derandomization of PhaseLift using spherical
designs, Journal of Fourier Analysis and Applications 21, 229–266 (2015),

[KGK15] R. Kueng, D. Gross, F. Krahmer, Spherical designs as a tool for derandomization: the
case of PhaseLift, IEEE-endorsed (peer-reviewed and published) proceedings for for the
2015 international conference on Sampling Theory and Applications (SampTA) (2015)

[KRT15] R. Kueng, H. Rauhut, U. Terstiege, Low rank matrix recovery from rank one measure-
ments, Applied and Computational Harmonic Analysis, 1063-5203 (2015)

[KKRT15] M. Kabanava, R. Kueng, H. Rauhut, U. Terstiege, Stable low-rank matrix recovery via
null space properties, accepted at Information and Inference (2016),
http://arxiv.org/abs/1507.07184

[GKK15b] D. Gross, F. Krahmer, R. Kueng, Improved recovery guarantees for phase retrieval from
coded diffraction patterns,
Applied and Computational Harmonic Analysis, 1063-5203 (2015)

[KG15] R. Kueng, D. Gross, Qubit stabilizer states are complex projective 3-designs
http://arxiv.org/abs/1510.02767 (2015)

[Kue15] R. Kueng, Low rank matrix recovery from few orthonormal basis measurements, IEEE-
endorsed (peer-reviewed and published) proceedings for for the 2015 international
conference on Sampling Theory and Applications (SampTA) (2015)
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[1] A partial derandomization of PhaseLift using spherical designs, [GKK15a]
[2] Spherical designs as a tool for derandomization: the case of PhaseLift [KGK15]
[3] Low rank matrix recovery from rank one measurements, [KRT15]
[4] Stable low-rank matrix recovery via null space properties, [KKRT15]
[5] Improved recovery guarantees for phase retrieval from coded diffraction patterns, [GKK15b]
[6] Qubit stabilizer states are complex projective 3-designs [KG15]
[7] Low rank matrix recovery from few orthonormal basis measurements [Kue15]
[8] RIPless compressed sensing from anisotropic measurements, [KG15]
[9] Robust nonnegative sparse recovery and the null space property of 0/1 measurements [KJ16]
[10] Improving compressed sensing with the diamond norm, [KKEG15]
[11] A unifying framework for relaxations of the causal assumptions in Bell’s theorem, [CKBG15]
[12] Near optimal quantum tomography: estimators and bounds, [KF15]
[13] Comparing experiments to the fault-tolerance threshold [KLDF15]

Figure 2.1: This figure illustrates the methodical connections between the different publications
presented in this cummulative dissertation.
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[KG14] R. Kueng, D. Gross, RIPless compressed sensing from anisotropic measurements,
Linear Algebra and its Applications 441, 119–123 (2014)

[KJ16] R. Kueng, P. Jung, Robust nonnegative sparse recovery and the null space property of
0/1 measurements, accepted for publication in the proceedings of the IEEE Information
Theory Workshop in Cambridge, UK (2016),
http://arxiv.org/abs/1510.02767

[KKEG15] M. Kliesch, R. Kueng, J. Eisert, D. Gross, Improving compressed sensing with the dia-
mond norm, accepted at IEEE Transactions on Information Theory (2016),
http://arxiv.org/abs/1511.01513

[CKBG15] R. Chaves, R. Kueng, J.B. Brask, D. Gross, A unifying framework for relaxations of the
causal assumptions in Bell’s Theorem, Physical Review Letters 114, 140403 (2015)

[KF15] R. Kueng, C. Ferrie, Near-optimal quantum tomography: estimators and bounds,
New Journal of Physics 17, 123013 (2015)

[KLDF15] R. Kueng, D.M. Long, A.C. Doherty, S.T. Flammia, Comparing Experiments to the
Fault-Tolerance Threshold , under review at Physical Review Letters (2016),
http://arxiv.org/abs/1511.01513

While the topics of these articles are seemingly diverse, I want to emphasize that the methods
and proof techniques are strongly related. This is illustrated in Figure 2.1.
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Abstract The problem of retrieving phase information from amplitude measurements
alone has appeared in many scientific disciplines over the last century. PhaseLift is
a recently introduced algorithm for phase recovery that is computationally tractable,
numerically stable, and comes with rigorous performance guarantees. PhaseLift is
optimal in the sense that the number of amplitude measurements required for phase
reconstruction scales linearly with the dimension of the signal. However, it specif-
ically demands Gaussian random measurement vectors—a limitation that restricts
practical utility and obscures the specific properties of measurement ensembles that
enable phase retrieval. Here we present a partial derandomization of PhaseLift that only
requires sampling from certain polynomial size vector configurations, called t-designs.
Such configurations have been studied in algebraic combinatorics, coding theory, and
quantum information. We prove reconstruction guarantees for a number of measure-
ments that depends on the degree t of the design. If the degree is allowed to grow
logarithmically with the dimension, the bounds become tight up to polylog-factors.
Beyond the specific case of PhaseLift, this work highlights the utility of spherical
designs for the derandomization of data recovery schemes.
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1 Introduction

In this work we are interested in the problem of recovering a complex signal (vector)
x ∈ Cd from an intensity measurement y0 = ‖x‖2�2

and amplitude measurements

yi = |〈ai , x〉|2 i = 1, . . . , m,

where a1, . . . , am ∈ Cd are sampling vectors. Problems of this type are abundant in
many different areas of science, where capturing phase information is hard or even
infeasible, but obtaining amplitudes is comparatively easy. Prominent examples for
this case occur in X-ray crystallography, astronomy and diffraction imaging—see
for example [57]. This inverse problem is called phase retrieval and has attracted
considerable interest over the last decades.

It is by no means clear how many such amplitude measurements are necessary
to allow for recovery. Thus from the very beginning, there have been a number of
works regarding injectivity conditions for this problem in the context of the specific
applications [16].

More recently this question has been studied in more abstract terms, asking for
the minimal number of amplitude measurements of the form (1)—without imposing
structural assumptions on the ai ’s—that are required to make the above map injective.
In [8], the authors showed that in the real case (x ∈ Rd ), at least 2d − 1 such
measurements are necessary and generically sufficient to guarantee injectivity, while
in the complex case a generic sample size of m ≥ 4d − 2 suffices. Here generic is to
be understood in the sense that the sets of measurements of such size which do not
allow for recovery form an algebraic variety in the space of all frames. Also, the latter
bound is close to optimal: as shown in [41], it follows from the results derived in [66]
that a sample size of m ≥ (4+ o(1)) d is necessary (cf. [58]). However, finding the
precise bound is still an open problem.

Balan et al. [9] consider the scenario of O(d2) measurements, which form a com-
plex projective 2-design (cf. Definition 3 below). They derive an explicit reconstruction
formula for this setup based on the following observation well known in conic pro-
gramming. Namely, the quadratic constraints on x are linear in the outer product xx∗:

yi = |〈ai , x〉|2 = tr
(
(ai a

∗
i )(xx∗)

)
. (1)

This “lifts” the problem to matrix space of dimension d2, where it becomes linear and
can be explicitly solved to find the unique solution.

As we will show in Theorem 2, it is, without making additional assumptions on
the 2-design, not possible to use as measurements a random subset of this 2-design38
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which is of size o(d2). In other words, for the measurement scenario described in [9],
the quadratic scaling in d is basically unavoidable.

To contrast these two extreme approaches, Ref. [8] works with a number of mea-
surements close to the absolute minimum, but there are no tractable reconstruction
schemes provided, the question of numerical stability is not considered, and it is
unclear whether non-generic measurements—i.e., vectors with additional structural
properties—can be employed. On the other hand, the number of measurements in [9]
is much larger, while the measurements are highly structured and there is an explicit
reconstruction method. A number of recent works including this paper aim to balance
between these two approaches, working with a number of measurements only slightly
larger while having at least some of the desired properties mentioned above.

Reference [3] introduces a reconstruction method called polarization that works
for O(d log d) measurements and can handle structured measurement vectors, includ-
ing the masked illumination setup that appears in diffraction imaging [10], where
the measurements are generated by the discrete Fourier transform preceded by a ran-
dom diagonal matrix. For Gaussian measurements, the polarization approach has also
shown to be stable with respect to measurement noise [3]. While simulations seem
to suggest stability also for the derandomized masked illumination setup, a proof of
stability is—to our knowledge—not available yet.

An alternative approach, which we will also follow in this paper, is the PhaseLift
algorithm, which is based on the lifted formulation (1). The algorithm was introduced
in [22] and reconstruction guarantees have been provided in [18,23]. The central obser-
vation is that the matrix xx∗, while unknown, is certainly of rank one. This connects the
phase retrievel problem with the young but already extensive field of low-rank matrix
recovery [21,35,54,63]. Over the past years, this research program has rigorously iden-
tified many instances in which low-rank matrices can be efficiently reconstructed from
few linear measurements. The existing results on low-rank matrix recovery were not
directly applicable to phase retrieval, because the measurement matrices ai a∗i failed to
be sufficiently incoherent in the sense of [21,35] (the incoherence parameter captures
the well-posedness of a low-rank recovery problem). For the case of Gaussian mea-
surement vectors ai , Candès, Strohmer, Voroninski and Li were able to circumvent this
problem, providing problem-specific stable recovery guarantees [18,23] for a number
of measurements of optimal order O(d). For recovery, they use a convex relaxation
of the rank minimization problem, which makes the reconstruction algorithmically
tractable.

It should be noted, however, that because of the significantly increased problem
dimensions, PhaseLift is not as efficient as many phase retrieval algorithms developed
over the last decades in the physics literature (such as [30]) and the optimization
literature (for example [13]). Recently there have been attempts to provide recovery
guarantees for alternating minimization algorithms [61], which are somewhat closer to
the algorithms used in practice, but this direction of research is only at its beginnings.

While the above mentioned recovery guarantees for PhaseLift address the issues
of tractable reconstruction and stability with respect to noise, these results leave open
the question of whether measurement systems with additional structure and less ran-
domness still allow for guaranteed recovery. There are both practical and theoretical
motivations for pursuing such generalizations: A practitioner may be constrained in the39
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choice of measurements by the application at hand or reduce the amount of random-
ness required for implementation purposes. The most prominent example are again
masked Fourier measurements, which appear as a natural model in diffraction imag-
ing, but a lot of different scenarios imposing different structure are conceivable. From
a theoretical point of view, the use of Gaussian vectors obscures the specific properties
that make phase retrieval possible. As discussed in the following subsection, it is a
common thread in randomized signal processing that results are first established for
Gaussian measurements and later generalized to structured ensembles.

A different direction of research, which will not be pursued in this paper, is to ask
how additional structural assumptions on the signal to be recovered, such as sparsity,
can be incorporated into the theory. A general analysis based on the Gaussian width
of how many measurements are needed to allow for stable recovery of a signal known
to lie in a set T ⊂ Rd is provided in [28]. Notably the results allow for measurements
with arbitrary subgaussian rather than just Gaussian entries. Efficient algorithms for
recovery, however, are not provided. For the case of s-sparse signals, also tractable
recovery algorithms are available: It has been shown in [53] that PhaseLift can recover
x with high probability from Gaussian measurements for a number of measurements
m proportional to s2 (up to logarithmic factors), which, for small s, can be consider-
ably less than the dimension. In [27], it is shown that only a number of subgaussian
measurements scaling linearly in the sparsity (up to logarithmic factors) is needed if
recovery proceeds using certain greedy algorithms.

1.1 Designs as a General-Purpose Tool for De-randomization

In this paper, we focus on the theoretical aspect: which properties of a measurements
are sufficient for PhaseLift to succeed? We prove recovery guarantees for ensembles of
measurement vectors drawn at random from a finite set whose first 2t moments agree
with those of Haar-random vectors (or, essentially, Gaussian vectors). A configuration
of finite vectors which gives rise to such an ensemble is known as a complex projective
t-design.1 Designs were introduced by Delsarte, Goethals and Seidel in a seminal paper
[25] and have been studied in algebraic combinatorics [70], coding theory [25,60],
and recently in quantum information theory [4,15,36,40,68]. Furthermore, complex
projective 2-designs were the key ingredient for the reconstruction formula for phase
retrieval proposed in [9].

One may see a more general philosophy behind this approach. In the field of sparse
and low-rank reconstruction, a number of recovery results had first been established
for Gaussian measurements. In subsequent works, it has then been proven that mea-
surements drawn at random from certain fixed orthonormal bases are actually suffi-
cient. Examples include uniform recovery guarantees for compressed sensing ([11,19]
vs. [20,65]) and low-rank matrix recovery ([63] vs. [54]), respectively. Typically, the
de-randomized proofs require much higher technical efforts and deliver slightly weaker
results. For a recent survey on structured random measurements in signal processing
see [48].

1 The definition of a t-design varies between authors. In particular, what is called a t-design here (and
in most of the physics literature), would sometimes be referred to as a 2t or even a (2t + 1)-design. See
Sect. 3.3 for our precise definition.40
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As the number of measurements needed for phase retrieval is larger than the sig-
nal space dimension, one cannot expect these results to exactly carry over to the
phase retrieval setting. Nevertheless, the question remains whether there is a larger,
but preferably not too large, set such that measurements drawn from it uniformly at
random allow for phase retrieval reconstruction guarantees. In some sense, the sam-
pling scenario we seek can be interpreted as an interpolation between the maximally
random setup of Gaussian measurements with an optimal order of measurements and
the construction in [9], which is completely deterministic, but suboptimal in terms of
the embedding dimension. While in this paper, we will focus on the phase retrieval
problem, we remark that such an interpolating approach between measurements drawn
from a basis and maximally random measurements may also be of interest in other sit-
uations where reconstructions from bases are known, but lead to somewhat suboptimal
embedding dimensions.

The concept of t-designs, as defined in Sect. 3.3, provides such an interpolation.
The intuition behind that definition is that with growing t , more and more moments of
the random vector corresponding to a random selection from the t-design agree with
the Haar measure on the unit sphere. In that sense, as t scales up further, t-designs
give better and better approximations to Haar-random vectors.

The utility of this concept as a general-purpose de-randomization tool for Hilbert-
space valued random construtions has been appreciated for example in quantum infor-
mation theory [4,55]. It has been compared [4] to the notion of t-wise independence,
which plays a role for example in the analysis of discrete randomized algorithms [56],
seems to have been long appreciated in coding theory. The smallest t-design in Cd

consists of O(d2t ) elements. Thus, whenever that lower bound is met, drawing a sin-
gle element from a design requires 2t log d bits, as opposed to 2d bits for a complex
Bernoulli vector—an exponential gap.

From a practical point of view, the usefulness of these concepts hinges on the
availability of constructions for designs. Explicit constructions for any order t and any
dimension d are known [7,40,47,69]—however, they are typically “inefficient” in the
sense that they require a vector set of exponential size. For example, the construction
in [40] uses O(t)d vectors which is exponential in the dimension d.

Tighter analytic expressions for exact designs are notoriously difficult to find.
Designs of degree 2 are widely known [45,46,67,75]. A concrete example is used
for the converse bound in Sect. 7 (as well as for the converse bounds for low-rank
matrix recovery from Fourier-type bases in [35]). For degree 3, both real [70] and
complex [49] designs are known.2 For higher t , there are numerical methods based on
the notion of the frame potential [45,49,64] , non-constructive existence proofs [69],
and constructions in sporadic dimensions (c.f. [5] and references therein).

Importantly, almost-tight randomized constructions for approximate designs for
arbitrary degrees and dimensions are known [4,15,40]. The simplest results [40] show
that collections of Haar-random vectors form approximate t-designs. This indeed can
reduce randomness: One only needs to expend a considerable amount of randomness
once to generate a design—for subsequent applications it is sufficient to sample small

2 While stated only for dimensions that are a power of 2, the results can be used for construtions in arbitrary
dimensions [49]. 41
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subsets from it.3 Going further, there have been recent deep results on designs obtained
from certain structured ensembles [15]. We do not describe the details here, as they
are geared toward quantum problems and may have to be substantially modified to
be applicable to phase retrieval. The only connection to phase retrieval to date is the
estimation of pure quantum states [41,59].

Finally we point out that the notion of the frame potential above is no coincidence.
In [6] a frame-theoretic approach to designs is provided, underlining their close con-
nection.

1.2 Main Results

In this paper, we show that spherical designs can indeed be used to partially derandom-
ize recovery guarantees for underdetermined estimation problems; we generalize the
recovery guarantee in [23] to measurements drawn uniformly at random from complex
projective designs, at the cost of a slightly higher number of measurements.

Theorem 1 (Main Theorem) Let x ∈ Cd be the unknown signal. Suppose that ‖x‖2�2
is

known and that m measurement vectors a1, . . . , am have been sampled independently
and uniformly at random from a t-design Dt ⊂ Cd (t ≥ 3). Then, with probability at
least 1− e−ω, PhaseLift (the convex optimization problem (24) below) recovers x up
to a global phase, provided that the sampling rate exceeds

m ≥ ω Ct d1+2/t log2 d. (2)

Here ω ≥ 1 is an arbitrary parameter and C is a universal constant.

As the discussion of the previous subsection suggests, the bounds on the sampling rate
decrease as the order of the design increases. For fixed t , and up to poly-log factors,
it is proportional to O(d1+2/t ). This is sub-quadratic for the regime t ≥ 3 where our
arguments apply. If the degree is allowed to grow logarithmialy with the dimension
(as t = 2 log d), we recover an optimal, linear scaling up to a polylog overhead,
m = O(d log3 d).

In light of the highly structured, analytical and exact designs known for degree 2
and 3, it is of great interest to ask whether a linear scaling can already be achieved for
some small, fixed t . As shown by the following theorem, however, for t = 2 not even
a subquadratic scaling is possible if no additional assumptions are made, irrespective
of the reconstruction algorithm used.

Theorem 2 (Converse bound) Let d be a prime power larger than 2. Then there exists
a 2-design D2 ⊂ Cd and orthogonal, normalized vectors x, z ∈ Cd which have the
following property:

Suppose that m measurement vectors y1, . . . , ym are sampled independently and
uniformly at random from D2. Then, for any ω ≥ 0, the number of measurements must
obey

3 The situation is comparable to the use of random graphs as randomness expanders [43].42
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m ≥ ω

4
d(d + 1),

or the event

|〈ai , x〉|2 = |〈ai , z〉|2 ∀ i ∈ {1, . . . , m}

will occur with probability at least e−ω.

It is worthwhile to put this statement in perspective with other advances in the field.
Throughout our work, we have only demanded that the set of all possible measurement
vectors forms a t-design and have not made any further assumptions. Theorem 2 has
to be interpreted in this regard: The 2-design property alone does not allow for a sub-
quadratic scaling when a “reasonably small” probability of failure is required in the
recovery process.

Note that this does not exclude the possibility that certain realizations of 2-designs
can perform better, if additional structural properties can be exploited. A good exam-
ple for such a measurement process is the multi-illumination setup provided in [17].
In [37] the authors of this paper verified that the set of all measurement vectors
used in the framework of [17] does constitute a 2-design (Lemma 6). Additional
structural properties—most notably a certain correlated Fourier basis structure in the
individual measurements—allowed for establishing recovery guarantees already for
m = O

(
d log4 d

)
measurements [17] and m = O(d log2 d) [37], respectively—

which both clearly are sub-quadratic sampling rates.

1.3 Outlook

There are a number of problems left open by our analysis. First, recall that our results
achieve linear scaling up to logarithmic factors only when samples are drawn from
a set of superpolynomial size. Thus it would be very interesting to find out whether
there are polynomial size sets such that sampling from them already achieves such
a scaling, in particular, if t-designs for some fixed t can be used. The case of t = 3
seems particularly important in that regard, since the converse bound (Theorem 2)
shows that a design order of at least 3 is necessary. Also, highly structured 3-designs
are known to exist (see above).

Another important follow-up problem concerns approximate t-designs. While our
main result is phrased for exact t-designs, certain scenarios will only exhibit approxi-
mate design properties. We expect that our proofs can be generalized to such a setup,
but also leave this problem for future work. Lastly, the reconstruction quality for noisy
measurements is also an important issue yet to be investigated.

2 Numerical Experiments

In this section we complement our theoretical results with numerical experiments,
which we have implemented in Matlab using CVX [33,34]. As may have been
expected, these experiments suggest that PhaseLift from designs actually works much43
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Fig. 1 Phase diagram for PhaseLift from (projected) stabilizer states, which form an exact 3-design in
dimensions 2n and a weighted one else. The x-axis indicates the problem’s dimension, while the y-axis
denotes the number of independent design measurements performed. The frequency of a successful recovery
over 30 independent runs of the experiment appears color-coded from black (zero) to white (one). To guide
the eye, we have furthermore included a red line indicating m = 4d − 4

better than our main theorem suggests. To be concrete, we use stabilizer states—a
highly structured vector set which is very prominent in quantum information theory
[31,32]. Stabilizer states exist in any dimension, though their properties are some-
what better-behaved in prime power dimensions. In this case, there exists O(d log d)

stabilizer state vectors. Due to their rich combinatorial structure, these vectors can be
constructed efficiently. For dimensions d = 2n that are a power of two, it is known
[49] that the set of stabilizer states forms a 3-design. This statement is false for other
prime power dimensions (d 
= 2n for some n), where they only form an exact 2-design.
However, weighted 3-designs can be constructed for arbitrary dimensions d by pro-
jecting down stabilizer states from the next largest power-of-2-dimension 2n obeying
2n−1 < d < 2n [49]. For further clarification of the concept of exact and weighted
t-designs we defer the reader to [68] and references therein.

We have used these vectors in our numerical simulations, the results of which are
depicted in Fig. 1. For each dimension d between 1 and 40 (x-axis) and for each
number of measurements m ranging from 1 to 200 (y-axis), we ran a total of 30
independent experiments. Each such experiment consisted in choosing a Haar-random
(normalized Gaussian) complex vector x as test signal. Then, we drew m projected
stabilizer states uniformly at random and calculated their squared overlap with the
test signal. We then ran PhaseLift on this data and declared the recovery a “success”
if the Forbenius distance between the reconstructed matrix X̃ and the true projection
X = xx∗ was smaller than 10−3. Figure 1 depicts the empirical success probability:
Black corresponds to only failures, white to only successes.44
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We obtain the picture of a relatively sharp phase transition along a line that scales
linearly in the problem dimension. In fact, the transition seems to occur in the vicin-
ity of the line m = 4d − 4 – drawn in red in Fig. 1. This seems to agree with the
conjecture that 4d − 4 measurements are required for injectivity (see e.g. [41]). How-
ever, there are a few differences in the problem setup: Firstly, the conjecture only asks
whether there is a unique solution, while the numerical simulations study whether the
PhaseLift algorithm can find it. Secondly, the conjecture concerns unique solutions
for all possible inputs, while numerically, we estimate the success probability. And
thirdly, the conjecture states that generic measurements work, while our simulations
use a specific random procedure (drawn uniformly from a 3-design) to generate them.

3 Technical Background and Notation

3.1 Vectors, Matrices and Matrix Valued Operators

In this work we require three different objects of linear algebra: vectors, matrices and
operators acting on matrices.

We will work with vectors in a d-dimensional complex Hilbert space V d equipped
with an inner product 〈·, ·〉. We refer to the associated induced norm by

‖z‖�2 =
√〈z, z〉 ∀z ∈ V d .

We will denote such vectors by Latin characters. For z ∈ V d , we define the dual vector
z∗ ∈ (V d)∗ via

z∗y = 〈z, y〉 ∀y ∈ V d .

On the level of matrices we will exclusively consider d × d dimensional hermitian
matrices, which we denote by capital Latin characters. Endowed with the Hilbert–
Schmitt (or Frobenius) scalar product

(Z , Y ) = tr(ZY ), (3)

the space Hd becomes a Hilbert space. In addition to that, we will require the 3
different Schatten-norms

‖Z‖1 = tr(|Z |) (trace norm),

‖Z‖2 =
√

tr(Z2) (Frobenius norm),

‖Z‖∞ = sup
y∈V d

‖Z y‖�2

‖y‖�2

(operator norm),

where the second one is induced by the scalar product (3). These three norms are
related via the inequalities

‖Z‖2 ≤ ‖Z‖1 ≤
√

d‖Z‖2 and ‖Z‖∞ ≤ ‖Z‖2 ≤
√

d‖Z‖∞ ∀Z ∈ Hd . 45
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We call a hermitian matrix Z positive-semidefinite (Z ≥ 0), if 〈y, Z y〉 ≥ 0 for all
y ∈ V d . Positive semidefinite matrices form a cone [12] (Chapter II,12), which induces
a partial ordering of matrices. Concretely, for Z , Y ∈ Hd we write Y ≥ Z if Y − Z
is positive-semidefinite (Y − Z ≥ 0).

In this work, the identity matrix1 and rank-1 projectors are of particular importance.
They are positive semidefinite and any matrix of the latter kind can be decomposed as
Z = zz∗ for some z ∈ V d . Up to a global phase, they correspond to vectors z ∈ V d .
The most important cases are the projection onto the unknown signal x and onto the
i th measurement vector ai , respectively. They will be denoted by

X = xx∗ and Ai = ai a
∗
i .

Finally, we will frequently encouter matrix-valued operators acting on the space Hd .
We label such objects with capital calligraphic letters and introduce the operator norm

‖M‖op = sup
Z∈Hd

‖MZ‖2
‖Z‖2

induced by the Frobenius norm on Hd . It turns out that only very few matrix-valued
operators will appear below. These are: the identity map

I : Hd → Hd

Z �→ Z ∀Z ∈ Hd

and (scalar multiples of) projectors onto some matrix Y ∈ Hd . The latter corresponds
to

�Y : Hd → Hd

Z �→ Y (Y, Z) = Y tr(Y Z) ∀Z ∈ Hd .

The operator

�1 : Z �→ 1 tr(1Z) = 1 tr(Z) ∀Z ∈ Hd ,

is a very important example for this subclass of operators. Note that it is not a normal-
ized projection, but 1

d �1 is. Indeed, for Z ∈ Hd arbitrary

(
d−1�1

)2
Z = d−21 tr(1�1Z) = d−2 tr(1)1 tr(Z) = d−1�1Z . (4)

The notion of positive-semidefiniteness directly translates to matrix valued operators.
Concretely, we call M positive-semidefinite (M ≥ 0) if (Z ,MZ) ≥ 0 for all Z ∈
Hd . Again, this induces a partial ordering. Like in the matrix case, we write N ≥M,
if N −M ≥ 0. It is easy to check that all the operators introduced so far are positive
semidefinite and in particular we obtain the ordering46
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0 ≤ �1 ≤ dI, (5)

by using (4).

3.2 Multilinear Algebra

The properties of t-designs are most naturally stated in the framework of (t-fold)
tensor product spaces. This motivates recapitulating some basic concepts of multi-
linear algebra that are going to greatly simplify our analysis later on. The concepts
presented here are standard and can be found in any textbook on multilinear algebra.
Our presentation has been influenced in particular by [51,74].

Let V1, . . . , Vk be (finite dimensional, complex) vector spaces, and let V ∗1 , . . . , V ∗k
be their dual spaces. A function

f : V1 × · · · × Vk → C

is multilinear, if it is linear in each Vi , i = 1, . . . , k. We denote the space of such
functions by V ∗1 ⊗· · ·⊗V ∗k and call it the tensor product of V ∗1 , . . . , V ∗k . Consequently,

the tensor product
(
V d

)⊗k =⊗k
i=1 V d is the space of all multilinear functions

f :
(

V d
)∗ × · · · ×

(
V d

)∗

︸ ︷︷ ︸
k times

�→ C, (6)

and we call the elementary elements z1 ⊗ · · · ⊗ zk the tensor product of the vectors
z1, . . . , zk ∈ V d . Such an element can alternatively be defined more concretely via the
Kronecker product of the individual vectors. However, such a construction requires
an explicit choice of basis in V d which is not the case in (6).

With this notation, the space of linear maps V d → V d (d×d-matrices) corresponds
to the tensor product Md := V d⊗(

V d
)∗

which is spanned by
{

y ⊗ z∗ : y, z ∈ V d
}
—

the set of all rank-1 matrices. For this generating set of Md , we define the trace to be
the natural bilinear map

tr : V d ⊗
(

V d
)∗ → C

(
y ⊗ z∗

) �→ z∗y = 〈z, y〉

for all y, z ∈ V d . The familiar notion of trace is obtained by extending this definition
linearly to Md .

Using Md = V d ⊗ (
V d

)∗
allows us to define the (matrix) tensor product

(
Md

)⊗k

to be the space of all multilinear functions

f :
((

V d
)∗ × V d

)
× · · · ×

((
V d

)∗ × V d
)

︸ ︷︷ ︸
k times

→ C
47
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in complete analogy to the above. We call the elements Z1 ⊗ · · · ⊗ Zk the tensor
product of the matrices Z1, . . . , Zk ∈ Md .

On this tensor space, we define the partial trace (over the i-th system) to be

tri :
(

Md
)⊗k →

(
Md

)⊗(k−1)

Z1 ⊗ · · · ⊗ Zk �→ tr(Zi ) (Z1 ⊗ · · · ⊗ Zi−1 ⊗ Zi+1 ⊗ · · · ⊗ Zk) .

Note that with the identification Md = V d ⊗ (
V d

)∗
, tri corresponds to the natural

contraction at position i . The partial trace over more than one system can be obtained
by concatenating individual traces of this form, e.g. for 1 ≤ i < j ≤ k

tri, j := tri ◦ tr j :
(

Md
)⊗k →

(
Md

)⊗(k−2)

.

In particular, the full trace then corresponds to

tr := tr1,...,k :
(

Md
)⊗k → C

(Z1 ⊗ · · · ⊗ Zk) �→ tr(Z1) . . . tr(Zk).

Let us now return to the tensor space
(
V d

)⊗k
of vectors. We define the (symmetrizer)

map PSymk : (V d
)⊗k → (

V d
)⊗k

via their action on elementary elements:

PSymk (z1 ⊗ · · · ⊗ zk) := 1

k!
∑

π∈Sk

zπ(1) ⊗ · · · ⊗ zπ(k), (7)

where Sk denotes the group of permutations of k elements. This map projects
(
V d

)⊗k

onto the totally symmetric subspace Symk of
(
V d

)⊗k
whose dimension [51] is

dim Symk =
(

d + k − 1

k

)
. (8)

3.3 Complex Projective Designs

The idea of (real) spherical designs originates in coding theory [25] and has been
extended to more general spaces in [42,52,62]. We refer the interested reader to Lev-
enshtein [52] for a unified treatment of designs in general metric spaces and from now
on focus on designs in the complex vector space V d .

Roughly speaking, a complex projective t-design is a finite subset of the complex
unit sphere in V d with the property that the discrete average of any polynomial of
degree t or less equals its uniform average. Many equivalent definitions—see e.g.
[42,46,62]—capture this essence. However, there is a more explicit definition of a
t-design that is much more suitable for our purpose:48
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Definition 3 (Definition 2 in [68]) A finite set {w1, . . . , wN } ⊂ V d of normalized
vectors is called a t-design of dimension d if and only if

1

N

N∑

i=1

(wiw
∗
i )⊗t = dim(Symt )−1 PSymt , (9)

where PSymt denotes the projector onto the totally symmetric subspace (7) of (V d)⊗t

and consequently dim(Symt ) = (d+t−1
t

)
.

Note that the defining property (9) is invariant under global phase changes wi �→
eiφwi , thus it matches the symmetry of the phase retrieval problem. The definition
above is equivalent to demanding

1

N

N∑

i=1

(wiw
∗
i )⊗t =

∫

w

dw (ww∗)⊗t ,

where the right hand side is integrated with respect to the Haar measure. This form
makes the statement that t-designs mimic the first 2t moments of Haar measure more
explicit.

P. Seymor and T. Zaslavsky proved in [69] that t-designs on V d exist for every
t, d ≥ 1, provided that N is large enough (N ≥ N (d, t)), but they do not give an
explicit construction. A necessary criterion—cf. [42,46]—for the t-design property is
that the number of vectors N obeys

N ≥
(

d + �t/2� − 1

�t/2�
)(

d + �t/2�−1

�t/2�
)
= O(d2t ). (10)

However, the proof in [69] is non-constructive and known constructions are “innefi-
cient” in the sense that the number of vectors required greatly exceeds (10). Hayashi
et al. [40] proposed a construction requiring O(t)d vectors. For real spherical designs
other “inefficient” constructions have been proposed [7,47] (N = tO(d2)) which can
be used to obtain complex projective designs.

Addressing this apparent lack of efficient constructions, Ambainis and Emerson
[4] proposed the notion of approximate desings. These vector sets fulfill property (9)
only up to an ε-precision, but their great advantage is that they can be constructed
efficiently. Concretely, they show that for every d ≥ 2t , there exists an ε = O(d−1/3)

approximate t-design consisting of O(d3t ) vectors only.
The great value of t-designs is due to the following fact: If we sample m vectors

ai , . . . , am iid from a t-design Dt = {w1, . . . , wN }, the design property guarantees
(with Ai = ai a∗i and Wi = wiw

∗
i )

E

[
1

m

m∑

i=1

A⊗k
i

]

= E
[

A⊗k
1

]
= 1

N

N∑

i=1

W⊗k
i =

(
d + k − 1

k

)−1

PSymk
49
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for all 1 ≤ k ≤ t . This knowledge about the first t moments of the sampling procedure
is the key ingredient for our partial derandomization of Gaussian PhaseLift [23].

3.4 Large Deviation Bounds

This approach makes heavy use of operator-valued large deviation bounds. They have
been established first in the field of quantum information by Ahlswede and Winter
[2]. Later the first author of this paper and his coworkers successfully applied these
methods to the problem of low rank matrix recovery [35,38]. By now these methods
are widely used and we borrow them in their most recent (and convenient) form from
Tropp [71,72].

Theorem 4 (Uniform Operator Bernstein inequality, [35,72]) Consider a finite
sequence {Mk} of independent, random self-adjoint operators. Assume that each ran-
dom variable satisfies E [Mk] = 0 and ‖Mk‖∞ ≤ R (for some finite constant R)
almost surely and define the norm of the total variance σ 2 := ‖∑k E

[
M2

k

] ‖∞. Then
the following chain of inequalities holds for all t ≥ 0.

Pr

[

‖
∑

k

Mk‖∞ ≥ t

]

≤ d exp

(
− t2/2

σ 2 + Rt/3

)
≤

{
d exp(−3t2/8σ 2) t ≤ σ 2/R

d exp(−3t/8R) t ≥ σ 2/R.

Theorem 5 (Smallest Eigenvalue Bernstein Inequality, [71]) Let S = ∑
k Mk be a

sum of iid random matrices Mk which obey E [MK ] = 0 and λmin(Mk) ≥ −R almost
surely for some fixed R. With the variance parameter σ 2(S) = ‖∑k E

[
M2

k

] ‖∞ the
following chain of inequalities holds for all t ≥ 0.

Pr [λmin(S) ≤ −t] ≤ d exp

(
− t2/2

σ 2 + Rt/3

)
≤

{
d exp(−3t2/8σ 2) t ≤ σ 2/R

d exp(−3t/8R) t ≥ σ 2/R.

3.5 Wiring Diagrams

The defining property (9) of t-designs is phrased in terms of tensor spaces. To work with
these notions practically, we need tools for efficiently computing contractions between
high-order tensors. The concept of wiring diagrams provides such a method—see [51]
for an introduction and also [24,73] (however, they use a slightly different notation).
Here, we give a brief description that should suffice for our calculations.

Roughly, the calculus of wiring diagrams associates with every tensor a box, and
with every index of that tensor a line emanating from the box. Two connected lines
represent contracted indices. (More precisely, we place contravariant indices of a
tensor on top of the associated box and covariant ones at the bottom. However, one
should be able to digest our calculations without reference to this detail). A matrix
A : V d → V d can be seen as a two-indexed tensor Ai

j . It will thus be represented

by a node A with the upper line corresponding to the index i and the lower one to j .50
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Two matrices A, B are multiplied by contracting B’s “contravariant” index with A’s
“covariant” one:

(AB)i
j =

∑

k

Ai
k Bk

j

Pictographically, we write

AB =
A

B

The trace operation

A �→ tr A =
∑

k

Ak
k

corresponds to a contraction of the two indices of a matrix:

tr(A) = A .

Tensor products are arranged in parallel:

A⊗B = A B .

Hence, a partial trace takes the following form:

tr2 (A⊗B) = A B .

The last ingredient we need are the transpositions σ(i, j) on (V d)⊗t which act by
interchanging the i th and the j th tensor factor. For example

σ(1,2) (x ⊗ y ⊗ · · · ) = y ⊗ x ⊗ · · · ,

with x, y ∈ V d arbitrary. Transpositions suffice, because they generate the full group

of permutations. For
(
V d

)⊗2
we only have

1 = (trivial permutation) and σ(1,2) = ,

but for higher tensor systems more permutations can occur. Consequently, permuta-
tions act by interchanging different input and output lines and the wiring diagram
representation allows one to keep track of this pictorially. In fact, only the input and51
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output position of a line matters. We can use diagrams to simplify expressions by

disentangling the corresponding lines. Take σ(1,2) on
(
V d

)⊗2
as an example. Using

wiring diagrams we can derive the standard result

σ2
(1,2) = = = 1

pictorially. We are now ready to prove some important auxiliary results.

Lemma 6 Let A, B ∈ Hd be arbitrary. Then it holds that

tr2

(
PSym2 A ⊗ B

)
= 1

2
(tr(B)A + B A) . (11)

We remark that in general,

PSym2 (X ⊗ Y ) 
= 1

2
(X ⊗ Y + Y ⊗ X) ,

which is, in our experience, a common misconception.
Proof of Lemma 6 The basic formula (7) for PSym2 is given by

PSym2 = 1

2

∑

π∈S2

σπ(1),π(2) = 1

2

(
1+ σ(1,2)

)
,

and the concepts from above allow us to translate this into the following wiring dia-
gram:

PSym2 =
1

2
+ .

(Note that this operator acts on the full tensor space
(
V d

)⊗2
, hence in the wiring

diagram it is represented by a two-indexed box.) Applying the graphical calculus
yields

tr2 PSym2A⊗B =

A B

PSym2 =
1

2

⎛
⎜⎜⎝

A B

+

A B

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝

A B

+

A

B

⎞
⎟⎟⎠

=
1

2
(tr(B)A+BA) ,

which is the desired result. ��52
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Obviously, it is also possible to obtain (11) by direct calculation. We have included
such a calculation in the appendix (Sect. 1) to demonstrate the complexity of direct
calculations as compared to graphical ones.

We conclude this section with the following slightly more involved result.

Lemma 7 Let A, B, C ∈ Hd be arbitrary. Then it holds that

tr2,3

(
PSym3 A ⊗ B ⊗ C

)
= 1

6
(A tr(B)tr(C)+ B A tr(C)+ C Atr(B)

+A tr(BC)+ C B A + BC A) . (12)

The proof can in principle be obtained by evaluating all permutations of 3 tensor
systems algebraically and taking the partial trace afterwards. However, a pictorial
calculation using wiring diagrams is much faster and more elegant.

Proof For permutations of three elements, formula (7) implies

PSym3= 1

6

∑

π∈S3

σπ(1),π(2),π(3) = 1

6

(
σ1,2,3+σ2,1,3+σ3,2,1+σ1,3,2+σ2,3,1+σ3,1,2

)
,

where. σ2,1,3(u ⊗ v ⊗ w) = (v ⊗ u ⊗ w), etc. This in turn allows us to write

PSym3

A B C

=
1

6

⎛
⎜⎜⎝

A B C

+

A B C

+

A B C

+

A B C

+

A B C

+

A B C

⎞
⎟⎟⎠

=
1

6

⎛
⎜⎜⎝

A B C

+

A

B

C

+

A

C

B

+

A

B

C

+

A

B

C

+

A

C

B

⎞
⎟⎟⎠

=
1

6
(A tr(B)tr(C) +BA tr(C) + CAtr(B) +A tr(BC) + CBA+BCA)

and we are done. ��

4 Problem Setup

4.1 Modelling the Sampling Process

In the sampling process, we start by measuring the intensity of the signal:

y0 = ‖x‖2�2
= tr(1X). (13)53
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This allows us to assume w.l.o.g. ‖x‖�2 = 1. Next, we choose m vectors a1, . . . , am

iid at random from a t-design Dt ⊂ V d and evaluate

yi = tr(Ai X) = |〈x, ai 〉|2 for i = 1, . . . m, (14)

and consequently the vector y = (y1, . . . , ym)T ∈ Rm+ captures all the information we
obtain from the sampling process. This process can be represented by a measurement
operator

A : Hd → Rm,

Z �→
m∑

i=1

tr(Ai Z)ei , (15)

where e1, . . . , em denotes the standard basis of Rm . Therefore A(X) = y completely
encodes the measurement process. For technical reasons we also consider the mea-
surement operator

R : Hd → Hd ,

Z �→ m−1
m∑

i=1

(d + 1)d �Ai Z = m−1
m∑

i=1

(d + 1)d Ai tr(Ai Z), (16)

which is a renormalized version of A∗A : Hd → Hd . Concretely

R = (d + 1)d

m
A∗A.

The scaling is going to greatly simplify our analysis, because it guarantees that R is
“near-isotropic”, as the following result shows.

Lemma 8 (R is near-isotropic) The operator R defined in (16) is near-isotropic in
the sense that

E[R] = I +�1 or E [R] Z = Z + tr(Z)1 ∀Z ∈ Hd (17)

Proof Let us start with deriving (17). For Z ∈ Hd arbitrary we have

E[R]Z = (d + 1)d

m

m∑

i=1

E[Ai tr(Ai Z)]

= (d + 1)d tr2

(
E[A⊗2

1 ]1⊗ Z
)

(18)

= 2 tr2

(
PSym21⊗ Z

)
(19)

= Z + 1(tr Z) = (
I +�1

)
Z .54
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Here, (18) follows from the fact that the ai ’s are chosen iid from a t-design, (19) uses

the fact that dim(Sym2) = (d+1
2

)−1
together with Definition 3, and the final line is an

application of Lemma 6. ��
Let now x ∈ V d be the signal we want to recover. As in [23] we consider the space

T :=
{

xz∗ + zx∗ : z ∈ V d
}
⊂ Hd (20)

(which is the tangent space of the manifold of all hermitian matrices at the point
X = xx∗). This space is of crucial importance for our analysis. The orthogonal
projection onto this space can be given explicitly:

PT : Hd → T,

Z �→ X Z + Z X − X Z X (21)

= X Z + Z X − (X, Z)X. (22)

We denote the projection onto its orthogonal complement with respect to the Frobenius
inner product by P⊥T . Then for any matrix Z ∈ Hd the decomposition

Z = PT Z + P⊥T Z =: ZT + Z⊥T

is valid. We point out that in particular

PT �1PT = �X (23)

holds. We will frequently use this fact. For a proof, consider Z ∈ Hd arbitrary and
insert the relevant definitions:

PT �1PT Z = PT1 tr(1PT Z) = (X1+ 1X − X1X) tr (X Z + Z X − X Z X)

= X tr(X Z) = �X Z .

4.2 Convex Relaxation

Following [8,18,23] the measurements (13) and (14) can be translated into matrix
form by applying the following “lifts”:

X := xx∗, and Ai := ai a
∗
i .

By doing so the measurements assume the a linear form:

y0 = ‖x‖22 = (1, X) = tr(X),

yi = (Ai , X) = Tr (Ai X) i = 1, . . . , m. 55
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Hence, the phase retrieval problem becomes a matrix recovery problem. The solution
to this is guaranteed to have rank 1 and encodes (up to a global phase) the unknown
vector x via X = xx∗. Relaxing the rank minimization problem (which would output
the correct solution) to a trace norm minimization yields the now-familiar convex
optimization problem

minargX ′ ‖X ′‖1
subject to

(
Ai , X ′

) = yi i = 1, . . . m,

X ′ = (
X ′

)†
,

tr(X ′) = 1,

X ′ ≥ 0. (24)

While this convex program is formally equivalent to the previously studied general-
purpose matrix recovery algorithms [21,35,63], there are two important differences:

• The measurement matrices Ai are rank-1 projectors: Ai = ai a∗i .
• The unknown signal is known to be proportional to a rank-1 projector (X = xx∗)

as well.

While the second fact is clearly of advantage for us, the first one makes the problem
considerably harder: In the language of [35], it means that the “incoherence parameter”
μ = d maxi=1,...,m ‖Ai‖∞ = d‖ai‖2�2

= d is as large as it can get! Higher values of μ

correspond to more ill-posed problems and as a result, a direct application of previous
low-rank matrix recovery results fails. It is this problem that Refs. [18,23] first showed
how to circumvent for the case of Gaussian measurements. Below, we will adapt these
ideas to the case of measurements drawn from designs, which necessitates following
more closely the approach of [35].

4.3 Well-Posedness/Injectivity

In this section, we follow [23,35] to establish a certain injectivity property of the
measurement operator A. Compared to [23], our injectivity properties are somewhat
weaker. Their proof used the independence of the components of the Gaussian mea-
surement operator, which is not available in this setting, where individual vector com-
ponents might be strongly correlated. We will pay the price for these weaker bounds
in Sect. 6. There, we construct an “approximate dual certificate” that proves that the
sought-for signal indeed minimizes the nuclear norm. Owing to the weaker bounds
found here, the construction is more complicated than in [23]. In the language of [35],
we will have to carry out the full “golfing scheme”, as opposed to the “single leg” that
proved sufficient in [23].

Proposition 9 With probability of failure smaller than d2 exp(− 3m
384d ) the inequality

0.25d−2‖Z‖22 < m−1‖A(Z)‖22 (25)

is valid for all matrices Z ∈ T simultaneously.56
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Proof We aim to show the more general statement

Pr
[
m−1‖A(Z)‖22 < 0.5(1− δ)‖Z‖22 ∀Z ∈ T

]
≤ d2 exp

(
−3mδ2

96d

)

for any δ ∈ (0, 1).
For Z ∈ T abritrary use near-isotropicity of R (E[R] = I +�1) and observe

m−1‖A(Z)‖22 = m−1
m∑

i=1

(tr(Z Ai ))
2 = tr(Zm−1

∑

i

Ai tr(Ai Z)) = 1

(d + 1)d
tr(ZRZ)

= 1

(d + 1)d
tr(Z(R− E[R])Z)+ 1

(d + 1)d
tr(Z(I +�1)Z)

= 1

(d + 1)d
tr(ZPT (R− E[R])PT Z)+ 1

(d + 1)d
(tr(Z2)+ (tr Z)2)

≥ 0.5d−2
(

tr(ZPT (R− E[R])PT Z)+ tr(Z2)
)

≥ 0.5d−2(1+ λmin (PT (R− E[R])PT ) ‖Z‖22, (26)

where we have used PT Z = Z as well as M ≥ λmin(M)I for any matrix-valued
operator M. Therefore everything boils down to bounding the smallest eigenvalue of
PT (R− E[R])PT . To this end we aim to apply Theorem 5 and decompose

PT (R− E[R])PT =
m∑

i=1

(Mi − E[Mi ]) with Mi = (d + 1)d

m
PT �AiPT .

Note that these summands have mean zero by construction. Furthermore observe that
the auxiliary result (23) implies

− 2

m
I ≤ − 1

m
I − 1

m
�X ≤ − 1

m
PT IPT − 1

m
PT �1PT

= −PT E[Mi ]PT ≤ PT (Mi − E[Mi ])PT

and the a priori bound

λmin(Mi − E[Mi ]) ≥ −2/m =: −R

follows. For the variance we use the standard identity

0 ≤ E[(Mi − E[Mi ])2] = E[M2
i ] − E[Mi ]2 ≤ E[M2

i ]

and focus on the last expression. Writing it out explicitly yields

0 ≤ E[M2
i ] =

(d + 1)2d2

m2 PT E
[
�AiPT �Ai

]
PT

= (d + 1)2d2

m2 PT E
[
tr(AiPT Ai )�Ai

]
PT . 57
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The trace can be bounded from above by

tr(AiPT Ai ) = tr
(

Ai (X Ai + Ai X − tr(Ai X)X)
)

= 2 tr(Ai X)− tr(Ai X)2 ≤ 2 tr(Ai X),

where we have used the basic definition of PT and 0 ≤ tr(Ai X) = |〈ai , x〉|2 ≤ 1.
Consequently, for Z ∈ T arbitrary

PT E[M2
i ]PT Z ≤ 2(d + 1)2d2

m2 PT E [Ai tr(Ai X) tr(Ai Z)]

= 2(d + 1)2d2

m2 PT tr2,3

(
E[A⊗3

i ]1⊗ X ⊗ Z
)

= 12(d + 1)2d2

m2(d + 2)(d + 1)d
PT tr2,3

(
PSym31⊗ X ⊗ Z

)

≤ 2d

m2 PT (1 tr(Z)+ X tr(Z)+ Z + 1 tr(X Z)+ Z X + X Z)

= 2d

m2 (X tr(X Z)+ X tr(X Z)+ Z + X tr(X Z)+ PT Z + X tr(X Z))

= 2d

m2 (4�X + 2I) Z ≤ 12d

m2 IZ .

Here we have applied dim Sym3 = (d+2
3

)−1
and Lemma 7 in lines 3 and 4, respectively.

Furthermore we used Z ∈ T —hence PT Z = Z and tr(Z) = tr(X Z) – as well as the
basic definition (22) of PT to simplify the terms occurring in the fourth line. Putting
everything together yields

E[(Mi − E[Mi ])2] ≤ E[M2
i ] ≤

12d

m2 I

and we can safely set σ 2 := 12d
m . Now Theorem 5 tells us

Pr [λmin (PT (R− E[R])PT ) ≤ −δ] ≤ d2 exp

(
− 3mδ2

8× 12d

)

for all 0 ≤ δ ≤ 1 ≤ 6d = σ 2/R. This gives the desired bound on the event

{λmin(PT (R− E[R])PT ) ≤ −δ}

occurring. If this is not the case, (26) implies

m−1‖A(Z)‖2�2
> 0.5d−2(1− δ)‖Z‖22

for all matrices Z ∈ T simultaneously. This is the general statement at the beginning
of the proof and setting δ = 1/2 yields Proposition 9. ��58
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Proposition 10 LetA be as above with vectors sampled from a t-design (t ≥ 1). Then
the statement

m−1‖A(Z)‖2�2
≤ ‖Z‖22 (27)

holds with probability one for all matrices Z ∈ Hd simultaneously.

Proof Pick Z ∈ Hd arbitrary and observe

‖A(Z)‖2�2
= 1

m

m∑

i=1

(tr(Ai Z))2 = tr

(

Z

(
1

m

m∑

i=1

�Ai

)

Z

)

≤ tr(ZIZ) = ‖Z‖22,

where we have used 0 ≤ �Ai ≤ I. ��
Note that equation (27) can be improved. Indeed, a standard application of the

Operator Bernstein inequality (Theorem 4) gives

m−1‖A(Z)‖2�2
≤ 2d−1‖Z‖22

for all matrices Z ∈ T with probability of failure smaller than d2 exp (−Cm/d) for
some 0 < C ≤ 1. However, we actually do not require this tighter bound.

5 Proof of the Main Theorem/Convex Geometry

In this section, we will follow [21,35] to prove that the convex program (24) indeed
recovers the sought for signal x , provided that a certain geometric object—an approx-
imate dual certificate—exists.

Definition 11 (Approximate dual certificate) Assume that the sampling process cor-
responds to (13) and (14). Then we call Y ∈ Hd an approximate dual certificate,
provided that Y ∈ span (1, A1, . . . , Am) and

‖YT − X‖2 ≤ 1

4d
as well as ‖Y⊥T ‖∞ ≤

1

2
. (28)

Proposition 12 Suppose that the measurement gives us access to ‖x‖2�2
and yi =

|〈ai , x〉|2 for i = 1, . . . , m. Then the convex optimization (24) recovers the unknown
x (up to a global phase) provided that (25) holds and an approximate dual certificate
Y exists.

Proof Let X̃ ∈ Hd be an arbitrary feasible point of (24) and decompose it as X̃ =
X + �. Feasibility then implies A(X̃) = A(X) and A(�) = 0 must in turn hold
for any feasible displacement �. Now the pinching inequality [14] (Problem II.5.4)
implies

‖X̃‖1 = ‖X +�‖1 ≥ ‖X‖1 + tr(�T )+ ‖�⊥T ‖1. 59
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Consequently X is guaranteed to be the unique minimum of (24), if

tr(�T )+ ‖�⊥T ‖1 > 0 (29)

is true for every feasible �. In order to show this we combine feasibility of � with
inequalities (25) and (27) to obtain

‖�T ‖2 < 2dm−1/2‖A(�T )‖�2 = 2dm−1/2‖A(�⊥T )‖�2 ≤ 2d‖�⊥T ‖2. (30)

Feasibility of � also implies (Y,�) = 0, because by definition Y is in the range of
A∗. Combining this insight with the defining property (28) of Y and (30) yields

0 = (Y,�) = (YT − X,�T )+ (X,�T )+ (Y⊥T ,�⊥T )

≤ ‖YT − X‖2‖�T ‖2 + tr(�T )+ ‖Y⊥T ‖∞‖�⊥T ‖1
< tr(�T )+ ‖YT − X‖22d‖�⊥T ‖2 + ‖Y⊥T ‖∞‖�⊥T ‖1
≤ tr(�T )+ 1/2‖�⊥T ‖2 + 1/2‖�⊥T ‖1
≤ tr(�T )+ ‖�⊥T ‖1,

which is just the desired optimality criterion (29). ��

6 Constructing the Dual Certificate

A straightforward approach to construct an approximate dual certificate would be to
set

Y = RX − tr(X)1 = (d + 1)d

m

m∑

i=1

Ai tr(Ai X)− tr(X)1 ∈ span (1, A1, . . . , Am) .

(31)
In expectation, E[Y ] = X , which is the “perfect dual certificate” in the sense that the
norm bounds in (28) vanish. The hope would be to use the Operator Bernstein inequal-
ity to show that with high probability, Y will be sufficiently close to its expectation.
It has been shown that a slight refinement of the ansatz (31) indeed achieves this goal
Ref. [35,50]. However, the Bernstein bounds depend on the worst-case operator norm
of the summands. In our case, they can be as large as d2|〈ai , x〉|2, which can reach d2.
This is far larger than in previous low-rank matrix recovery problems. Reference [23]
relied on the fact that large overlaps |〈ai , x〉|2 � O(d−1) are “rare” for Gaussian ai .

The key observation here is that the t-design property provides one with useful
information about the first t moments of the random variable |〈x, ai 〉|2. This knowl-
edge allows us to explicitly bound the probability of “dangerously large overlaps” or
“coherent measurement vectors” occurring.

Lemma 13 (Undesired events) Let x ∈ V d be an arbitrary vector of unit length. If a
is chosen uniformly at random from a t-design (t ≥ 1) Dt ⊂ V d, then the following
is true for every γ ≤ 1:60
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Pr
[
|〈a, x〉|2 ≥ 5td−γ

]
≤ 4−t d−t (1−γ ). (32)

Proof We aim to prove the slightly more general statement

Pr
[
|〈a, x〉|2 ≥ (δ + 1)td−γ

]
≤ δ−t d−t (1−γ ),

which is valid for any δ ≥ 1. Setting δ = 4 then yields (32). The t-design property
provides us with useful information about the first t moments of the non-negative
random variable ξ = |〈a, x〉|2. Indeed, with A = aa∗ it holds for every k ≤ t that

E
[
ξ k

]
= E

[
tr(AX)k

]

= tr
(
E

[
A⊗k

]
X⊗k

)

=
(

d + k − 1

k

)−1

tr
(

PSymk X⊗k
)

=
(

d + k − 1

k

)−1

tr
(

X⊗k
)

≤ d−kk!,

because X⊗k is invariant under PSymk . One way of seeing this4 is to note that

range(X⊗k) = span(x⊗k) and the latter is already contained in Symk . Therefore
the k-th moment τk of ξ is bounded by

τk =
(
E[ξ k]

)1/k ≤ (d−kk!)1/k ≤ k/d.

These inequalities are tight for the mean μ = τ1 of ξ and hence

μ = E[ξ ] = d−1.

Now we aim to use the well-known t-th moment bound

Pr [|ξ − μ| ≥ sτt ] ≤ s−t ,

which is a straightforward generalization of Chebyshev’s inequality. Applying it, yields
the desired result. Indeed,

4 Alternatively one could also rearrange tensor systems: X⊗k = (xx∗)⊗k � x⊗k (x∗)⊗k and use
PSymk x⊗k = x⊗k . 61
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Pr
[
|〈a, x〉|2 ≥ (δ + 1)td−γ

]
= Pr

[
ξ − μ ≥ (δ + 1)td−γ − d−1

]

≤ Pr
[
ξ − μ ≥ δtd−γ

]

≤ Pr
[
|ξ − μ| ≥ δd1−γ τt

]

≤ δ−t d−t (1−γ ),

and we are done. ��
The previous lemma bounds the probability of the undesired events

Ec
i =

{
|〈ai , x〉|2 ≥ 5td−γ

}
, (33)

where 0 ≤ γ ≤ 1 is a fixed parameter which we refer to as the truncation rate. It turns
out that a single truncation of this kind does not quite suffice yet for our purpose. We
need to introduce a second truncation step.

Definition 14 Fix Z ∈ T arbitrary and decompose it as

Z = ζ
(
xz∗ + zx∗

)
,

for some unique ζ > 0 and z ∈ V d with ‖z‖�2 = 1. For this z we introduce the event

Gc
i :=

{
|〈z, ai 〉|2 ≥ 5td−γ

}

and define the two-fold truncated operator

RZ := Rx,y = (d + 1)d

m

m∑

i=1

1Ei 1Gi �Ai , (34)

where 1Ei and 1Gi denote the indicator functions associated with the events Ei and
Gi , respectively.

The following result shows that due to Lemma 13 this truncated operator is in
expectation close to the original R.

Proposition 15 Fix Z ∈ T arbitrary and let RZ be as in (34). Then

‖E[RZ −R]‖op ≤ 41−t d2−t (1−γ ) (35)

Proof We start by introducing the auxiliar (singly truncated) operator

Raux := (d + 1)d

m

m∑

i=1

1Ei �Ai62
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and observe

‖E [RZ −R] ‖op ≤ ‖E [R−Raux] ‖op + ‖E [RZ −Raux] ‖op. (36)

Now use Lemma 13 to bound the first term:

‖E[R−Raux]‖op =
∥∥∥
∥∥
(d + 1)d

m

m∑

i=1

E
[
(1− 1Ei )�Ai

]
∥∥∥
∥∥

op

≤ (d + 1)d

m

m∑

i=1

E
[
1Ec

i
‖�Ai ‖op

]

≤ 2d2

m

m∑

i=1

E
[
1Ec

i

]
= 2d2

m

m∑

i=1

Pr[Ec
i ]

≤ 2d2 × 4−t d−t (1−γ ) = 21−2t d2−t (1−γ ).

Similarly,

‖E [Raux −RZ ]‖op ≤ (d + 1)d

m

∥∥∥∥∥

m∑

i=1

E
[
1Gc

i
�Ai

]
∥∥∥∥∥

op

≤ 2d2

m

m∑

i=1

E[1Gc
i
]

≤ 2d2

m

m∑

i=1

Pr[Gc
i ] ≤ 21−2t d2−t (1−γ )

and inserting these bounds into (36) yields the desired statement. ��
We now establish a technical result which will allow us to find a suitable approximate
dual certificate using the “golfing scheme” construction [35,50].

Proposition 16 Fix Z ∈ T arbitrary, letRZ be as in (34). Assume that that the design
order t is at least 3 and the truncation rate γ satisfies

γ ≤ 1− 2/t.

Then for 1/4 ≤ b ≤ 1 and c ≥ √2b with probability at least 1 − d exp(− 9mb
640td2−γ )

one has

‖P⊥T (RZ Z − tr(Z)1) ‖∞ ≤ b‖Z‖2 and (37)

‖PT (RZ − Z − tr(Z)1) ‖2 ≤ c‖Z‖2. (38)

Proof The statement is invariant under rescaling of Z . Therefore it suffices to treat
the case ‖Z‖2 = 1. In this case we can decompose

Z = ζ(zx∗ + xz∗) 63
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with some fixed z ∈ V d obeying ‖z‖�2 = 1 and 0 < ζ ≤ 1. Near-Isotropicity (Lemma
8) of R guarantees P⊥T E[R]Z = tr(Z)P⊥T I as well as PT E[R]Z = Z + tr(Z)PT1.
Let us now focus on (37) and use Proposition 15 in order to write

‖P⊥T (RZ Z − tr(Z)1) ‖∞ = ‖P⊥T (RZ − E[R]) Z‖∞
≤ ‖P⊥T (RZ − E[RZ ]) Z‖∞ + ‖P⊥T E[RZ −R]Z‖∞
≤ ‖P⊥T ‖op‖(RZ − E[RZ ])Z‖∞ + 41−t d2−t (1−γ )‖P⊥T ‖op‖Z‖2
≤ ‖(RZ − E[RZ ])Z‖∞ + b/4.

Here we have used ‖P⊥T ‖op ≤ 1 as well as

‖E [RZ −R] ‖op ≤ 41−t d2−t (1−γ ) ≤ 41−t ≤ 1/16 ≤ b/4, (39)

which follows from γ ≤ 1− 2/t , t ≥ 3 and b ≥ 1/4. To obtain (38) we use a similar
reasoning:

‖PT (RZ Z − Z − tr(Z)1) ‖2 = ‖PT (RZ − E[R]) Z‖2
≤ √2‖PT (RZ − E[RZ ]) Z‖∞ + ‖PT E[RZ −R]Z‖2
≤ √2‖PT ‖op‖(RZ − E[RZ ])Z‖∞ + b/4‖PT ‖op‖Z‖2
≤ √2‖ (RZ − E[RZ ]) Z‖∞ + b/4,

where we have used the fact that PT projects onto a subspace of at most rank-2
matrices in the third line and (39) in the fourth. This motivates to define the event

E := {‖ (RZ − E[RZ ]) Z‖∞ ≤ 3b/4}

which guarantees both (37) and (38) due to the assumption on c and ‖Z‖2 = 1. So
everything boils down to bounding the probability of Ec. We decompose

(RZ − E[RZ ]) Z =
m∑

i=1

(Mi − E[Mi ]) with Mi = (d + 1)d

m
1Ei 1Gi Ai tr(Ai Z).

We will estimate this sum using the Operator Bernstein inequality (Theorem 4). Thus
we need an a priori bound for the summands

‖Mi‖∞ = (d + 1)d

m
1Ei 1Gi ‖Ai‖∞| tr(Ai Z)| ≤ 2d2

m
1Ei 1Gi 2|〈x, ai 〉||〈z, ai 〉|

≤ 4d2

m
5td−γ = 20

m
td2−γ =: R,

as well as a bound for the variance. First observe that

E[(Mi − E[Mi ])2] = E
[

M2
i

]
− E[Mi ]2 ≤ E

[
M2

i

]
64
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and therefore

E
[
M2

i

] = (d + 1)2d2

m2 E
[
1Ei 1Gi tr(Ai Z)2 A2

i

] ≤ (d + 1)2d2

m2 E
[
tr(Ai Z)2 A2

i

]

= (d + 1)2d2

m2 tr2,3

(
E[A⊗3

i ]1⊗ Z ⊗ Z
)
= 6(d + 1)d

m2(d + 2)
tr2,3

(
PSym31⊗ Z ⊗ Z

)

= (d + 1)d

m2(d + 2)

(
1 tr(Z)2 + Z tr(Z)+ Z + 1 tr(Z2)+ 2Z2)

≤ 8d

m2 ‖Z‖221 =
8d

m2 1.

Here we have used tr(Z) ≤ √2‖Z‖2, Z ≤ ‖Z‖21 and ‖Z‖2 = 1. From this we can
conclude

∥
∥∥

∑

i

E[(Mi − E[Mi ])2
∥
∥∥∞ ≤ m max

i=1,...,m
‖E[M2

i ]‖∞ ≤
8d

m
=: σ 2.

Observing that

σ 2

R
≤ 8

20t
dγ−1 ≤ 2

15
≤ 3

4
b,

Theorem 4 yields

Pr
[
Ec] = Pr [‖ (RZ − E[RZ ]) Z‖∞ > 3b/4] ≤ d exp

(
− 3× 3mb

8× 4× 20td2−γ

)
,

as desired. ��
With this ingredient we can now construct a suitable approximate dual certificate

Y , closely following [50].

Proposition 17 Let x ∈ V d be an arbitrary normalized vector (‖x‖�2 = 1), X = xx∗
and let ω ≥ 1 be arbitrary. If the design order t (t ≥ 3) and the truncation rate γ are
chosen such that

γ ≤ 1− 2/t

holds and the total number of measurements fulfills

m ≥ Cωtd2−γ log2(d), (40)

then with probability larger than 1 − 0.5e−ω, there exists an approximate dual cer-
tificate Y as in Definition 11. Here, C is a universal constant (which can in principle
be recovered explicitly from the proof).

65
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Algorithm 1: Summary of the randomized “golfing scheme” [35] used in the
proof of Proposition 17 to show the existence of an approximate dual certificate6.

Input:
X ∈ Hd # signal to be recovered
l ∈ N # maximum number of iterations
{mi }li=1 ⊂ N # number of measurement vectors used in i th iteration
r # require r “successful” iterations

# (i.e. iterations where we enter the inner if-block)

Initialize:
Y = [ ] # a list of matrices in Hd , initially empty
Q = [X ] # a list of matrices in T , initialized to hold X as its only element
i = 1 # number of current iteration
ξ = [0, . . . , 0] # array of l zeros; ξi will be set to 1 if i th iteration succeeds

Body:
while i ≤ l and

∑i
j=1 ξ j ≤ r do

set Q to be the last element of Q and Y to be the last element of Y,
sample mi vectors uniformly from the t-design; construct RQ according to Definition 14.
if (37), (38) hold for RQ and Q ∈ T with parameters b = 1/4, c = 1/2 then

ξi = 1
Y ← RQ Q − tr(Q)1+ Y , append Y to Y
Q ← X −PT Y , append Q to Q

end
i ← i + 1

end

if
∑l

i=1 ξi = r then
report success and output Y, Q, ξ

else
report failure

end

Proof The randomized construction of Y is summarized in Algorithm 1. If this algo-
rithm succeeds, it outputs three lists5

Y = [Y1, . . . , Yr ] , Q = [X, Q1, . . . , Qr ] , and ξ = {ξ1, . . . , ξl} .

The recursive construction yields the following expressions (c.f. [50, Lemma 14]):

Y := Yr = RQr−1 Qr−1 − tr(Qr−1)1+ Yr−1

=
r∑

i=1

(
RQi−1 Qi−1 − tr(Qi−1)1

)
and

Qi = X − PT Yi = PT
(
Qi−1 + tr(Qi−1)1−RQi−1 Qi−1

)

= PT
(
I +�1 −RQi−1

)
Qi−1 = · · · =

i∏

j=1

PT
(
I +�1 −RQ j−1

)
X.

5 The use of pseudo-code allows for a compact presentation of this randomized procedure. However, the
reader should keep in mind that the construction is purely part of a proof and should not be confused with
the recovery algorithm (which is given in Eq. (24)).66



J Fourier Anal Appl (2015) 21:229–266 259

We now set
r = �log2 d� + 2. (41)

Then, in case of success, the validity of properties (37) and (38) for c = 1/2 and
b = 1/4 in each step (Qi → Qi+1 and Yi → Yi+1, respectively) guarantee

‖YT − X‖2 = ‖Qr‖2 ≤ ‖X‖2
r∏

j=1

1

2
= 2−�log2 d�−2‖X‖2 ≤ 1

4d
,

‖Y⊥T ‖∞ ≤
r∑

i=1

∥∥∥P⊥T
(
RQi−1 Qi−1 − tr(Qi−1)1

)∥∥∥∞

≤
r∑

i=1

1

4
‖Qi−1‖2 ≤ 1

4

r∑

i=1

21−i‖Q0‖∞

≤ ‖X‖∞ 1

4

∞∑

i=0

2−i = 1

2
.

Thus, Yr constitutes an approximate dual certificate in the sense of Definition 11.
What remains to be done is to choose the parameters l and {mi }li=1 such that the

probability of the algorithm failing is smaller than 0.5e−ω. Algorithm 1 fails precisely
if

l∑

i=1

ξi < r. (42)

Recall that the ξi ’s are Bernoulli random variables which indicate whether the i th
iteration of the algorithm has been successful (ξi = 1), or failed (ξi = 0). Our aim
is to bound the probability of the event in (42) by a similar expression involving
independent6 Bernoulli variables ξ ′i . To this end, write

Pr

[
l∑

i=1

ξi < r

]

= E

[

Pr
[
ξl < r −

l−1∑

i=1

ξi

∣∣∣ ξl−1, . . . , ξ1

]
]

. (43)

Conditioned on an arbitrary instance of ξl−1, . . . , ξ1, the variable ξl follows a Bernoulli
distribution with some parameter p(ξl−1, . . . , ξ1). Note that if ξ ∼ B(p) is a Bernoulli
variable with parameter p, then for every fixed t ∈ R, the probability Prξ∼B(p)[ξ < t]
is non-increasing as a function of p. Consequently, the estimate

Pr

[
l∑

i=1

ξi < r

]

≤ Pr

[

ξ ′l +
l−1∑

i=1

ξi < r

]

(44)

6 It was pointed out to us by A. Hansen that in some previous papers [35,50] which involve a similar
construction to the one presented here, it was tacitly assumed that the ξi are independent. This will of
course not be true in general. Fortunately, a more careful argument shows that all conclusions remain valid
[1]. Our treatment here is similar to the one presented in [1]. 67
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is valid if ξ ′l is an independent p′-Bernoulli distributed with

p′ ≤ min
ξl−1,...,ξ1

p(ξl−1, . . . , ξ1).

Proposition 16 provides a uniform lower bound on the success probability p(ξl−1, . . . ,

ξ1). Indeed, there is a universal constant C1 such that invoking Proposition 16 with

m′ := C1td2−γ log d

and Z = Q gives a probability of success of at least 9/10 for any Q (in particular,
independently of the ξl−1, . . . , ξ1). Thus, choosing p′ = 9/10 and mi = m′ for all i ,
we can then iterate the estimate (44) to arrive at

Pr

[
l∑

i=1

ξi < r

]

≤ Pr

[

ξ ′l +
l−1∑

i=1

ξi < r

]

≤ · · · ≤ Pr

[
l∑

i=1

ξ ′i < r

]

, (45)

where the ξ ′i are independent Bernoulli variables with parameter 9/10. A standard
Chernoff bound (e.g. [39, Sect. Concentration: Theorem 2.1]) gives

Pr

[
l∑

i=1

ξ ′i ≤ l(9/10− t)

]

≤ e−2lt2
.

Choosing t = 9/10− r/ l we obtain

Pr

[
l∑

i=1

ξ ′i < r

]

≤ Pr

[
l∑

i=1

ξ ′i ≤ r

]

= Pr

[
l∑

i=1

ξ ′i ≤ l (9/10− t)

]

≤ exp

(

−2l

(
9

10
− r

l

)2
)

. (46)

Setting the number of iterations generously to

l = 10ωr = 10ω
(�log2 d� + 2

)

implies

2l

(
9

10
− r

l

)2

≥ 20ωr

(
8

10

)2

≥ 12ωr ≥ ω + log 2,

where we have used ω ≥ 1 ≥ log 2 in the last inequality. Together with (42), (45) and
(46) this gives the desired bound

Pr
[
algorithm fails

] = Pr

[
l∑

i=1

ξi < r

]

≤ Pr

[
l∑

i=1

ξ ′i < r

]

≤ e−ω−log(2) = 1

2
e−ω,

68
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on our construction of Y failing. The total number of measurement vectors sampled is

l∑

i=1

mi = lm′ ≤ Cωtd2−γ log2 d,

for some constant C . ��
Finally we are ready to put all pieces together and show or main result—Theorem

1.
Proof of the Main Theorem In Sect. 5 (Proposition 12) we have shown that the

algorithm (24) recovers the sought for signal x , provided that (25) holds and a suitable
approximate dual certificate Y exists. Proposition 17—with a maximal truncation rate
of γ = (1 − 2/t)—implies that the probability that no such Y can be constructed is
smaller than 0.5e−ω, provided that the total sampling rate m obeys

m ≥ Cωtd1+2/t log2 d, (47)

for a sufficiently large absolute constant C . Provided that this constant is large enough,
Proposition 9 implies that the probability of (25) failing is also bounded by 0.5e−ω.
Theorem 1 now follows from the union bound over these two probabilities of failure.��

7 Converse Bound

In this paper, we require designs of order at least three. Here we prove that this criterion
is fundamental in the sense that sampling from 2-designs in general cannot guarantee
a sub-quadratic sampling rate. In order to do so, we will use a particular sort of 2-
design, called a maximal set of mutually unbiased bases (MUBs) [45,46,67,75]. Two
orthonormal bases {ui }di=1 and {vi }di=1 are called mutually unbiased if their overlap is
uniformly minimal. Concretely, this means that

|〈ui , v j 〉|2 = 1

d
∀i, j = 1, . . . , d

must hold for all i, j = 1, . . . , d. Note that this is just a generalization of the inco-
herence property between standard and Fourier basis. In prime power dimensions, a
maximal set of (d + 1) such MUBs is known to exist (and can be constructed) [44].
Such a set is maximal in the sense that it is not possible to find more than (d + 1)

MUBs in any Hilbert space. Among other interesting properties—cf. [26] for a detailed
survey—maximal sets of MUBs are known to form 2-designs [45,75].

The defining properties of a maximal set of MUBs allow us to derive the converse
bound—Theorem 2.

Theorem 18 (Converse bound) Let d ≥ 2 be a prime power and let D2 ⊂ Cd be
a maximal set of MUBs. Then there exist orthogonal, normalized vectors x, z ∈ Cd

which have the following property: 69
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Suppose that m measurement vectors a1, . . . , am are sampled independently and
uniformly at random from D2. Then, for any ω ≥ 0, the number of measurements must
obey

m ≥ ω

4
d(d + 1), (48)

or the event

|〈ai , x〉|2 = |〈ai , z〉|2 ∀ i ∈ {1, . . . , m}

will occur with probability at least e−ω.

Consequently a scaling of O(d2) in general cannot be avoided when demanding
only the property of being a 2-design and simultaneously requiring a “reasonably
small” probability of failure in the recovery process.

Proof of Theorem 18 Suppose that {ui }di=1 is one orthonormal basis contained in the
maximal set of MUBs D2 and set x := u1 as well as z := u2. Note that by definition
these vectors are orthogonal and normalized. Due to the particular structure of MUBs,
x and z can only be distinguished if either u1 or u2 is contained in {a1, . . . , am}. Since
each ai is chosen iid at random from D2 containing (d+1)d elements, the probability
of obtaining either u1 or u2 is p = 2

(d+1)d . As a result, the problem reduces to the
following standard stopping time problem (cf. for example Example (2) in Chapt. 6.2
in [29]):

Suppose that the probability of success in a Bernoulli experiment is p. How many
trials m are required in order for the probability of at least one success to be 1− eω or
larger?

To answer this question, we have to find the smallest integer m such that

1− (1− p)m ≥ 1− e−ω, or equivalently − m log(1− p) ≥ ω. (49)

The standard inequality

p ≤ − log(1− p) ≤ p

1− p
≤ 2p

for any p ∈ [0, 1/2] implies that (48) is a necessary criterion for (49) and we are done.
��

8 Conclusion

In this paper we have derived a partly derandomized version of Gaussian PhaseLift [18,
23]. Instead of Gaussian random measurements, our method guarantees recovery for
sampling iid from certain finite vector configurations, dubbed t-designs. The required
sampling rate depends on the design order t :

m = O
(

td1+2/t log2 d
)

. (50)70
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For small t this rate is worse than the Gaussian analogue—but still non-trivial. How-
ever, as soon as t exceeds 2 log d, we obtain linear scaling up to a polylogarithmic
overhead.

In any case, we feel that the main purpose of this paper is not to present yet another
efficient solution heuristics, but to show that the phase retrieval problem can be deran-
domized using t-designs. These finite vector sets lie in the vast intermediate region
between random Fourier vectors and Gaussian random vectors (the Fourier basis is a
1-design, whereas normalized Gaussian random vectors correspond to an∞-design).
Therefore the design order t allows us to gradually transcend between these two
extremal cases.
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Appendix

Here we briefly state an elementary proof of Lemma 6. In the main text we proved this
result using wiring diagrams. The purpose of this is to underline the relative simplicity
of wiring diagram calculations. Indeed, the elementary proof below is considerably
more cumbersome than its pictorial counterpart.

Elementary Proof of Lemma 6

Let us choose an arbitrary orthonormal basis b1, . . . , bd of V d . In the induced basis{
bi ⊗ b j

}d
i, j=1 of V d ⊗ V d the transpositions then correspond to

1 = 1⊗ 1 =
d∑

i=1

bi b
∗
i ⊗

d∑

j=1

b j b
∗
j and σ(1,2) =

d∑

i, j=1

bi b
∗
j ⊗ b j b

∗
i .

This choice of basis furthermore allows us to write down tr2(A) for A ∈ Md ⊗ Md

explicitly:

tr2(A) =
d∑

i=1

(
1⊗ b∗i

)
A (1⊗ bi ) .

Consequently we get for A, B ∈ Hd arbitrary

tr2

(
PSym2 A ⊗ B

)
= 1

2
tr2 (A ⊗ B)+ 1

2
tr2

(
σ(1,2) A ⊗ B

)
. 71



264 J Fourier Anal Appl (2015) 21:229–266

The latter term can be evaluated explicitly:

tr2
(
σ(1,2) A ⊗ B

) =
d∑

k=1

(
1⊗ b∗k

) d∑

i, j=1

bi b
∗
j ⊗ b j b

∗
i A ⊗ B (1⊗ bk)

=
d∑

i, j,k=1

bi b
∗
j Ab∗k b j b

∗
i Bbk =

d∑

i, j=1

〈bi , Bb j 〉bi b
∗
j A

=
(

d∑

i=1

bi b
∗
i

)

B

⎛

⎝
d∑

j=1

b j b
∗
j

⎞

⎠ A = 1B1A = B A,

and the desired result follows. Here we have used the basis representation of the
identity, namely 1 =∑d

i=1 bi b∗i .
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24. Cvitanović, P.: Group Theory. Birdtracks, Lie’s, and Exceptional Groups. Princeton University Press,
Princeton (2008)

25. Delsarte, P., Goethals, J., Seidel, J.: Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977)
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Abstract—The problem of retrieving phase information from ampli-
tude measurements alone has appeared in many scientific disciplines
over the last century. PhaseLift is a recently introduced algorithm for
phase recovery that is computationally tractable and numerically stable.
However, initial rigorous performance guarantees relied specifically on
Gaussian random measurement vectors. To date, it remains unclear
which properties of the measurements render the problem well-posed.
With this question in mind, we employ the concept of spherical t-designs
to achieve a partial derandomziation of PhaseLift. Spherical designs
are ensembles of vectors which reproduce the first 2t moments of the
uniform distribution on the complex unit sphere. As such, they provide
notions of “evenly distributed” sets of vectors, ranging from tight frames
(t = 1) to the full sphere, as t approaches infinity. Beyond the specific
case of PhaseLift, this result highlights the utility of spherical designs
for the derandomization of data recovery schemes.

Index Terms—phase retrieval, spherical designs, low rank matrix
recovery

I. INTRODUCTION

A. The phase retrieval problem and PhaseLift

The problem of retrieving a complex signal x ∈ Cn from
measurements of the form

yi = |〈ai, x〉|2 i = 1, . . . ,m, (1)

where a1, . . . , am ∈ Cn are measurement vectors, has long been
abundant in many areas of science. Quite recently, several new
recovery algorithms have been proposed and first rigorous performance
guarantees have been established. Examples include methods based
on polarization identities [1], alternating projections [2], or Wirtinger
flow [3]. In addition, there are reconstruction methods that are tailored
to specific measurement ensembles, such as the approach in [4], which
is based on polynomial representations.

The approach we will focus on has been called PhaseLift [5]–[7]
and relies on formulating the problem as a low-rank matrix recovery
task [8]–[10]. To this end, one notes [11] that the yi’s in (1) can
equivalently be expressed as

yi = |〈ai, x〉|2 = tr ((aia
∗
i ) (xx

∗)) =: tr (Ai (xx
∗)) . (2)

In other words, the measurement results yi are linear in the outer
product X := xx∗ of the signal x with itself. This slight reformulation

“lifts” phase retrieval to a linear problem on the (non-linear) set of
n× n hermitian rank-one matrices {Z : Z = zz∗, z ∈ Cn} ⊂ Hn:

find Z ∈ Hn (3)
subject to tr (ZAi) = yi i = 1, . . . ,m,

rank Z = 1.

Throughout this article, we shall denote the n2-dimensional real vector
space of hermitian n× n matrices by Hn.

In general, solving linear equations over the set of rank-1 matrices
is computationally intractable. However, there are now many situations
for which it has been proved that the nuclear norm can be employed
as an efficiently computable proxy for rank [8]–[10]. (Recall that the
nuclear norm ‖X‖∗ = tr(|X|) is the sum of the singular values of
X . In a sense, it is the natural “non-commutative”, basis-independent
matrix analogue of the vector `1 norm). These results are closely
related to the use of the `1-norm as a convex relaxation of sparsity
in compressed sensing [12]. In particular, these findings suggest that
(3) can be substituted by the semi-definite program

minimize
Z∈Hn

‖Z‖∗ (4)

subject to tr (ZAi) = yi i = 1, . . . ,m.

This ansatz was dubbed the PhaseLift algorithm for phase retrieval
by its inventors [5]–[7].

The task is now to establish sufficient conditions under which the
above convex problem will indeed have the outer product X = xx∗

of the sought-for signal as its unique solution. First results proved that
this is the case (with high probability) if the number of measurements
roughly scales linearly in the problem dimension – i.e. m = O(n)
– and the measurement vectors ai are complex standard Gaussians
[6], [7]. Later works concentrated on the practically more important
case of “masked Fourier measurements” [13], [14]. However, the use
of Gaussian vectors obscures the specific properties of measurement
vectors that enable phase retrieval, while the masked Fourier case is
highly application-specified. Thus, the question we are interested in is:
Can one identify particular properties of measurement ensembles that
allow for phase retrieval via PhaseLift, that are sufficiently general
to encompass structured measurements (unlike Gaussians), but at the
same time are fairly general (unlike masked Fourier)? We will argue
below that the defining properties of spherical designs fall into this
category.978-1-4673-7353-1/15/$31.00 c©2015 IEEE

75



II. PHASE RETRIEVAL FROM SPHERICAL DESIGN MEASUREMENTS

To motivate the notion of spherical designs, we recall that low-
rank recovery results [8]–[10] are usually phrased for measurement
ensembles that are isotropic, or drawn from a tight frame (analogous
statements apply to compressed sensing [12], but can be generalized –
see e.g. [15], [16]). One definition of such a structural property is as
follows:

Definition 1 (Isotropy). A weighted set {µ(α), Bα}α∈I ⊆ Hn is
isotropic, if, for all Z ∈ Hn,∫

I

Bαtr (BαZ) dµ(α) = Z. (5)

In the case of PhaseLift, full isotropy for the measurements Ai is
impossible to attain. The reason is that the Ai = aia

∗
i are all outer

products and thus have positive Hilbert-Schmitt inner product with
the identity matrix:

trAiI = trAi = ‖ai‖22 > 0. (6)

Fortunately, the vectors can be chosen in such a way that Ai’s are
isotropic on the trace-free subspace of Hn, i.e. the “overweighting
of the identity component” just noted is the only way in which the
Ai’s deviate from being a tight frame. Indeed, for complex standard
Gaussian vectors the following identity follows from a simple direct
calculation:

Proposition 2 (Near-isotropy: Equation (5.1) in [6]). Let Z ∈ Hn be
arbitrary and assume that b is a complex standard Gaussian vector
in Cn. Then

E [bb∗tr (bb∗Z)] = Z + tr(Z)I. (7)

Note that the “identity component” tr(Ixx∗) = ‖x‖22 of the signal is
nothing but its squared length, or intensity. From now on, we assume
that the intensity ‖x‖22 is in fact known. Also, while not essential, we
have opted to carry out our analysis for measurement vectors ai with
unit length ‖ai‖2 = 1. With these conventions, the entire problem
only ever concerns vectors on the complex unit-sphere. The rotation-
invariant measure on the unit sphere Sn−1 ⊂ Cn is called the Haar
measure. One can sample from it e.g. by drawing complex standard
Gaussian vectors and normalizing them. The resulting analogue of
(7) reads∫

w∈Sn−1

ww∗tr (ww∗Z) dw =
1

n(n+ 1)
(Z + tr(Z)I) (8)

for all Z ∈ Hn. Near-isotropy for an ensemble {µ(α), bα}α∈I can
easily be seen [17, Lemma 1] to be equivalent to demanding that the
ensemble reproduces the 4th moments of the Haar measure:

Proposition 3 (Necessary and sufficient criterion for near isotropy).
Let {µ(α), bα}α∈I ⊆ Sn−1 be a weighted set of unit vectors. Then

∫

I

bαb
∗
α ⊗ bαb∗αdµ(α) =

∫

w∈Sn−1

ww∗ ⊗ ww∗dw (9)

holds if and only if the re-scaled set {µ(α),
√
n(n+ 1)bαb

∗
α}α∈I is

near-isotropic in the sense of (7).

If the Ai’s range over all measurements in a near-isotropic set, they
essentially1 form a tight frame in matrix space and thus X can be

1As already mentioned, (6) implies that the ray {Z ∈ Hn : Z = cI, c ∈ R} ∈ Hn

is “overweighted”. If the signal’s intensity is known, however, this distortion can be
readily compensated.

recovered by simple linear inversion [11]. However, such a tight frame
necessarily contains at least dimHn = O(n2) elements – much more
than the O(n) degrees of freedom in x. Still, one could hope that
PhaseLift could be proved to succeed for linearly many ai’s sampled
from such a set. We will prove below that, unfortunately, this is too
optimistic. In general, near-isotropy alone is insufficient for reaching
an optimal linear scaling in the number of measurements m. However,
(9) suggests a generalization which will turn out to be sufficiently
strong for achieving such a goal.

To motivate it, it is wortwhile to point out that vectors drawn
uniformly from the sphere are proportional to a tight frame in Cn (as
opposed to Hn): ∫

w∈Sn−1

ww∗dw =
1

n
I. (10)

Combining this with (9) yields the following two structural criteria
for a weighted set {µ(α), bα}α∈I of unit vectors:

∫

I

bαb
∗
αdµ(α) =

∫

Sn−1

ww∗dw ⇒ tight frame, (11)
∫

I

(bαb
∗
α)
⊗2

dµ(α) =

∫

Sn−1

(ww∗)⊗2 dw ⇒ near-isotropy. (12)

Generalizing these equalities to arbitrary t-th tensor powers yields
the following definition which is a the heart of our work:

Definition 4 (Spherical t-design). Let t ∈ N. We call a weighted set
{µ(α), bα}α∈I ⊆ Sn−1 of unit vectors a spherical t-design, if

∫

I

(bαb
∗
α)
⊗k

dµ(α) =

∫

Sn−1

(ww∗)⊗k dw (13)

is valid for all 1 ≤ k ≤ t. The parameter t ∈ N is called the design’s
order.

While this definition underlines the resemblance of a t-design to
vectors drawn uniformly from the complex unit sphere, the expression
on the right hand side of (13) is not very practical for actual
calculations (in particular, if t is large). Fortunately, a straightforward
application of Schur’s Lemma [18, Lemma 1] yields

∫

Sn−1

(ww∗)⊗k dw =

(
n+ k − 1

k

)−1
PSymk

for t, n ∈ N arbitrary. Here, PSymt denotes the projector onto the
totally symmetric subspace of (Cn)⊗k. In turn, techniques from
multilinear algebra – in particular wiring calculus [19], [20] – allow
for carrying out calculations involving PSymt explicitly.

Analytic expressions for exact designs are notoriously difficult to
find. Designs of degree 2 are widely known [21]–[24] (see also next
section). For degree 3, both real [25] and complex [26] designs are
known. For higher t, there are numerical methods based on the notion
of the frame potential [24], [26], [27], non-constructive existence
proofs [28], and constructions in sporadic dimensions (c.f. [29] and
references thererin).

In Section II-A below, we will show that drawing the measurements
from a spherical 2-design does not allow for non-trivial performance
guarantees for PhaseLift. Conversly, in Section II-B, we provide such
guarantees for designs of order t ≥ 3.
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A. Phase retrieval from spherical 2-designs

Proposition 3 together with Definition 4 establishes a one-to-one
correspondence between spherical 2-designs and weighted sets of unit
vectors which fulfill near-isotropy in the sense of (7). This in turn
assures that for any X ∈ Hn, measuring all projectors onto elements
of a 2-design as well as measuring tr (IX) = tr(X) allows one to
linearly invert the measurement process and determine X exactly.

In the context of the “lifted” phase retrieval problem, Balan et. al
[11] were the first to be aware of this correspondence. In turn, they
used a particular instance of a spherical 2-design to recover X = xx∗

via a deterministic choice of order O
(
n2
)

projective measurements
onto elements of this design.

Concretely, their approach uses a maximal set of mutually unbiased
bases (MUBs). Two orthonormal bases {u1, . . . , un} and {v1, . . . , vn}
of Cn are called mutually unbiased, if their overlap is uniformly
minimal. Concretely, this means that

|〈ui, vj〉|2 =
1

n
∀i, j = 1, . . . , n

must hold for all i, j = 1, . . . , n. Note that this is just a generalization
of the incoherence property between standard and Fourier basis. In
prime power dimensions, a maximal set of (n + 1) such MUBs is
known to exist (and can be constructed) [30]. Such a set is maximal
in the sense that it is not possible to find more than (n+1) MUBs in
any Hilbert space. It is well-known that equally weighted, maximal
sets of MUBs form spherical 2-designs [22], [24].

Ehler and Kunis [31] also identified near isotropy – equation (7)
– and its connection to spherical 2-designs (12) (which they call
curbatures of strength 2) as a crucial ingredient for performing phase
retrieval. Combining this insight with the PhaseLift approach [5],
[6] they conjecture that measuring O(n) projectors onto randomly
chosen elements of a spherical 2-design should be sufficient for
establishing a recovery guarantee for PhaseLift. However, in [20] a
counter-example to this conjecture is provided: without assuming and
exploiting additional properties of the measurement ensemble, random
subsampling is not sufficient for avoiding a scaling of m = O(n2).

At the heart heart of this counter-example is the following obser-
vation regarding the injectivity of a random phaseless measurement
chosen from a particular spherical 2-design.

Proposition 5. Suppose that a is chosen uniformly at random from a
maximal set of MUBs (which forms a spherical 2-design). Then there
exist orthogonal and normalized vectors x, y ∈ Cn such that

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]
≤ 2

n(n+ 1)
.

Proof: Suppose that {u1, . . . , un} ⊂ Cn is one orthonormal basis
contained in the maximal set of MUBs and set x := u1, as well as
y := u2. Note that by definition these vectors are orthogonal and
normalized. Due to the particular structure of MUBs, the expression
of interest obeys

∣∣∣|〈a, u1〉|2 − |〈a, u2〉|2
∣∣∣ =

{
1 if a = u1, or a = u2,

0 otherwise.

The claim now follows from noticing that a is chosen uniformly at
random from the n(n + 1) vectors contained in a maximal set of
MUBs.

Note that this statement implies that the probability of distinguishing
the orthogonal vectors x and y by means of a random phaseless
measurement (chosen uniformly from the spherical 2-design formed
by a maximal set of MUBs) is proportional to 1/n2. In [20] the authors
use a slightly refined version of this insight together with a stopping
time argument to establish the following rigorous counter-example to
subsampling from a particular 2-design.

Theorem 6 (Theorem 2 in [20]). Let n ≥ 2 be a prime power and
let D2 ⊂ Cn be a maximal set of MUBs. Then there exist orthogonal,
normalized vectors x, y ∈ Cd which have the following property:

Suppose that m measurement vectors a1, . . . , am are sampled
independently and uniformly at random from D2. Then, for any ω ≥ 0,
the number of measurements must obey

m ≥ ω

4
n(n+ 1), (14)

or the event

|〈ai, x〉|2 = |〈ai, y〉|2 ∀ i ∈ {1, . . . ,m}
will occur with probability at least e−ω .

It is worthwhile to emphasize that this no-go result only applies
to specific 2-designs. Particular instances of a 2-design that exhibit
additional structural properties may well allow for subsampling. In
fact, such a measurement ensemble – “coded diffraction patterns”, or
“masked Fourier measurements” – was introduced by Candès et al.
in [13] and it was proven in the same paper that a total number of
m = O

(
n log4 n

)
such measurements actually allows for establishing

a Phaselift recovery guarantee. Since these coded-diffraction patterns
fulfill near-isotropy in the sense of (7), Proposition 3 assures that
they also form a spherical 2-design. This equivalence was pointed out
in [14], where the required sampling rate for such a recovery was
furthermore reduced to a total of O

(
n log2 n

)
measurements.

B. Phase retrieval from higher-order designs

Since a subsampled collection of random projectors onto a spherical
2-design can in general not be sufficient for recovering a sought for
signal X = xx∗ via PhaseLift, it is natural to ask if designs of higher
order allow for establishing such a recovery guarantee.

Recall that the main problem with subsampling from a spherical 2-
design was the injectivity-issue pointed out in Proposition 5. However,
this situation changes dramatically for designs of higher order.

Proposition 7. Suppose that a is chosen uniformly at random from
a spherical 4-design. Then for any two distinct vectors x, y ∈ Cn

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]
≥ 1

96

is true.

Proof: The claim is an immediate corollary from the auxiliary
statement [32, equation (24)] used to establish Proposition 12 there.
For a chosen uniformly at random from a spherical 4-design, this
statement assures for any Z ∈ Hn

Pr

[
|tr (aa∗Z)| ≥ ξ‖Z‖2√

n(n+ 1)

]
≥
(
1− ξ2

)2

24
∀ξ ∈ [0, 1] (15)

by means of the Payley-Zygmund inequality. Here, ‖Z‖2 denotes the
Frobenius norm of Z. Setting Z := xx∗ − yy∗ (note that since x and
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y are distinct, the matrix Z cannot vanish and therefore ‖Z‖2 > 0
must hold) and setting ξ = 2−1/2 allows us to conclude

Pr
[∣∣∣|〈a, x〉|2 − |〈a, y〉|2

∣∣∣ > 0
]
= Pr [|tr (aa∗Z)| > 0]

≥Pr

[
|tr (aa∗Z)| ≥ 2−1/2‖Z‖2√

n(n+ 1)

]
≥ (1− 1/2)2

24
=

1

96

by means of (15).
Proposition 7 assures that choosing measurement vectors inde-

pendently from any spherical 4-design behaves strikingly different
from the 2-design case. In particular, this statement guarantees that
injectivity issues in the sense of Proposition 5 are much less severe for
designs of higher order. In accordance with such a disintegration of
the injecivity problem, non-trivial recovery guarantees for PhaseLift
can be established for designs of higher order, as the main result in
[20] shows.

Theorem 8 (Theorem 1 in [20]). Let x ∈ Cn be the unknown signal
of interest. Suppose that ‖x‖2`2 is known and that m measurement
vectors a1, . . . , am have been sampled independently and uniformly
at random from an equally weighted t-design obeying t ≥ 3. Then,
with probability at least 1− e−ω , PhaseLift (the convex optimization
problem (4) above) recovers x up to a global phase, provided that
the sampling rate exceeds

m ≥ ω Ctn1+2/t log2 n. (16)

Here ω ≥ 1 is an arbitrary parameter and C is a universal constant.

Already for 3-designs, this result establishes a recovery guarantee
from subquadratically many – namely O(n5/3 log2(n)) – projectors
onto randomly selected 3-design elements. The statement furthermore
becomes tight – i.e. the required sampling rate scales linearly in
the dimension n of the signal x – up to polylog-factors, if the
design order t is allowed to grow logarithmically with the dimension
(t = 2 log n). Note that a similar recovery guarantee for sampling
from particular t-designs can be established, even if n sampling
vectors are correlated at a time [33]. Recently, the above Theorem
was substantially strengthened and generalized in [32].

Theorem 9 (Theorem 3 in [32]). Consider the measurement process
described in (2) where the measurement vectors a1, . . . , am have
been sampled independently from a spherical 4-design (according
to the design’s weights). Furthermore assume that the number of
measurements m obeys

m ≥ C1nr log n,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1 − e−C2m

it holds that for any X ∈ Hn with rank at most r, any solution
X# of the convex optimization problem (4) with noisy measurements
yi = tr (AiX) + εi , where

∑n
i=1 ε

2
i ≤ η2, obeys

‖X −X#‖2 ≤
C3η√
m
. (17)

Here, C1, C2, C3 > 0 again denote universal positive constants.

This is a uniform recovery guarantee for recovering arbitrary rank-r
matrices that is furthermore robust towards noise. Clearly it covers
phase retrieval via PhaseLift as a special case – namely the one,
where all matrices X of interest are guaranteed to be rank one.

Consequently, O(n log n) measurements randomly chosen from a
4-design are sufficient to guarantee phaseless recovery of arbitrary
signals x ∈ Cn via the convex optimization (4). Moreover, such a
sampling rate is close to optimal. As shown in [34], it follows from
the results derived in [35] that a sample size of m ≥ (4 + o(1))n is
in fact necessary (cf. [36]).

Finally, we want to point out that Theorem 9 is also close to optimal
in terms of the design order t required. Indeed, Theorem 6 establishes
that a design order of at least t = 3 is required without making
additional assumptions on the measurement ensemble. Theorem 9 gets
by with a design order of t = 4 and no further assumptions. Fully
closing the gap by establishing an analogue of Theorem 9 which is
valid already for 3-designs, or tightening the required sampling rate
in Theorem 8 does constitute an intriguing open problem. Numerical
studies presented in [20] suggest that this might indeed be feasible.
For the sake of completeness we have included the results of this
study in Figure 1.

Fig. 1. Phase Diagram for PhaseLift from (projected) stabilizer states, which form
an equally weighted 3-design in power-of-two dimensions [26]. The x-axis indicates
the problem’s dimension, while the y-axis denotes the number of independent design
measurements performed. The frequency of a successful recovery over 30 independent
runs of the experiment appears color-coded from black (zero) to white (one). To guide
the eye, we have furthermore included a red line indicating m = 4n− 4.

III. SPHERICAL DESIGNS AS A GENERAL-PURPOSE TOOL FOR
PARTIAL DERANDOMIZATION

In section II we have introduced spherical t-designs as a general-
ization of natural structural properties (11), (12) which assure that the
weighted vector set forms a tight frame on Cn and the corresponding
rank-one projectors obey near-isotropy (essentially meaning that they
form a slightly distorted tight-frame on Hn).

Equivalently, one can define spherical t-designs as (usually finite)
weighted distributions of vectors that approximate Haar-random
vectors (or equivalently: the distribution of complex standard Gaussian
vectors renormalized to unit length) up to t-th moments.

Viewing spherical t-designs from this angle reveals that they do
constitute a general purpose tool for derandomizing results that
initially required generic – i.e. Haar-random or standard Gaussian –
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vectors. This utility of the design concept has long been appreciated
for example in quantum information theory [37], [38]. It has been
compared [37] to the notion of t-wise independence, which plays a
role for example in the analysis of discrete randomized algorithms.
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We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled 
measurements via nuclear norm minimization. We consider the particular scenario 
where the measurements are Frobenius inner products with random rank-one 
matrices of the form aja∗

j for some measurement vectors a1, . . . , am, i.e., the 
measurements are given by bj = tr(Xaja∗

j ). The case where the matrix X = xx∗

to be recovered is of rank one reduces to the problem of phaseless estimation 
(from measurements bj = |〈x, aj〉|2) via the PhaseLift approach, which has been 
introduced recently. We derive bounds for the number m of measurements that 
guarantee successful uniform recovery of Hermitian rank r matrices, either for 
the vectors aj , j = 1, . . . , m, being chosen independently at random according 
to a standard Gaussian distribution, or aj being sampled independently from 
an (approximate) complex projective t-design with t = 4. In the Gaussian case, 
we require m ≥ Crn measurements, while in the case of 4-designs we need 
m ≥ Crn log(n). Our results are uniform in the sense that one random choice of the 
measurement vectors aj guarantees recovery of all rank r-matrices simultaneously 
with high probability. Moreover, we prove robustness of recovery under perturbation 
of the measurements by noise. The result for approximate 4-designs generalizes and 
improves a recent bound on phase retrieval due to Gross, Krahmer and Kueng. 
In addition, it has applications in quantum state tomography. Our proofs employ 
the so-called bowling scheme which is based on recent ideas by Mendelson and 
Koltchinskii.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The phase retrieval problem

The problem of retrieving a complex signal from measurements that are ignorant towards phases is 
abundant in many different areas of science, such as X-ray crystallography [44,62], astronomy [33] diffraction 
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imaging [72,62] and more [8,12,81]. Mathematically formulated, the problem consists of recovering a complex 
signal (vector) x ∈ Cn from measurements of the form

|〈aj , x〉|2 = bj for j = 1, . . . ,m, (1)

where a1, . . . , am ∈ Cn are sampling vectors. This ill-posed inverse problem is called phase retrieval and 
has attracted considerable interest over the last few decades. An important feature of this problem is that 
the signal x enters the measurement process (1) quadratically. This leads to a non-linear inverse problem. 
Classical approaches to numerically solving it include alternating projection methods [34,38]. However, 
these methods usually require extra constraints and a careful selection of parameters, and in particular, no 
rigorous convergence or recovery guarantees seem to be available.

As Balan et al. pointed out in [7] that this apparent obstacle of having nonlinear measurements can be 
overcome by noting that the measurement process – while quadratic in x – is linear in the outer product 
xx∗:

|〈aj , x〉|2 = tr
(
aja

∗
jxx

∗) .

This “lifts” the problem to a matrix space of dimension n2, where it becomes linear and can be solved 
explicitly, provided that the number of measurements m is at least n2 [7]. However, there is additional 
structure present, namely the matrix X = xx∗ is guaranteed to have rank one. This connects the phase 
retrieval problem to the young but already extensive field of low-rank matrix recovery. Indeed, it is just a 
special case of low-rank matrix recovery, where both the signal X = xx∗ and the measurement matrices 
Aj = aja

∗
j are constrained to be proportional to rank-one projectors. This observation led to the PhaseLift

approach to the phase retrieval problem [13,19].
It should be noted, however, that such a reduction to a low rank matrix recovery problem is just one 

possibility to retrieve phases. Other approaches use polarization identities [2] or alternate projections [65]. 
Another approach is quasi-linear compressed sensing [31]. Yet another recent method is phase retrieval via 
Wirtinger flow [15].

1.2. Low rank matrix recovery

Building on ideas of compressive sensing [20,30,37], low rank matrix recovery aims to reconstruct a 
matrix of low rank from incomplete linear measurements via efficient algorithms [68]. For our purposes we 
concentrate on Hermitian matrices X ∈ Cn×n and consider measurements of the form

tr (XAj) = bj j = 1, . . . ,m (2)

where the Aj ∈ Cn×n are some Hermitian matrices. For notational simplicity, we define the measurement 
operator

A : Hn → Rm Z �→
m∑

j=1
tr (ZAj) ej ,

where e1, . . . , em denotes the standard basis in Rm. This summarizes an entire (possibly noisy) measurement 
process via

b = A(X) + ε. (3)

Here b = (b1, . . . , bm)T contains all measurement outcomes and ε ∈ Rm denotes additive noise. Low rank 
matrix recovery can be regarded as a non-commutative version of compressive sensing. Indeed, the structural 
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assumption of low rank assures that the matrix is sparse in its eigenbasis. In parallel to the prominent role 
of �1-norm minimization in compressive sensing [37], it is by now well-appreciated [1,18,17,68,39] that in 
many relevant measurement scenarios, the sought for matrix X can be efficiently recovered via convex 
programming, although the corresponding rank minimization problem is NP hard in general [32].

In order to formulate this convex program, we introduce the standard �p-norm on Rn or Cn by ‖x‖�p =
(
∑n

�=1 |x�|p)1/p for 1 ≤ p < ∞ and the Schatten-p-norm on the space Hn of Hermitian n × n matrices as

‖Z‖p =
(

n∑

�=1
σ�(Z)p

)1/p

= tr (|Z|p)1/p
, p ≥ 1,

where σ�(Z), � = 1, . . . , n, denote the singular values of Z, tr is the trace and |Z| = (Z∗Z)1/2. Important 
special cases are the nuclear norm ‖Z‖∗ = ‖Z‖1, the Frobenius norm ‖Z‖F = ‖Z‖2 and the spectral norm 
‖Z‖∞ = ‖Z‖2→2 = σmax(Z) being the largest singular value. More information concerning Schatten-p
norms can be found in Appendix A.1.

Assuming the upper bound ‖ε‖�2 ≤ η on the noise for some η ≥ 0, recovery via nuclear norm minimization 
corresponds to

minimize
Z∈Hn

‖Z‖1 subject to ‖A(Z) − b‖�2 ≤ η. (4)

This is a convex optimization problem which can be solved computationally efficiently with various strategies 
[37, Chapter 15], [10,26,67,76]. We note that several alternatives to nuclear norm minimization may also 
be applied including iteratively reweighted least squares [36], iterative hard thresholding [52,75], greedy 
approaches [56] and algorithms specialized to certain measurement maps A [47], but our analysis is geared 
towards nuclear norm minimization and does not provide guarantees for these other algorithms.

Up to date, a number of measurement instances have been identified for which nuclear norm minimization 
(4) – and potentially other algorithms – provably recovers the sought for low-rank matrix from considerably 
fewer than n2 measurements [18,17,22,39,36,57,68,79]. All these constructions are based on randomness, 
the simplest being a random Gaussian measurement map where all entries Aj,k,� in the representation 
A(X)j =

∑n
k,�=1 Aj,k,�Xk,� are independent mean zero variance one Gaussian random variables. It is shown 

in [17,68] that

m ≥ Crn

measurements suffice in order to (stably) reconstruct a matrix X ∈ Cn×n of rank at most r with probability 
at least 1 − exp(−cm), where the constants C, c > 0 are universal. This result is based on a version of the 
by-now classical restricted isometry property so that this result is uniform in the sense that a random draw 
of A enables reconstruction of all rank r matrices simultaneously with high probability. A corresponding 
nonuniform result, holding only for a fixed rank r matrix X is stated in [22], see also [4,79], which shows 
that essentially m > 6rn measurements are sufficient, thus providing also good constants.

While unstructured Gaussian measurements provide optimal guarantees, which are comparably easy 
to derive, many applications demand more structure in the measurement process. A particular instance 
is the matrix completion problem [24,18,21,39,23], which aims at recovering missing entries of a matrix 
which is known to be of low rank. Here, the source of randomness is in the selection of the known entries. 
In contrast to the unstructured measurements, additional incoherence properties of the matrix to be re-
covered are required and the bounds on the number of measurements are slightly worse [24,39], namely 
m ≥ Crn log2(n). The matrix completion setup generalizes to measurements with respect to an arbitrary 
operator basis. The incoherence assumption on the matrix to be recovered can be dropped if in turn the 
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operator basis is incoherent, which is the case for the particular example of Pauli measurements aris-
ing in quantum tomography [39,57]. Here, a sufficient and necessary number of measurements scales like 
m ≥ Crn log(n).

Rank-one measurements, however, in general fail to be sufficiently incoherent for directly applying proof 
techniques of the same type. For the particular case of phase retrieval (where the matrix of interest is by 
construction a rank-one projector) this obstacle could be overcome by providing problem specific recov-
ery guarantees that either manifestly rely on (rank one) Gaussian measurements [19,14,79] or result in a 
non-optimal sampling rate [42,16,41].

1.3. Weighted complex projective designs

The concept of real spherical designs was introduced by Delsarte Goethals and Seidel in a seminal paper 
[29] and has been studied in algebraic combinatorics [73] and coding theory [29,64]. Recently, complex 
projective designs – the natural extension of real spherical designs to the complex unit sphere – have been 
of considerable interest in quantum information theory [84,70,45,40,58,11,53].

Roughly speaking, a complex projective t-design is a finite subset of the complex unit sphere in Cn

with the particular property that the discrete average of any polynomial of degree (t, t) (i.e., a polynomial 
p(z, ̄z) of total degree t both in z = (z1, . . . , zn) and in z̄ = (z̄1, . . . , ̄zn)) or less equals its uniform average. 
This defining property assures that complex projective designs are a general-purpose tool for partially 
de-randomizing probabilistic results which initially relied on Gaussian (or Haar) randomness [50]. Many 
equivalent definitions capture such an essence, but the following one best serves our purpose.

Definition 1 (Exact, weighted t-design). (See Definition 3 in [70].) For t ∈ N, a finite set {w1, . . . , wN} ⊂ Cn

of normalized vectors with corresponding weights {p1, . . . , pN} such that pi ≥ 0 and 
∑N

i=1 pi = 1 is called 
a weighted complex projective t-design of dimension n and cardinality N if

N∑

i=1
pi (wiw

∗
i )⊗t =

∫

CPn−1

(ww∗)⊗t dw, (5)

where the integral on the right hand side is taken with respect to the unique unitarily-invariant probability 
measure on the complex projective space CPn−1 and the integrand is computed using arbitrary1 preimages 
of the w ∈ CPn−1 in the unit sphere in Cn.

This definition in particular shows that uniform sampling from a t-design mimics the first 2t moments 
of sampling uniformly according to the Haar measure, which is equivalent to sampling standard Gaussian 
vectors followed by renormalization. A simple application of Schur’s Lemma – see e.g. [70, Lemma 1] – 
reveals that the integral on the right hand side of (5) amounts to

∫

CPn−1

(ww∗)⊗t dw =
(
n + t − 1

t

)−1
PSymt , (6)

where PSymt denotes the projector onto the totally symmetric subspace Symt of (Cn)⊗t defined in 
Appendix A – see equation (40). In accordance with [60], we call a t-design proper, if all the weights 
are equal, i.e., pi = 1/N for all i = 1, . . . , N .

Although exact, proper t-designs exist and can be constructed in any dimension n for any t ∈ N [71,6,49,
45], these constructions are typically inefficient in the sense that they require vector sets of exponential size. 

1 Note that if w1 and w2 are elements of the unit sphere that have the same image w in CPn−1 then w1w
∗
1 = w2w

∗
2 .
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For example, the construction in [45] requires on the order of O (t)n vectors which scales exponentially in 
the dimension n. Constructions of exact, proper designs with significantly smaller number of vectors (scaling 
only polynomially in n) are notoriously difficult to find.

By fixing a concrete design order t (e.g. t = 4) and introducing weights, it becomes simpler to obtain 
designs with a number of elements that scales polynomially in the dimension n. Some existence results can 
be found in [28], where weighted t-designs appear under the notion of cubatures of strength t. It seems 
that one can construct weighted t-designs by drawing sufficiently many vectors at random and afterwards 
solving a linear system for the weights. Further note, that generalizations of cubatures to higher dimensional 
projections were used in [5] in the context of a generalized phase retrieval problem, where the measurements 
are given as norms of projections onto higher dimensional subspaces.

2. Main results

2.1. Low rank matrix recovery from rank one Gaussian projections

Our first main result gives a uniform and stable guarantee for recovering rank-r matrices with O(rn)
rank one measurements that are proportional to projectors onto standard Gaussian random vectors.

Theorem 2. Consider the measurement process described in (3) with measurement matrices Aj = aja
∗
j , 

where a1, . . . , am ∈ Cn are independent standard Gaussian distributed random vectors. Furthermore assume 
that the number of measurements m obeys

m ≥ C1nr,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1 − e−C2m it holds that for any positive semidefinite 
matrix X ∈ Hn with rank at most r, any solution X# to the convex optimization problem (4) with noisy 
measurements b = A(X) + ε, where ‖ε‖�2 ≤ η, obeys

‖X − X#‖2 ≤ C3η√
m

. (7)

Here, C1, C2 and C3 denote universal positive constants. (In particular, for η = 0 one has exact reconstruc-
tion.)

For the rank one case r = 1, Theorem 2 essentially reproduces the main result in [14] which uses 
completely different proof techniques. (More precisely, in [14] instead of the program (4), one minimizes 
‖A(Z) −b‖�1 where Z is positive semidefinite. Then with high probability for positive semidefinite X of rank 
1 and any minimizer X#, the error estimate is ‖X−X#‖2 ≤ C‖ε‖1

m . In our result, the error estimate C‖ε‖2√
m

is 
slightly weaker.) A variant of the above statement was shown in [79] to hold (in the real case) for a fixed ma-
trix X of rank one. (More precisely, in [79] it is assumed that X is positive semidefinite and the optimization 
is performed wrt. the function f given by (9) below.) In fact, our proof reorganizes and extends the arguments 
of [79, Section 8] in such a way, that Theorem 8.1 of [79] is shown to hold even uniformly (that is simulta-
neously for all X) and for arbitrary rank. In contrast to [14], we will not need ε-nets to show uniformity.

A similar result for the recovery of positive semidefinite matrices in the real case and for subgaussian 
measurements was obtained in [25] using RIP-based methods.

2.2. Recovery with 4-designs

As we will see, the proof method for Theorem 2 can also be applied to measurements drawn independently 
from a weighted complex projective 4-design in the sense of Definition 1. In [42] exact complex projective 
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t-designs have been applied to the problem of phase retrieval. The main result (Theorem 1) in [42] is a 
non-uniform exact recovery guarantee for phase retrieval via the convex optimization problem (4) that 
requires m = O

(
tn1+2/t log2 n

)
measurement vectors that are drawn uniformly from a proper t-design 

(t ≥ 3). The proof technique which we are going to employ here, allows for considerably generalizing and 
improving this statement. We will draw the measurement vectors a1, . . . , am ∈ Cn independently at random 
from a weighted 4-design {pi, wi}N

i=1, which means that for each draw of aj, the design element wi is selected 
with probability pi. In the sequel we assume that n ≥ 2.

Theorem 3. Let {pi, wi}N
i=1 be a weighted 4-design and consider the measurement process described in (3)

with measurement matrices Aj =
√

n(n + 1)aja
∗
j , where a1, . . . , am ∈ Cn are drawn independently from 

{pi, wi}N
i=1. Furthermore assume that the number of measurements m obeys

m ≥ C4nr log n,

for 1 ≤ r ≤ n arbitrary. Then with probability at least 1 − e−C5m it holds that for any X ∈ Hn with rank 
at most r, the solution X# to the convex optimization problem (4) with noisy measurements b = A(X) + ε, 
where ‖ε‖�2 ≤ η, obeys

‖X − X#‖2 ≤ C6η√
m

. (8)

Here, C4, C5, C6 > 0 again denote universal positive constants.

The normalization factor 
√

n(n + 1) leads to approximately the same normalization of the Aj (wrt. the 
Frobenius norm) as in expectation in the Gauss case. The theorem is a stable, uniform guarantee for recov-
ering arbitrary Hermitian matrices of rank at most r with high probability using the convex optimization 
problem (4) and m = O (nr log(n)) measurements drawn independently (according to the design’s weights) 
from a weighted 4-design. It obviously covers sampling from proper 4-designs as a special case.

Also, Theorem 3 is close to optimal in terms of the design order t required. In the context of the phase 
retrieval problem2 it was shown in [42, Theorem 2], that choosing measurements uniformly from a proper 
2-design does not allow for a sub-quadratic sampling rate m without additional structural assumptions on 
the measurement ensemble. It is presently open whether Theorem 3 also holds for 3-designs.

Note that the results for Gaussian measurement vectors and 4-designs are remarkably similar. They 
only differ by a logarithmic factor. This remaining log-discrepancy is connected to a similar issue in random 
matrix theory: [80, Theorem 5.32] vs. [80, Equation (5.31)]. We comment further on this in Remark 14 below.

Finally, Theorem 3 resembles insights in the context of distinguishing quantum states [60,3], where it 
was pointed out that (approximate) 4-designs “perform almost as good” as uniform measurements (projec-
tors onto random Gaussian vectors). Note that we will generalize Theorem 3 to approximate 4-designs in 
Theorem 5 below.

2.3. Extensions

In this section we state variants of the main theorems which can be proved in a similar way.

2.3.1. Real-valued case
Theorem 2 is also valid in the real case, i.e., assuming that the aj are real standard Gaussian distributed 

and Hn is replaced by the space Sn of real symmetric n × n-matrices. The proof of the corresponding 

2 I.e., recovering unknown Hermitian matrices of rank one.
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statement is very similar to the one of Theorem 2 and we sketch the necessary adaptations in Sec-
tion 4.3.

2.3.2. Recovery of positive semidefinite matrices
The matrix X to be recovered may be known to be positive semidefinite (X � 0) in advance. In this 

case, one can enforce the reconstructed matrix to be positive semidefinite by considering the optimization 
program

minimize
Z�0

tr(Z) subject to ‖A(Z) − b‖�2 ≤ η

instead of the nuclear norm minimization program (4). Then analog versions of Theorems 2, 3 and 5 hold. In 
particular, the error bounds (7), (8) remain valid. In the noisy case η > 0, this does not follow directly from 
these theorems, since the minimizer of the nuclear norm minimization (4) is not guaranteed to be positive 
semidefinite in the noisy case. The proof proceeds similarly as the ones for the case X ∈ Hn. Instead of the 
nuclear norm one has to consider (as in [79]) the function

f : Hn → R ∪ {∞}, f(X) =
{

tr(X), if X � 0
∞, otherwise. (9)

3. Applications to quantum state tomography

A particular instance of matrix recovery is the task of reconstructing a finite n-dimensional quantum 
mechanical system which is fully characterized by its density operator ρ – an n × n-dimensional positive 
semidefinite matrix with trace one. Estimating the density operator of an actual (finite dimensional) quan-
tum system is an important task in quantum physics known as quantum state tomography.

One is often interested in performing tomography for quantum systems that have certain structural 
properties. An important structural property – on which we shall focus here – is purity. A quantum system 
is called pure, if its density operator has rank one and almost pure if it is well approximated by a matrix of low 
rank rank(ρ) = r � n. Assuming this structural property, quantum state tomography is a low-rank matrix 
recovery problem [43,39,35,57]. An additional requirement for tomography is the fact that the measurement 
process has to be “experimentally realizable” and – preferably – “efficiently” so.

Any “experimentally realizable” quantum mechanical measurement corresponds to a positive operator-
valued measure (POVM). In the special case of (finite) n-dimensional quantum systems, a POVM is a set 
of positive semidefinite matrices {Mj}N

j=1 ⊂ Hn that sum up to the identity, i.e., 
∑N

j=1 Mj = id – see e.g. 
[66, Chapter 2.2.6] for further information.

For practical reasons, it is highly desirable that a quantum measurement (represented by a POVM) can 
be implemented with reasonable effort. In accordance with [66], we call a POVM-measurement efficient (or 
practical), if it can be carried out by performing a number of O (polylog(n)) elementary steps.3 Making this 
notion precise would go beyond the scope of this work and we refer to [3,66] for further reading.

Below we will concentrate on random constructions of the vectors aj. We note, however, that imple-
menting the POVM element aja

∗
j corresponding to the projection onto a Gaussian random vector is not

efficient as it requires O (poly(n)) steps. This renders all low rank matrix recovery guarantees which rely 
on Gaussian measurements – like in Theorem 2 above – inefficient (and therefore impractical) for low 
rank quantum state tomography. Utilizing a weakened concept of t-designs discussed next, we partly over-
come this obstacle with Theorem 5 below and its possible implementations outlined in Sections 3.2.1, 
3.2.2.

3 This notion is comparable to the circuit depth in classical computer science.
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3.1. An analogue of Theorem 3 for approximate designs

While Theorem 3 is a substantial derandomization of Theorem 2 and therefore interesting from a theo-
retical point of view, its usefulness hinges on the availability of constructions of exact weighted 4-designs. 
Unfortunately, such constructions are notoriously difficult to find unless one relies on randomness, for which, 
however, the resulting designs are not efficient in the sense described in the previous section. One way to 
circumvent these difficulties is to relax the defining property (5) of a t-design. This approach was – up to 
our knowledge – introduced by A. Ambainis and J. Emerson [3] and resulted in the notion of approximate 
designs which is by now well established in quantum information science.

Definition 4 (Approximate t-design). We call a weighted set {pi, wi}N
i=1 of normalized vectors an approximate 

t-design of p-norm accuracy θp, if
∥∥∥∥∥∥

N∑

i=1
pi (wiw

∗
i )

⊗t −
∫

CPn−1

(ww∗)⊗t dw

∥∥∥∥∥∥
p

≤
(
n + t − 1

t

)−1
θp. (10)

While accuracy measured in arbitrary Schatten-p-norms is conceivable, the ones measured in operator 
norm (p = ∞) [46,3,59,11] and nuclear norm (p = 1) [63] are the ones most commonly used – at least 
in quantum information theory. For these two accuracies, the definition in particular assures that every 
approximate t-design is in particular also a k-design for any 1 ≤ k ≤ t with the same p-norm accuracy 
θp [3,59]. For the sake of being self-contained we provide a proof of this statement in Appendix A – see 
Lemma 16.

A slightly refined analysis reveals that Theorem 3 also holds for sufficiently accurate approximate 
4-designs.

Theorem 5. Fix 1 ≤ r ≤ n arbitrary and let {pi, wi}N
i=1 be an approximate 4-design satisfying

∥∥∥∥∥
N∑

i=1
piwiw

∗
i − 1

n
id
∥∥∥∥∥

∞
≤ 1

n
, (11)

that admits either operator norm accuracy θ∞ ≤ 1/(16r2), or trace-norm accuracy θ1 ≤ 1/4, respectively. 
Then, the recovery guarantee from Theorem 3 is still valid (possibly with slightly worse absolute constants 
C̃4, C̃5 and C̃6).

Note that the additional criterion (11) essentially demands that the re-weighted set 
{√

piwi

}N

i=1 is close 

to a tight frame – i.e. a set of vectors {vi}N
i=1 ⊂ Cn obeying

N∑

i=1
|〈vi, x〉|2 ∝ 〈x, x〉 = ‖x‖2

�2 ∀x ∈ Cn (Parseval’s identity).

3.2. Protocols for efficient low rank matrix recovery

Up to now, efficient recovery of low rank density operators by means of the convex optimization problem 
(4) has been established for random measurements of (generalized) Pauli observables [43,39]. For this type 
of measurements, the statistical issues are well understood [35] and Y.K. Liu managed to prove a uniform 
recovery guarantee [57] which is comparable to the results presented here. Also, this procedure has been 
tested in experiments [69].
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Theorem 5 is similar in spirit and we show here that it permits efficient low rank quantum state tomogra-
phy for different types of measurements. Indeed, in the field of quantum information theory, various ways of 
constructing approximate t-designs are known. Most of these methods are inspired by “realistic” quantum 
mechanical setups (e.g. the circuit model [66, Chapter 4]) and can therefore be – in principle – implemented 
efficiently in an actual experiment.

Introducing these constructions in full detail would go beyond the scope of this work and we content 
ourselves with sketching two possible ways of generating approximate 4-design measurements which meet 
the requirements of Theorem 5. For further clarification on the concepts used here, we refer directly to the 
stated references.

From now on we shall assume that the dimension n = 2d is a power of two (d-qubit density operators).

3.2.1. The Ambainis–Emerson POVM
In [3], the authors provide a way of constructing a normalized approximate 4-design of operator-norm 

accuracy θ∞ = O
(
1/n1/3), which in addition is a tight frame (in the sense that the upper bound in 

(11) assumes zero). They furthermore present a way to generate the corresponding POVM-measurements 
efficiently – i.e., involving only O (polylog(n)) elementary steps. It therefore meets the requirements of 
Theorem 5, provided that the maximal rank r of the unknown density operator obeys

r ≤ C7n
1/6, (12)

where C7 is a sufficiently small absolute constant. The additional rank requirement stems from the fact that 
the resulting design only has limited accuracy.

This accuracy can be improved if we construct an approximate design in a much larger space – say Cn6

– and project it down onto an arbitrary n-dimensional subspace. The reason for such an approach is that 
the projected design’s accuracy corresponds to θ∞ = O

((
n6)−1/3

)
= O(1/n2). This allows for replacing 

(12) by the much weaker rank constraint

r ≤ C8n, (13)

(where C8 is again a sufficiently small absolute constant) in order to assure that the design’s operator-norm 
accuracy obeys θ∞ ≤ 1/(16r2).

Also, the projected design vectors still form a tight frame, but are sub-normalized, i.e. ‖w̃i‖2
�2

= ‖Pwi‖2
�2

≤
‖wi‖2

2 = 1. Here, P : Cn6 → Cn denotes the projection. However, since they are an approximate design’s 
projection onto a smaller space, they maintain all properties of an approximate 4-design – most notably 
Lemma 16 – except normalization. In the proof of Theorem 5, normalization is only used once, namely in 
(28) and sub-normalization is sufficient to guarantee this estimate. Consequently, Theorem 5 is applicable 
and guarantees universal quantum state tomography via the convex optimization problem (4), provided 
that (13) holds and m = C4rn log n randomly chosen measurements tr (w̃iw̃

∗
i ρ) are known.

3.2.2. Approximate unitary designs
Another way to generate approximate t-designs is to consider arbitrary orbits of unitary t-designs. Unitary 

t-designs {pi, Ui}N
i=1 are a natural generalization of the spherical design concept to unitary matrices [27,40]. 

They have the particular property that every weighted orbit {pi, Uix} with ‖x‖�2 = 1 of an approximate 
unitary design forms an approximate complex projective t-design of the same accuracy.

It was shown in [11] that unitary t-designs of arbitrary operator-norm accuracy θ∞ can be constructed 
efficiently by using local random circuits. This approach allows for generating an approximate unitary 
4-design of operator-norm accuracy θ∞ ≤ 1/(16n2) by means of local random circuits of length C9 log(n)2, 
where C9 is a sufficiently large absolute constant. Consequently, every orbit of the union of all such local 
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random circuits of length C9 log(n)2 forms a normalized approximate 4-design which meets the requirements 
of Theorem 5. One way of implementing such a measurement consists in choosing a local quantum circuit Ui

at random, applying its adjoint circuit U∗
i to the density operator ρ and then measuring the two-outcome 

POVM {xx∗, id − xx∗}, where x ∈ Cn is arbitrary (but fixed and normalized) to obtain

yi = tr (xx∗U∗
i ρUi) = tr (Uixx

∗U∗
i ρ) = tr (wiw

∗
i ρ) .

According to Theorem 5, m = C̃4nr logn random measurements of this kind are sufficient to reconstruct 
any density operator ρ of rank at most r with very high probability via the convex optimization prob-
lem (4).

Remark 6. One should note that the approximate unitary designs of [11] are not of a finite nature, because 
the set of all local random unitaries is continuous. Nevertheless, assuming that such local random unitaries 
are available as “basic building blocks”, local random circuits are efficiently implementable in terms of 
circuit length. Replacing the atomic expectation values 

∑N
i=1 pi (wiwi)⊗t by their continuous counterparts 

does not change the argument and Theorem 5 remains valid.

It is worthwhile to point out that the two possible applications of Theorem 5 to the problem of low 
rank quantum state tomography, as presented here, are not yet optimal. The implementation using the 
Ambainis–Emerson POVM – presented in Section 3.2.1 – suffers from the drawback that it demands either 
a very strong criterion on the density operator’s rank – condition (12) – or generating the design in a 
much larger space and projecting it down. The latter construction is highly unlikely to be optimal and 
it is furthermore a priori not clear where the corresponding POVM-measurements can be implemented 
efficiently.

The second approach, on the other hand, suffers from the drawback that carrying out each of the Crn logn

random measurements requires terminating with a very coarse two-outcome POVM measurement. It is very 
likely that a more fine grained-output statistics could be obtained with comparable effort. The recovery 
protocol stated here, however, does not allow for advantageously taking into account such refined information 
about the unknown state.

However, we still feel that mentioning these protocols is worthwhile, as they substantially narrow the 
gap between what can be proved (Theorem 5 and the protocols presented in Section 3.2) and what can 
be implemented efficiently in an actual quantum state tomography experiment. Next, we provide ideas 
for further narrowing this gap and finding more protocols that allow for efficient low rank quantum state 
tomography.

3.3. Outlook

The construction of approximate t-designs in Section 3.2.1 via projections from higher-dimensional de-
signs would be much stronger if an efficient protocol for the corresponding POVM measurements could be 
provided. We leave this for future work. Alternatively, the authors of [3] mention results by Kuperberg [51]
who managed to construct exact t-designs containing only O

(
n2t) vectors. They furthermore conjecture 

that their method of efficiently implementing the corresponding POVM measurement also works for Ku-
perberg’s exact construction. Trying to find such an implementation and combining it with Theorem 3 also 
does constitute an intriguing follow up-project.

Diagonal-unitary designs are yet another generalization of the spherical design concept to a more restric-
tive family of unitaries [63]. The notion of a diagonal-unitary design depends on choosing a reference basis 
and is therefore weaker than the unitary design notation from above. Nevertheless, in [63, Proposition 1]
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it was shown that the orbit4 of a particular vector f1 ∈ Cn under a diagonal-unitary t-designs still forms 
approximate complex projective t-designs with trace-norm accuracy

θ1 =
(
n + t − 1

t

)(
t(t − 1)

n
+ O

(
1
n2

))
. (14)

A quick calculation reveals that this orbit forms a normalized tight frame. Unfortunately, the trace-norm 
accuracy (14) is too weak for a direct application of Theorem 5. However, in [63, Theorem 1] it is shown 
that the union of all 3-qubit phase-random circuits forms an exact diagonal-unitary 4-design. Similar to 
local random circuits, such 3-qubit phase-random circuits can in principle be implemented efficiently [63, 
Proposition 3] in an actual quantum mechanical setup. Furthermore, comparing (14) with the accuracy 
relation θ∞ ≤ θ1 ≤ ntθ∞ – see Lemma 16 in Appendix A – suggests that particular orbits of diagonal-unitary 
designs might possess a much tighter operator-norm accuracy, if the spectrum of their (t-fold tensored) 
average were sufficiently flat. Such a result, combined with Theorem 5, would lead to a tomography procedure 
that is similar to the one of Section 3.2.2, but uses random 3-qubit phase gates instead of local random 
circuits.

4. Proofs

Our proof technique consists in the application of a uniform variant of Tropp’s bowling scheme which is 
a specific version of Mendelson’s small ball method, see [79]. The crucial ingredient is a new technique due 
to Mendelson [61] and Koltchiskii, Mendelson [48] (see also [55]) to obtain lower bounds for quantities of 
the form infu∈E

∑m
j=1 |〈φj , x〉|2 where the φj are independent random vectors in Rd and E is a subset of 

Rd. We start by recalling from [79] the notions and results underlying this technique.
Suppose we measure x0 ∈ Rd via measurements y = Φx0 + ε ∈ Rm, where Φ is an m × d measurement 

matrix and ε ∈ Rm a vector of unknown errors. Let η ≥ 0 and assume ‖ε‖�2 ≤ η. For f : Rd → R ∪ {∞}
proper convex we aim at recovering x0 by solving the convex program

minimize f(x) subject to ‖Φx − y‖�2 ≤ η. (15)

Here, proper convex means that f is convex and attains at least one finite value.
Let K ⊆ Rd be a cone. Then we define the minimum singular value of Φ with respect to K as

λmin(Φ;K) = inf{‖Φu‖�2 : u ∈ K ∩ Sd−1},

where Sd−1 is the unit sphere in Rd. For x ∈ Rd, we consider the (convex) descent cone

D(f, x) =
⋃

τ>0
{y ∈ Rd : f(x + τy) ≤ f(x)}.

With these notions, the success of the convex program (15) can be estimated as follows.

Proposition 7. (See [79], see also [22].) Let x0 ∈ Rd, Φ ∈ Rm×d and y = Φx0 + ε with ‖ε‖�2 ≤ η. Let 
f : Rd → R ∪{∞} be proper convex and let x� be a solution of the corresponding convex program (15). Then

‖x� − x0‖�2 ≤ 2η
λmin(Φ; D(f, x0))

.

4 For a diagonal-unitary design with respect to the standard basis e1, . . . , en, their result requires the first Fourier vector f1 =
1√
n

∑n
i=1 ei as a fiducial. This vector is isomorphic to the |+〉⊗d =

(
1√
2 (e1 + e2)

)⊗d
state which is well-known in quantum 

information theory.
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The crucial point for us is that in the situation that Φ is a random matrix with i.i.d. rows, the following 
theorem can be applied to estimate λmin(Φ; D(f, x0)) (see also [48,79,61]).

Theorem 8 (Koltchinskii, Mendelson; Tropp’s version). (See [79].) Fix E ⊂ Rd and let φ1, . . . , φm be inde-
pendent copies of a random vector φ in Rd. For ξ > 0 let

Qξ(E;φ) = inf
u∈E

P{|〈φ, u〉| ≥ ξ}

and Wm(E, φ) = E sup
u∈E

〈h, u〉, where h = 1√
m

m∑

j=1
εjφj

with (εj) being a Rademacher sequence.5 Then for any ξ > 0 and any t ≥ 0 with probability at least 1 −e−2t2

inf
u∈E

(
m∑

i=1
|〈φi, u〉|2

)1/2

≥ ξ
√
mQ2ξ(E;φ) − 2Wm(E, φ) − ξt.

Remark 9. We note that the above theorem is stated in [79] to hold with probability 1 − e−t2/2. Inspecting 
the proof, however, reveals that the probability estimate can actually be improved to 1 − e−2t2 .

We will apply the notions in these results in the context of Theorems 2 and 3 as follows:

• identify Hn with Rd = Rn2

• Φ is the matrix of A in the standard basis, i.e., Φ(X)i = tr(aia
∗
i X)

• f : Hn → R ∪ {∞} is the nuclear norm, i.e., f(X) = ‖X‖1.

In particular,

D(f,X) =
⋃

τ>0
{Y ∈ Hn : f(X + τY ) ≤ f(X)}.

In Topp’s original bowling scheme, [79, Sections 7 and 8], a positive semidefinite matrix X of rank 1 is 
fixed and Theorem 8 is then applied to EX = D(f, X) ∩Sd−1, where Sd−1 = {Z ∈ Hn : ‖Z‖2 = 1}. He then 
uses the Payley–Zygmund inequality to obtain a lower bound for Q2ξ (after choosing some appropriate ξ) 
and finally applies arguments like conic duality to bound Wm from above.

Our approach differs from the original bowling scheme in one aspect: instead of fixing one rank r-matrix 
and focusing on EX , we are going to consider the union Er = {X ∈ Hn : rank(X) ≤ r, X �= 0} of all low 
rank matrices. The rest of the proof essentially parallels the bowling scheme from [79]. However, we are 
going to require an auxiliary statement – Lemma 10 below – in order to obtain a comparable upper bound 
on Wm. This slightly refined analysis is going to result in a uniform recovery result whose probability of 
success equals the one for non-uniform recovery of a single fixed X. Note that with such an approach, we 
do not need to use ε-nets in order to establish uniformity.

For r ≤ n let

Kr =
⋃

X

D(f,X),

5 A Rademacher vector ε = (εj)mj=1 is a vector of independent Rademacher random variables, taking the values ±1 with equal 
probability.
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where the union runs over all X ∈ Hn \ {0} of rank at most r. We further define

Er = Kr ∩ Sd−1 =
⋃

X

EX ,

where EX = D(f, X) ∩ Sd−1. We recall that for a convex cone K ⊆ Rd, its polar cone is defined to be the 
closed convex cone

K◦ = {v ∈ Rd : 〈v, x〉 ≤ 0 for all x ∈ K}.

A crucial ingredient for Theorems 2 and 3 is the following lemma.

Lemma 10. Let A ∈ Hn be a Hermitian n × n-matrix. Then

sup
Y ∈Er

tr(A · Y ) ≤ 2
√
r‖A‖∞.

By duality and the matrix Hölder inequality this statement is equivalent to

‖Y ‖1 ≤ 2
√
r for all Y ∈ Er. (16)

The following proof is inspired by [79, Section 8], where similar arguments are used.

Proof. It is enough to show that, for any X ∈ Hn \ {0} of rank at most r, we have

sup
Y ∈EX

tr(A · Y ) ≤ 2
√
r‖A‖∞.

We may assume that X has precisely rank r ≥ 1. By weak duality for cones, see [79, Proposition 4.2] or 
[37, eq. (B.40)], we have supY ∈EX

tr(A · Y ) ≤ distF (A, D(f, X)◦), where as usual distF (A, D(f, X)◦) =
infB∈D(f,X)◦ ‖A − B‖2. By [79, Fact 4.3], we know that the polar cone D(f, X)◦ is the closure of 

⋃
τ≥0 τ ·

∂f(X). For S ∈ ∂f(X) and τ ≥ 0, it follows that

sup
Y ∈EX

tr(A · Y ) ≤ ‖A − τ · S‖2.

Write X =
∑r

i=1 λixix
∗
i , where the xi are orthonormal and the λi are non-zero. Extend x1, . . . , xr to an 

orthonormal basis x1, . . . , xn of Cn and write A in the form

A =
∑

ãi,jxix
∗
j .

(Hence the ãi,j form the matrix obtained from A by a basis change to x1, . . . , xn.) Define the four blocks 
A1 =

∑
i,j≤r ãi,jxix

∗
j , A2 =

∑
i≤r,j>r ãi,jxix

∗
j , A3 =

∑
i>r,j≤r ãi,jxix

∗
j = A∗

2 and A4 =
∑

i,j>r ãi,jxix
∗
j . It 

is well known that ∂‖X‖1 consists of all matrices of the form

S =
r∑

i=1
sgn(λi)xix

∗
i + S2,

where S2 ∈ Hn has the property that S2xi = 0 for all i ∈ {1, . . . , r} and ‖S2‖∞ ≤ 1. (See for example [83], 
where the real analogue is shown.) Consider now

S =
r∑

i=1
sgn(λi)xix

∗
i + τ−1A4 ∈ ∂‖X‖1, where τ = ‖A4‖∞.
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(If τ = 0, let S =
∑r

i=1 sgn(λi)xix
∗
i .) To simplify the notation, write S1 =

∑r
i=1 sgn(λi)xix

∗
i . Then

‖A − τS‖2 = ‖A − A4 − τS1‖2 =
(
tr(A1 − τS1)2 + 2tr(A∗

2A2)
)1/2

=
(
‖A1 − τS1)‖2

2 + 2‖A∗
2‖2

2
)1/2 ≤

(
2‖A1‖2

2 + 2‖τ · S1‖2
2 + 2‖A∗

2‖2
2
)1/2

=
(
2‖A · x1‖2

2 + . . . + 2‖A · xr‖2
2 + 2‖τ · S1‖2

2
)1/2

≤
(
2r‖A‖2

∞ + 2rτ2)1/2 ≤ 2
√
r‖A‖∞,

since τ = ‖A4‖∞ ≤ ‖A‖∞ = λ. �
4.1. Proof of Theorem 2

In order to prove both statements of Theorem 2, it is enough by Proposition 7 to show that for m ≥ cnr

with probability at least 1 − e−γm

inf
Y ∈Er

⎛
⎝

m∑

j=1
tr(aja

∗
jY )2

⎞
⎠

1/2

≥ c1
√
m

for suitable positive constants c, c1, γ. For ξ > 0 let

Qξ = inf
Z∈Er

P(|tr(aja
∗
jZ)| ≥ ξ). (17)

Further let

H = 1√
m

m∑

j=1
εjaja

∗
j , (18)

where the εj form a Rademacher sequence independent of everything else, and introduce

Wm = E sup
Y ∈Er

tr(H · Y ).

By Theorem 8, for any ξ > 0 and any t ≥ 0 with probability at least 1 − e−2t2 ,

inf
Y ∈Er

⎛
⎝

m∑

j=1
(tr(aja

∗
jY ))2

⎞
⎠

1/2

≥ ξ
√
mQ2ξ − 2Wm − ξt.

Following Tropp’s bowling scheme, we first estimate Q2ξ for a suitable ξ. As in [79], we conclude from the 
Payley–Zygmund inequality (see e.g. [37, Lemma 7.16]) that

P{|〈aa∗, U〉|2 ≥ 1
2(E|〈aa∗, U〉|2)} ≥ 1

4 · (E|〈aa∗, U〉|2)2
E|〈aa∗, U〉|4 . (19)

(Here a follows the standard Gaussian distribution on Cn.) Assume now ‖U‖2 = 1 and write U =
∑

i λiuiu
∗
i , 

where 
∑

i λ
2
i = 1 and the ui are orthonormal. Then 〈aa∗, U〉 = tr(aa∗U) =

∑
j λjtr(aa∗uju

∗
j ) =

∑
j λj |u∗

ja|2
and hence,

|〈aa∗, U〉|2 =
∑

i,j

λiλj |u∗
i a|2|u∗

ja|2.
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The u∗
ja form independent standard (complex) Gaussian random variables. To compute the moments of a 

standard complex Gaussian random variable Z, write Z = X + iY where X, Y are independent and N (0, 12 )
distributed. The 2k-th moment of X resp. Y is (2k)!

22kk! , which allows us to compute higher moment of Z, for 
example, E|Z|2 = EX2 +EY 2 = 1 and E|Z|4 = EX4 +2EX2EY 2 +EY 4 = 2. Similarly, we obtain E|Z|6 = 6
and E|Z|8 = 24 (and more generally E|Z|2k = k!). Thus, we conclude that

E|〈aa∗, U〉|2 =
∑

i=j

λiλj + 2
∑

i

λ2
i =

∑

i,j

λiλj +
∑

i

λ2
i = (

∑

i

λi)2 + 1 ≥ 1 (20)

and

(E|〈aa∗, U〉|2)2 = (
∑

i

λi)4 + 2(
∑

i

λi)2 + 1.

Expanding E|〈aa∗, U〉|4 in a similar way, we obtain

E|〈aa∗, U〉|4 =
∑

i,j,k,�

λiλjλkλ� + 6
∑

i,k,�

λ2
iλkλ� + 3

∑

i,k

λ2
iλ

2
k + 8

∑

i,k

λ3
iλk + 6

∑

i

λ4
i

= (
∑

i

λi)4 + 6(
∑

i

λi)2 + 3 + 8(
∑

i

λi)(
∑

i

λ3
i ) + 6

∑

i

λ4
i ,

where we used that 
∑

i λ
2
i = 1. Again because of 

∑
i λ

2
i = 1 we have |λi| ≤ 1 for all i and hence | ∑i λ

3
i | ≤∑

i λ
2
i = 1 and similarly 

∑
i λ

4
i ≤ ∑

i λ
2
i = 1. Also observe that | ∑i λi| ≤ 1 + (

∑
i λi)2. Combining these 

inequalities with the above expressions for E|〈aa∗, U〉|4 and (E|〈aa∗, U〉|2)2, we obtain the inequality

E|〈aa∗, U〉|4 ≤ 21(E|〈aa∗, U〉|2)2.

Combining this with (19) and (20), we obtain

Q1/
√

2 ≥ 1
84 .

Thus we choose ξ = 1
2
√

2 .
In order to estimate Wm, we use Lemma 10 to obtain

Wm = E sup
Y ∈Er

tr(H · Y ) ≤ 2
√
r · E‖H‖∞. (21)

By [80, Corollary 5.17] and similar arguments as in [80, Section 5.4.1] we have E‖H‖∞ ≤ c2
√
n if m ≥ c3n

for suitable constants c2, c3, see also [79, Section 8]. Choosing t = c4
√
m and m ≥ cnr for suitable constants 

c, c4, the proof of Theorem 2 is completed.

Remark 11. In [14], a uniform result for phase retrieval in the Gaussian case is proved using an inexact dual 
certificate. One can write down a generalization of this dual certificate for the rank r-case, but following 
the arguments of [14], the resulting number of required measurements then seems to depend significantly 
worse than linearly on r. It might be possible to rather adapt the arguments in [42,41] based on a different 
construction of a dual certificate in order to derive linear scaling of m in r, but the resulting proof would 
be more complicated than ours (and likely lead to more logarithmic factors).
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4.2. Proof of Theorem 3

Let us now turn to proving the analogous result for complex projective 4-designs. It is convenient to 
rescale the (normalized) 4-design vectors as

w̃i := 4
√

(n + 1)n wi ∀i = 1, . . . , N. (22)

This mimics the expected length of random Gaussian vectors (which corresponds to E‖aj‖2
2 = n) and we 

will call the system {w̃i} a super-normalized 4-design. We can apply the same technique as in the proof of 
Theorem 2, provided that we can derive a suitable lower bound for Q2ξ for some 0 < ξ < 1/2 and an upper 
bound for E‖H‖∞. The following two technical propositions serve this purpose.

Proposition 12. Assume that a is drawn at random from a super-normalized weighted 4-design. Then

Qξ = inf
Z∈Er

P (|tr (aa∗Z) | ≥ ξ) ≥ (1 − ξ2)2
24 (23)

for all ξ ∈ [0, 1].

The proof of this statement is similar to the proof of Theorem 4 in [3] and – likewise – equation (15) 
in [60]. However, since we are interested in a bound on the probability of an event happening, rather than 
bounding an expectation value, we use the Payley–Zygmund inequality instead of Berger’s one [9] (which 

states E [|S|] ≥ E 
[
S2]3/2 E 

[
S4]−1/2).

Proof. The desired statement follows, if we can show that

P (|tr (aa∗Z) | ≥ ξ) ≥ (1 − ξ2)2
24 (24)

holds for any matrix Z ∈ Hn obeying ‖Z‖2 = 1. For such Z we define the random variable S := |tr (aa∗Z) |. 
Since a is chosen at random from a (super-normalized) complex projective 4-design, we can use the design’s 
defining property (5) together with (6) to evaluate the second and fourth moment of S. Indeed,

ES2 = Etr (aa∗Z)2 = tr
(
E (aa∗)⊗2

Z⊗2
)

= tr
(

N∑

i=1
pi (w̃iw̃

∗
i )⊗2

Z⊗2

)

= (n + 1)n tr
(

N∑

i=1
pi (wiw

∗
i )⊗2

Z⊗2

)
= (n + 1)n

(
n + 1

2

)−1
tr

(
PSym2Z⊗2)

= 2tr
(
PSym2Z⊗2)

and likewise

ES4 = Etr (aa∗Z)4 = tr
(

N∑

i=1
pi (w̃iw̃

∗
i )⊗4

Z⊗4

)
= 4!(n + 1)n

(n + 3)(n + 2)tr
(
PSym4Z⊗4) .

The remaining right hand sides are standard expressions in multilinear algebra and can for instance be 
calculated using wiring calculus. Indeed, Lemma 17 in Appendix A implies that

ES2 = 2tr
(
PSym2Z⊗2) = tr(Z)2 + tr(Z2) = tr(Z)2 + 1, (25)
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because tr(Z2) = ‖Z‖2
F = 1 by assumption, hence,

(ES2)2 ≥ max{1, tr(Z)4}.

Similarly, Lemma 17 assures

ES4 = 4!(n + 1)n
(n + 3)(n + 2)tr

(
PSym4Z⊗4)

= (n + 1)n
(n + 3)(n + 2)

(
6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2tr(Z2) + 3tr(Z2)2 + tr(Z)4

)

≤
(
6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2 + tr(Z)4 + 3

)
,

where the simplifications in the last line are due to tr(Z2) = ‖Z‖2
F = 1 and (n+1)n

(n+3)(n+2) ≤ 1. Using the 
hierarchy of Schatten-p-norms – in particular tr(Z4) = ‖Z‖4

4 ≤ ‖Z‖4
2 = 1 and tr(Z3) ≤ ‖Z‖3

3 ≤ ‖Z‖3
2 = 1 – 

yields

ES4 ≤ 6tr(Z4) + 8tr(Z)tr(Z3) + 6tr(Z)2 + tr(Z)4 + 3

≤
(
6‖Z‖4

4 + 8‖Z‖3
3 + 10

)
max

{
1, tr(Z)4

}
≤ 24 max

{
1, tr(Z)4

}
.

Having precise knowledge of the second and fourth moments and the trivial fact that tr(Z)2 ≥ 0 allows us 
to use the Payley–Zygmund inequality (for the random variable S2) to bound

P (|tr (aa∗Z) | ≥ ξ) = P
(
S2 ≥ ξ2) ≥ P

(
S2 ≥ ξ2 (1 + tr(Z)2

))

= P
(
S2 ≥ ξ2ES2) ≥

(
1 − ξ2)2 (ES2)2

ES4

≥ (1 − ξ2)2 max{1, tr(Z)4}
24 max{1, tr(Z)4} = (1 − ξ2)2

24 .

This completes the proof. �
Proposition 13. Let H be the matrix defined in (18), where the aj’s are chosen independently at random 
from a super-normalized weighted 1-design. Then it holds that

E‖H‖∞ ≤ c4
√

n log(2n) with c4 = 3.1049, (26)

provided that m ≥ 2n log n.

Proof. Since the εj ’s in the definition of H form a Rademacher sequence, the non-commutative Khintchine 
inequality [80, p. 19], see also [37, Exercise 8.6(d)], is applicable and yields

E‖H‖∞ = EaEε
1√
m

∥∥∥∥∥∥

m∑

j=1
εjaja

∗
j

∥∥∥∥∥∥
∞

≤
√

2 log(2n)
m

Ea

∥∥∥∥∥∥∥

⎛
⎝

m∑

j=1

(
aja

∗
j

)2

⎞
⎠

1/2
∥∥∥∥∥∥∥

∞

=
√

2 log(2n)
m

Ea

∥∥∥∥∥∥
√

(n + 1)n
m∑

j=1
aja

∗
j

∥∥∥∥∥∥

1/2

∞

≤

√
2
√

2n log(2n)
m

⎛
⎝Ea

∥∥∥∥∥∥

m∑

j=1
aja

∗
j

∥∥∥∥∥∥
∞

⎞
⎠

1/2

. (27)
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Here we have used super-normalization of our design vectors (aja
∗
j )2 = ‖aj‖2

2aja
∗
j =

√
(n + 1)naja

∗
j ac-

cording to (22), the fact that ‖Z1/2‖∞ = ‖Z‖1/2
∞ holds for Z ∈ Hd arbitrary and Jensen’s inequality in the 

last estimate. It remains to bound E‖ 
∑

j aja
∗
j‖∞. To this end, we will use the matrix Chernoff inequality 

of Theorem 15 for Xj = aja
∗
j and calculate

‖Xj‖∞ = ‖aja
∗
j‖∞ = ‖aj‖2

2 ≤ max
1≤i≤N

‖w̃i‖2
2 =

√
(n + 1)n ≤

√
2n =: R, (28)

‖
m∑

j=1
EXj‖∞ = ‖

m∑

j=1

N∑

i=1
piw̃iw̃

∗
i ‖∞ = m

√
n(n + 1)

∥∥∥∥∥
N∑

i=1
piwiw

∗
i

∥∥∥∥∥
∞

= m
√

(n + 1)n
∥∥∥∥

1
n

id
∥∥∥∥

∞
= m

√
(n + 1)n
n

≤
√

2m, (29)

where we once more have taken into account super-normalization and used the 1-design property. Theorem 15
together with the assumption m ≥ 2n log n implies that, for any τ > 0,

E‖
m∑

j=1
aja

∗
j‖∞ ≤ eτ − 1

τ

√
2m + τ−1√2n log(n) ≤ eτ − 1

τ

√
2m + τ−1√2m/2

=
(
eτ − 1

τ

√
2 + 1√

2τ

)
m.

The choice τ = 1.27 approximately minimizes the above expression and yields

E‖
m∑

j=1
aja

∗
j‖∞ ≤ c5m with c5 = 3.4084.

Combining this estimate with (27) yields the desired statement with c4 = 23/4√c5 = 3.1049. �
Now we are ready to prove the second main theorem of this work.

Proof of Theorem 3. The proof of Theorem 2 shows that we only need suitable bounds for Q2ξ and for 
E‖H‖∞ (both notions are defined analogously to the Gaussian case). Fix 0 < ξ < 1/2 arbitrary. For any such 
ξ, a lower bound for Q2ξ is provided by Proposition 12 and an upper bound for E‖H‖∞ in this case can be 
obtained from Proposition 13. Setting m = C4nr logn, choosing the constants C4, C5 and C6 appropriately 
(depending on the particular choice of ξ) and applying Theorem 8 then yields the desired result in complete 
analogy to the Gaussian case (proof of Theorem 2). �
Remark 14. The difference in the sampling rate m by a factor proportional to logn in Theorems 2 and 3
stems from the fact that Proposition 13 is by a factor of 

√
log(n) weaker than its Gaussian analogue [80, 

Section 5.4.1], where E‖H‖∞ ≤ c2
√
n.

This discrepancy can also be understood from random-matrix-theory. To see this, note that in the 
Gaussian case, H = 1√

m

∑m
i=1 εiaia

∗
i is essentially a Wishart matrix (up to the Rademacher coefficients). 

Consequently one can estimate the expectation of the operator norm of H using strong results about 
Gaussian random matrices (in particular [80, Theorem 5.32]) to obtain an optimal estimate of the form 
E‖H‖∞ ≤ c2

√
n.
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An analogous approach is severely inhibited by the fact that t-designs have poor subgaussian behavior6
and alternatives need to be found. One way is to resort to weaker spectral bounds available for matrices 
with independent, but heavy-tailed rows – e.g. [80, Equation (5.31)]. However such an approach leads to 
the same log-discrepancy also exhibited by the bound presented in Proposition 13.

Consequently, the task of finding a design order t for which Theorem 3 can already be established for 
m = Cn measurements (eradicating the non-optimal log-factor in the sampling rate) is deeply connected to 
an intriguing problem in random matrix theory: find stronger bounds on the spectrum of random matrices 
that do not exhibit a strong subgaussian structure.

4.3. Proof of Theorem 2 for real Gaussian vectors

As already mentioned in paragraph 2.3.1 the proof of this statement is almost identical to the proof of The-
orem 2. The only difference is the estimate of Q2ξ. Using the moments of the real instead of the complex stan-
dard Gaussian distribution, the reasoning in the proof of Theorem 2 yields the estimates E|〈aa∗, U〉|2 ≥ 2, 
(compare also with [79]). Using real moments, one further obtains E|〈aa∗, U〉|4 ≤ 27(E|〈aa∗, U〉|2)2 (alter-
natively one can use Gaussian hypercontractivity as done in [79], which gives the factor 81 instead of 27).
This yields Q1 ≥ 1

108 , and the rest of the proof is the same as before.

4.4. Proof for recovery of positive semidefinite matrices

The only part in the proof of the recovery result for positive semidefinite matrices stated in Section 2.3.2
that slightly differs from the one for arbitrary Hermitian matrices, is the proof of a corresponding version 
of Lemma 10. The subdifferential of the function f introduced in (9) slightly differs from the subdifferential 
of the nuclear norm. For X =

∑r
i=1 λixix

∗
i , where all λi are nonzero, ∂f(X) consists of all matrices of the 

form

S =
r∑

i=1
xix

∗
i + S2,

where S2 ∈ Hn has the property that S2xi = 0 for all i ∈ {1, . . . , r} and all eigenvalues of S2 do not exceed 
1. Hence we choose (in the notation of the proof of Lemma 10)

S =
r∑

i=1
xix

∗
i + τ−1A4 ∈ ∂f(X).

Then the remainder of the proof of Lemma 10 is the same.

4.5. Proof of Theorem 5

The proof of this generalized statement proceeds along the same lines as the one of Theorem 3. However, 
Propositions 12 and 13 – as well as their respective proofs – have to be slightly altered due to the weaker 
requirements imposed by Theorem 5.

4.5.1. Generalized version of Proposition 12
Under the assumptions of Theorem 5, a weaker version of (23), namely

6 The definition of a t-design assures that it’s first 2t moments resemble an analogous Gaussian distribution [50], but a priori no 
bounds are available for higher moments.
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Qξ = inf
Z∈Er

P (|tr (aa∗Z) | ≥ ξ) ≥ (1 − 2ξ2)2
192 (30)

for all 0 ≤ ξ ≤ 1/
√

2 is still valid. This statement can be shown analogously to Proposition 12. However, one 
has to establish bounds on the second and fourth moments in a slightly more involved way, depending also on 
the type of design accuracy. Let us start with generalizing the second moment estimate of S := |tr (aa∗Z) |
for an approximate 4-design with operator norm accuracy θ∞ ≤ 1/(16r2):

ES2 = (n + 1)n
(

N∑

i=1
pi (wiw

∗
i )⊗2

, Z⊗2

)

= 2
(
PSym2 , Z⊗2) + (n + 1)n

(
N∑

i=1
pi (wiw

∗
i )⊗2 −

(
n + 1

2

)−1
PSym2 , Z⊗2

)

≥ 2|
(
PSym2 , Z⊗2) | − (n + 1)n

∥∥∥∥∥
N∑

i=1
pi (wiw

∗
i )⊗2 −

(
n + 1

2

)−1
PSym2

∥∥∥∥∥
∞

∥∥Z⊗2∥∥
1 (31)

≥ 2|
(
PSym2 , Z⊗2) | − 2θ∞‖Z‖2

1 ≥ 2|
(
PSym2 , Z⊗2) | − 8r

16r2 ,

> 2|
(
PSym2 , Z⊗2) | − 1/2, (32)

where we have used the fact that 
(
PSym2 , Z⊗2) = | 

(
PSym2 , Z⊗2) | (see Lemma 17), the matrix Hölder 

inequality and the fact that ‖Z‖1 ≤ 2
√
r – see (16). The estimates for designs with nuclear norm accuracy 

θ1 ≤ 1/4 is very similar. Replacing the matrix Hölder inequality in (31) by

(
N∑

i=1
pi (wiw

∗
i )⊗2 −

(
n + 1

2

)−1
PSym2 , Z⊗2

)
≥ −

∥∥∥∥∥
N∑

i=1
pi (wiw

∗
i )⊗2 −

(
n + 1

2

)−1
PSym2

∥∥∥∥∥
1

∥∥Z⊗2∥∥
∞

yields the same lower bound (32) due to ‖Z⊗2‖∞ = ‖Z‖2
∞ ≤ ‖Z‖2

2 = 1 (where the last equality follows from 
Z ∈ Er). Applying Lemma 17 then yields

ES2 ≥ tr (Z)2 + 1/2 and (ES2)2 ≥ 1
4 max{1, tr(Z)4}

which is the (slightly weaker) analogue of (25). Likewise we derive a fourth moment bound:

ES4 =
(
E
[
(aa∗)⊗4] , Z⊗4) = (n + 1)2n2

(
N∑

i=1
pi (wiw

∗
i )⊗4

, Z⊗4

)

≤ (n + 1)2n2
(
n + 3

4

)−1
|
(
PSym4 , Z⊗4) |

+ (n + 1)2n2

∥∥∥∥∥
N∑

i=1
pi (wiw

∗
i )⊗4 −

(
n + 3

4

)−1
PSym4

∥∥∥∥∥
∞

∥∥Z⊗4∥∥
1

≤ 4!(n + 1)n
(n + 3)(n + 2)

(
|
(
PSym4 , Z⊗4) + θ∞‖Z‖4

1
)

≤ |4!
(
PSym4 , Z⊗4) | + 4!16r2

16r2 .

As above, using the nuclear norm accuracy θ1 ≤ 1/4 instead of the operator norm accuracy yields the bound 
E 
[
S4] ≤ |4! 

(
PSym4 , Z⊗4) | + 4!/4 < |4! 

(
PSym4 , Z⊗4) | + 4!. Lemma 17 yields then in both cases
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E
[
S4] ≤ |4!tr

(
PSym4Z⊗4) | + 24 ≤ 6tr(Z4) + 8|tr(Z)tr(Z3)| + 6tr(Z)2 + tr(Z)4 + 27

≤ 48 max{1, tr(Z)4},

compare the proof of Proposition 12. Having these bounds at hand, allows for applying the Payley–Zygmund
inequality to obtain

P (|tr (aa∗Z) | ≥ ξ) = P
(
S2 ≥ ξ2) ≥ P

(
S2 ≥ 2ξ2 (1/2 + tr(Z)2

))
≥ P

(
S2 ≥ 2ξ2E

[
S2])

≥ (1 − 2ξ2)2 (ES2)2
ES4 ≥ (1 − 2ξ2)2 max{1, tr(Z)4}/4

48 max{1, tr(Z)4} = (1 − 2ξ2)2
192 .

The proof is completed.

4.5.2. Generalized version of Proposition 13
The assumptions in Theorem 5 assure that (26) is still valid, possibly with a larger absolute constant c4. 

Again, the proof of this generalized statement is very similar to the proof of Proposition 13. Indeed, only 
the bound (29) for the matrix Chernoff inequality needs to be slightly altered. The assumption (11) implies 
that

‖
m∑

j=1
E [Xj ] ‖∞ ≤ m

√
(n + 1)n

(
‖ 1
n

id‖∞ + ‖
N∑

i=1
piwiw

∗
i − 1

n
id‖∞

)
≤ 2

√
2m.

Consequently, applying the matrix Chernoff inequality yields (26) with a slightly larger absolute constant c4.
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Appendix A

A.1. Schatten p-norms

Recall from Section 1.2 that for 1 ≤ p < ∞, the Schatten-p-norm on Hn is defined as

‖Z‖p = tr (|Z|p)1/p =
(

n∑

i=1
|λi|p

)1/p

,

where λ1, . . . , λn denote the n eigenvalues of Z ∈ Hn. For p = ∞ one defines similarly

‖Z‖∞ = lim
p→∞

tr (|Z|p)1/p = max{|λ1|, . . . , |λn|},
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i.e., ‖Z‖∞ is the spectral norm of Z. The Frobenius norm ‖ · ‖F = ‖ · ‖2 is induced by the Frobenius scalar 
product

(X,Y ) = tr (XY ) ,

which makes Hn a Hilbert space. The Schatten-p norms are non-increasing in p, i.e. for any 0 < p ≤ p′ ≤ ∞

‖Z‖p ≥ ‖Z‖p′ (33)

holds for all Z ∈ Hn. The following relations provide converse inequalities for particular instances of Schatten 
p-norms that are used frequently in our work:

‖Z‖1 ≤
√

rank(Z)‖Z‖2 and ‖Z‖2 ≤
√

rank(Z)‖Z‖∞ for all Z ∈ Hn. (34)

In addition, we often use a particular instance of the matrix Hölder inequality for the above Frobenius scalar 
product, namely

| (X,Y ) | ≤ ‖X‖1‖Y ‖∞ for all X,Y ∈ Hn. (35)

A.2. Matrix Chernoff inequality

The matrix version of the classical Chernoff inequality for the expectation of a sum of independent 
random matrices shown in [78, Theorem 5.1.1] (see also [77]) reads as follows.

Theorem 15. Let X1, . . . , Xm be a sequence of independent random positive definite matrices in Hn satisfying

‖X�‖∞ ≤ L almost surely for all � = 1, . . . ,m.

Then, for any τ > 0, their sum obeys

E‖
m∑

�=1
X�‖∞ ≤ eτ − 1

τ
‖

m∑

�=1
EX�‖∞ + τ−1L logn.

A.3. Multilinear algebra

We briefly repeat some standard concepts in multilinear algebra which are convenient for our proof of 
Proposition 12. They can be found in any textbook on multilinear algebra – e.g. [54] – but we nonetheless 
include them here for the sake of being self-contained.

Let V1, . . . , Vk be (finite dimensional, complex) vector spaces and let V ∗
1 , . . . , V ∗

k denote their duals. 
A function f : V1 × · · · × Vk → C is multilinear, if it is linear in each space Vi. We denote the space of 
such functions by V ∗

1 ⊗ · · · ⊗ V ∗
k and call it the tensor product of V ∗

1 , . . . , V ∗
k . Consequently, for one fixed 

n-dimensional vector space V , the tensor product (V )⊗k =
⊗k

i=1 V is the space of all multilinear functions

f : (V )∗ × · · · × (V )∗
︸ ︷︷ ︸

k times

�→ C, (36)

and we call the elementary elements z1 ⊗ · · · ⊗ zk the tensor product of the vectors z1, . . . , zk ∈ V .
With this notation, the space of linear maps V → V (n × n-matrices) corresponds to the tensor product 

Mn := V ⊗ V ∗ which is spanned by {x ⊗ y∗ : x, y ∈ V } – the set of all rank-1 matrices. Using this tensor 
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product description of Mn allows for defining the (matrix) tensor product M ⊗k
n in complete analogy to above. 

We refer to its elementary elements Z1 ⊗ · · · ⊗ Zk as the tensor product of the matrices Z1, . . . , Zk ∈ Mn.
On this tensor space, we define the partial trace (over the i-th tensor system) to be the natural contraction

tri : M ⊗k
n → M ⊗(k−1)

n

Z1 ⊗ · · · ⊗ Zk �→ tr(Zi)Z1 ⊗ · · · ⊗ Zi−1 ⊗ Zi+1 ⊗ · · · ⊗ Zk.

The partial trace over multiple systems can then be obtained by concatenating individual traces of this 
form, e.g.

tri,j = tri ◦ trj : M ⊗k
n → M ⊗(k−2)

n (37)

for 1 ≤ i < j ≤ k arbitrary and so forth. A particular property of arbitrary partial traces is that they 
preserve positive semidefiniteness – see e.g. [66, Section 8.3.1] or any lecture notes on quantum information 
theory. If a matrix Z ∈ M ⊗k

n is positive semidefinite, then tri (Z) ∈ M ⊗(k−1) is again positive semidefinite 
for any 1 ≤ i ≤ k. This behavior naturally extends to multiple partial traces in the sense of (37). The full 
trace corresponds to

tr := tr1,...,k : M ⊗k
n → C

Z1 ⊗ · · · ⊗ Zk �→ tr(Z1) · · · tr(Zk).

This implies that the nuclear norm is multiplicative with respect to the tensor structure, i.e.,

‖Z1 ⊗ · · ·Zk‖1 = tr (|Z1| ⊗ · · · ⊗ |Zk|) = tr (|Z1|) · · · tr (|Zk|) = ‖Z1‖1 · · · ‖Zk‖1 (38)

for Z1, . . . , Zk ∈ M arbitrary. A singular value decomposition – see e.g. [82, Lecture 2] – reveals that the 
same is true for the operator norm, i.e.

‖Z1 ⊗ · · · ⊗ Zk‖∞ = ‖Z1‖∞ · · · ‖Zk‖∞. (39)

Let us now return to the k-fold tensor space V ⊗k of n-dimensional complex vectors. We define the 
(symmetrizer) map PSymk : (V )⊗k → (V )⊗k via their action on elementary elements:

PSymk (z1 ⊗ · · · ⊗ zk) := 1
k!

∑

π∈Sk

zπ(1) ⊗ · · · ⊗ zπ(k), (40)

where Sk denotes the group of permutations of k elements. This map projects (V )⊗k onto the totally 
symmetric subspace Symk of (V )⊗k whose dimension [54, Exercise 2.6.3.5] is

dim Symk =
(
n + k − 1

k

)
. (41)

Using these basic concepts of multilinear algebra and (6), we can show that every approximate t-design 
is also an approximate design of lower order.

Lemma 16. Every approximate t-design of accuracy measured either in operator- or trace-norm is also an 
approximate k-design of the same accuracy for any 1 ≤ k ≤ t. Furthermore the accuracies θ∞ and θ1 are 
related via

θ∞ ≤ θ1 ≤ ntθ∞. (42)
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This statement is implicitly proved in [3], where the authors use an equivalent definition of approximate 
t-designs as averaging sets of complex polynomials of degree at most (t, t). With this alternative definition, 
Lemma 16 follows naturally from the fact that every polynomial of degree at most (k, k) with 1 ≤ k ≤ t is 
a particular instance of a degree-(t, t)-polynomial. Here we provide an alternative proof that uses concepts 
from multilinear algebra and accesses Definition 4 directly. Such a proof idea is mentioned in [59, Section 
2.2.3] and we include the full argument here for the sake of being self-contained.

Proof of Lemma 16. Let us start with proving the statement for the accuracy measured in operator norm. 
In this case, Definition 4 is equivalent to demanding

(1 − θ∞)
∫

CPn−1

(ww∗)⊗t dw ≤
N∑

i=1
pi (wiw

∗
i )⊗t ≤ (1 + θ∞)

∫

CPn−1

(ww∗)⊗t dw. (43)

The desired statement follows if we can show that (43) implies a corresponding inequality for smaller tensor 
powers k. Fix 1 ≤ k ≤ t and note that the inequality chain (43) is preserved under taking arbitrary partial 
traces, because partial traces respect the positive semidefinite ordering. This in particular implies that

(1 − θ∞)
∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw ≤

N∑

i=1
pitr1,...,(t−k)

(
(wiw

∗
i )⊗t

)

≤ (1 + θ∞)
∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw

remains valid. Due to normalization ‖wi‖�2 = 1 and since we calculate the integrals using preimages of the 
w ∈ CPn−1 in the unit sphere, these expressions can be readily calculated. Indeed,

tr1,...,(t−k)

(
(wiw

∗
i )⊗t

)
= (wiw

∗
i )⊗k |〈wi, wi〉|2(t−k) = (wiw

∗
i )⊗k

and
∫

CPn−1

tr1,...,(t−k)

(
(ww∗)⊗t

)
dw =

∫

CPn−1

(ww∗)⊗k |〈w,w〉|2(t−k)dw =
∫

CPn−1

(ww∗)⊗k dw.

The desired statement follows.
The analogous statement for accuracy measured in trace-norm directly follows from the fact that the 

nuclear norm is monotonic with respect to partial traces, i.e., ‖tri(Z)‖1 ≤ ‖Z‖1 for any Z ∈ M ⊗t
n and 

1 ≤ i ≤ t [82, Lecture 2]. Combining this with the calculations above reveals that

∥∥∥∥∥∥

N∑

i=1
pi (wiw

∗
i )⊗k −

∫

CPn−1

(ww∗)⊗k dw

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
tr1,...,t−k

⎛
⎝

N∑

i=1
pi (wiw

∗
i )⊗t −

∫

CPn−1

(ww∗)⊗t dw

⎞
⎠
∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥

N∑

i=1
pi (wiw

∗
i )⊗t −

∫

CPn−1

(ww∗)⊗t dw

∥∥∥∥∥∥
1

≤ θ1.
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Finally, inequality (42) directly follows from comparing trace and operator norm on M ⊗t
n which is isomorphic 

to the space of all nt × nt-dimensional matrices. �
A.4. Wiring calculus in multilinear algebra

The defining properties (5), (10) of exact and approximate complex projective t-designs are phrased in 
terms of tensor spaces. For calculations in multilinear algebra – particularly if they involve (partial) traces 
– wiring diagrams [54, Chapter 2.11] are very useful, as they provide a way of computing contractions of 
tensors pictorially. Here we give a brief introduction that should suffice for our calculations and defer the 
interested reader to [42] and references therein for further reading.

In wiring calculus, every tensor is associated with a box, and every index corresponds to a line emanating 
from this box. Two connected lines correspond to connected indices. The formalism becomes much clearer 
when applying it to matrix calculus. A matrix Z : Cn → Cn can be viewed as two-index-tensors Zi

j and 

is thus represented by a node with upper line corresponding to the index i and the lower one to j. Two 
matrices Y, Z are multiplied by contracting Z’s upper index with Y ’s lower one:

(Y Z)ij =
n∑

k=1
Y i

kZ
k
j .

In wiring calculus matrix multiplication is therefore represented by

Y Z = .

Tensor products of matrices are arranged in parallel, i.e.,

Y ⊗ Z = .

Taking traces of tensor products, e.g.,

Y ⊗ Z �→ tr(Y ⊗ Z) =
n∑

i,j=1
Y i

iZ
j
j

just corresponds to contracting parallel matrix indices and therefore

tr(Y ⊗ Z) = ,

which straightforwardly extends to larger (and smaller, namely tr(Z) = ) tensor systems.

Finally, we are going to require transpositions on (Cn)⊗t which act by interchanging the i-th and j-th 
tensor factor. For example

σ(1,2) (x ⊗ y ⊗ · · ·) = y ⊗ x ⊗ · · · ,

with x, y ∈ Cn arbitrary. Note that these transpositions generate the full group of permutations. For (Cn)⊗2

there are only two transpositions, namely

1 =
∣∣∣∣

∣∣∣∣ (trivial permutation) and σ(1,2) = .
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But for higher tensor systems more permutations can occur. In wiring calculus, permutations therefore act 
by interchanging different input and output lines.

We are now ready to prove the statements required in Proposition 12.

Lemma 17. For an arbitrary Hermitian matrix Z ∈ Hn and a positive integer m, it holds

m!tr
(
PSymmZ⊗m

)
=

∑

(j1,...,jm)∈Nm
0∑m

k=1 kjk=m

m!∏m
k=1 jk! kjk

m∏

k=1
tr(Zk)jk .

In particular, for m = 2 we obtain

2tr
(
PSym2Z⊗2) = tr(Z)2 + tr(Z2),

and for m = 4 we obtain

4! tr
(
PSym4Z⊗4) = tr(Z)4 + 8tr(Z)tr(Z3) + 3tr(Z2)2 + 6tr(Z)2tr(Z2) + 6tr(Z4).

Proof. We start with the case m = 2 and then extend the argument to the general case.
The basic formula for PSym2 is given by

PSym2 = 1
2

∑

π∈S2

π = 1
2
(
1 + σ(1,2)

)
,

and its pictorial counterpart is therefore

= 1
2

(∣∣∣∣
∣∣∣∣ +

)
.

Applying the graphical calculus introduced above then yields

2tr
(
PSym2Z⊗2) = 2

= tr(Z)2 + tr(Z2),

which is the desired statement for m = 2.
Expanding m!tr (PSymmZ⊗m) analogously in the general case, we obtain for each π ∈ Sm one summand 

which corresponds to a wiring diagram in which m copies of the node are involved. More precisely, the 
wiring diagram corresponding to π is obtained by connecting for each i ∈ {1, . . . , m} the output line of the 

i-th copy of to the input line of the π(i)-th copy of . If we write π as a product of k cyclic permutations, 
π = c1 · · · ck, then the wiring diagram of π consists of k closed loops, one for each of the cyclic permutations 
c1, . . . , ck. Write ci = (i1, . . . , iri

). Then the loop corresponding to ci connects ri copies of . Hence the 
contribution of π to the whole sum is tr(Zr1) · · · tr(Zrk). Thus for a given partition m = r1 + . . . + rk of 
m, any element of Sm which is the product of k cyclic (and disjoint) permutations of lengths r1, . . . , rk

respectively gives the same contribution tr(Zr1) · · · tr(Zrk).
Note that we can rewrite any partition of m in the form m = j1 · 1 + . . . + jm · m, where ji counts how 

often the summand i appears in that partition. It remains to count for each partition m = j1 ·1 + . . .+jm ·m
of m how many elements of Sm there are which are a product of precisely j1 cyclic permutations of length 
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1, of precisely j2 cyclic permutations of length 2 and so on (all the cyclic permutations being disjoint). It 
is easy to see (and well known, see for example [74, Proposition 1.3.2]) that there are precisely m!∏m

k=1 jk! kjk

such permutations in Sm. Each of them contributes a summand tr(Z1)j1 . . . tr(Zm)jm to m!tr (PSymmZ⊗m). 
This gives the claimed formula. �
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The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear
measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement
map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount of mea-
surements ensuring recovery via convex optimization. We establish our results via certain properties of
the null space of the measurement map. In the setting where the measurements are realized as Frobenius
inner products with independent standard Gaussian random matrices, we show that 10r(n1 + n2) mea-
surements are enough to uniformly and stably recover an n1 × n2 matrix of rank at most r. We then
significantly generalize this result by only requiring independent mean zero, variance one entries with
four finite moments at the cost of replacing 10 by some universal constant. We also study the case of
recovering Hermitian rank-r matrices from measurement matrices proportional to rank-one projectors.
For m ≥ Crn rank-one projective measurements onto independent standard Gaussian vectors, we show
that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-r matrices with high
probability. Next, we partially de-randomize this by establishing an analogous statement for projectors
onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate
m ≥ Crn log n. Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite,
then we show that the nuclear norm minimization approach may be replaced by minimizing the �q-norm
of the residual subject to the positive semidefinite constraint (e.g. by a positive semidefinite least squares
problem). Then no estimate of the noise level is required a priori. We discuss applications in quantum
physics and the phase retrieval problem.
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2 M. KABANAVA ET AL.

1 Introduction

In recent years, the recovery of objects (signals, images, matrices, quantum states, etc.) from incomplete
linear measurements has gained significant interest. While standard compressive sensing considers the
reconstruction of (approximately) sparse vectors [28], we study extensions to the recovery of (approx-
imately) low-rank matrices from a small number of random measurements. This problem arises in a
number of areas such as quantum tomography [6, 26, 32], signal processing [2], recommender systems
[12, 17] and phaseless recovery [11, 13, 30, 31]. On the one hand, we consider both random measure-
ment maps generated by independent random matrices with independent entries and, on the other hand,
measurements with respect to independent rank-one measurements. We derive bounds for the number
of required measurements in terms of the matrix dimensions, and the rank of the matrix that guarantee
successful recovery via nuclear norm minimization. Our results are uniform and stable with respect to
noise on the measurements, and with respect to passing to approximately rank-r matrices. For rank-one
measurements the latter stability result is new.

Let us formally describe our setup. We consider measurements of an (approximately) low-rank
matrix X ∈ Cn1×n2 of the form b = A (X), where the linear measurement map A is given as

A : Cn1×n2 → Cm, Z �→
m∑

j=1

tr(ZA∗
j )ej. (1.1)

Here, e1, . . . , em denote the standard basis vectors in Cm and A1, . . . , Am ∈ Cn1×n2 are called measurement
matrices. A prominent approach [24, 59] for recovering the matrix X from b = A (X) consists in
computing the minimizer of the convex optimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to A (Z) = b, (1.2)

where ‖Z‖∗ = ‖Z‖1 = ∑n
j=1 σj(Z) denotes the nuclear norm, with σj(Z) being the singular values

of Z ∈ Cn1×n2 and n = min{n1, n2}. Efficient optimization methods exist for this problem [9, 57]. In
practice the measurements are often perturbed by noise, i.e.

b = A (X) + w, (1.3)

where w ∈ Cm is a vector of perturbations. In this case, we replace (1.2) by the noise constrained nuclear
norm minimization problem

min
Z∈Cn1×n2

‖Z‖∗ subject to ‖A (Z) − b‖�q ≤ η, (1.4)

where η corresponds to a known estimate of the noise level, i.e. ‖w‖�q ≤ η with ‖x‖�q = (
∑

j |xj|q)1/q

being the usual �q-norm. In some cases it is known a priori that the matrix X of interest is both Hermitian
and positive semidefinite (X � 0). Then one may replace (1.4) by the optimization problem

min
Z�0

tr(Z) subject to ‖A (Z) − b‖�q ≤ η. (1.5)

However, as we will see, the simpler least squares (or, more precisely, least q-norm) problem

min
Z�0

‖A (Z) − b‖�q (1.6)
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 3

works equally well or even better in terms of recovery under certain natural conditions. Apart from
simplicity and computational efficiency (in the particular cases p = 1, 2, ∞ of most interest) it has the
additional advantage that no estimate η of the noise level is required. We note that other efficient recovery
methods exist as well [27, 48, 67], but we will not go into details here.

A question of central interest concerns the minimal number m of required measurements that guar-
antees exact (in the noiseless case) or approximate recovery. While it is very hard to study this question
for deterministic measurement maps A , several results are available for certain models of random maps.
We will study several scenarios which all have in common that the matrices A1, . . . , Am ∈ Rn1×n2 in (1.1)
are independent draws of a random matrix Φ = (Xij)ij. We first consider the real-valued case, where
all entries Xij are independent and then move to a complex-valued scenario, where Φ = aa∗ ∈ Cn×n is
a rank-one matrix generated by a random vector a ∈ Cn. For the latter scenario we consider a being a
complex Gaussian random vector or a being randomly drawn from a so-called (approximate) t-design.
This last setup has implications for quantum tomography, and this part of the article can be seen as a
continuation of the investigations in [45].

The contribution of the present work can be summarized as follows:

• A recovery result for random measurement matrices with independent entries and four finite
moments. The result is uniform, stable and robust.

• A uniform, stable and robust recovery result for Gaussian measurement matrices featuring explicit
and good constants.

• Stability for the recovery from measurements drawn from spherical designs.

• A proof method to link the Frobenius robust rank null space property with Mendelson’s small ball
method. Except for the results in the Gaussian case, this is the basis of our proofs.

• A link of the null space property and the least squares method for positive semidefinite matrices to
get uniform, stable and robust recovery results for least squares (and more generally, least q-norm),
which do not require knowledge of the noise level.

Next, we describe the present state of the art of the various setups and present our results.

1.1 Robust recovery from measurement matrices with independent entries

We call A a Gaussian measurement map if the matrices A1, . . . , Am ∈ Rn1×n2 in (1.1) are independent
realizations of Gaussian random matrices, i.e. all entries of the Aj are independent standard Gaussian
random variables. More generally, A is called subgaussian, if the entries of all the Aj are independent,
mean zero, variance one, subgaussian random variables, where we recall that a random variable ξ is
called subgaussian if P(|ξ | ≥ t) ≤ 2e−ct2 for some constant c > 0. If

m ≥ Cr(n1 + n2) (1.7)

for some universal constant C > 0, then with probability at least 1 − e−cm any rank r matrix X ∈ Cn1×n2

is reconstructed exactly from subgaussian measurements b = A (X) via nuclear norm minimization
(1.2) [16, 59]. Moreover, if noisy measurements b = A (X) + w with ‖w‖2 ≤ η of an arbitrary matrix
X ∈ Cn1×n2 are taken, then the minimizer X� of (1.4) with q = 2 satisfies, again with probability at least
1 − e−cm,
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4 M. KABANAVA ET AL.

‖X − X�‖F ≤ C′
√

r
inf

Z:rank(Z)≤r
‖X − Z‖∗ + C′′η√

m
, (1.8)

where ‖A‖F = √
tr(A∗A) denotes the Frobenius norm, tr being the trace. Note that

inf
Z:rank(Z)≤r

‖X − Z‖∗ =
n∑

j=r+1

σj(X) = ‖Xc‖∗,

where the singular values σj(X) are arranged in decreasing order and for X with singular value
decomposition

∑n
j=1 σj(X)ujv∗

j the matrix Xc = ∑n
j=r+1 σj(X)ujv∗

j . The error estimate (1.8) means that
reconstruction is robust with respect to noise on the measurements, and stable with respect to passing
to only approximately low-rank matrices. These statements are uniform in the sense that they hold
for all matrices X simultaneously once the matrix A has been drawn. They have been established in
[16, 54, 59] via the rank restricted isometry property (rank-RIP), see e.g. [28] for the standard RIP and
its implications.

While the RIP is a standard tool by now, recovery of low-rank matrices via nuclear norm minimization
is characterized by the so-called null space property [27, 28, 53, 60, 61], see below for details. By using
this concept, we are able to significantly relax from subgaussian distributions of the entries to distributions
with only four finite moments.

Theorem 1.1 Let q ≥ 1. Let A : Rn1×n2 → Rm, A (X) = ∑n
j=1 tr(XAj)ej, where the Aj are independent

copies of a random matrix Φ = (Xij)i,j with independent mean zero entries obeying EX2
ij = 1 and

EX4
ij ≤ C4 for all i, j and some constant C4.

Fix 1 ≤ r ≤ min{n1, n2} and 0 < ρ < 1 and set

m ≥ c1ρ
−2r(n1 + n2).

Then with probability at least 1−e−c2m, for any X ∈ Rn1×n2 any solution X� of (1.4) with b = A (X)+w,
‖w‖�q ≤ η, approximates X with error

‖X − X�‖F ≤ 2(1 + ρ)2

(1 − ρ)
√

r
‖Xc‖∗ + (3 + ρ)

(1 − ρ)c3
· η

m1/q
. (1.9)

Here c1, c2 and c3 are positive constants that only depend on C4.

In the special case, when Φ has independent standard Gaussian entries, we apply Gordon’s escape
through a mesh theorem [29] in order to obtain for q = 2 an explicit constant in the estimate for the
number of measurements, see Theorem 4.1. Roughly, with high probability, any n1 ×n2 matrix of rank r
is stably recovered from m > 10r(n1 + n2) Gaussian measurements. We remark that the explicit bound
m > 3r(n1 + n2) has been derived in [19] (see also [51] and [4, Section 4.4] for a phase transition result
in this context), but this bound considers non-uniform recovery, i.e. recovery of a fixed low-rank matrix
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 5

with a random draw of a Gaussian measurement matrix with high probability. Moreover, no stability
under passing to approximately low-rank matrices has been considered there. Our recovery result is
therefore stronger than the one in [19], but requires more measurements.

1.2 Robust recovery of Hermitian matrices from rank-one projective measurements

Let us now focus on the particular case of recovering complex Hermitian n × n matrices from noisy
measurements of the form (1.3), where the measurement matrices are proportional to rank-one projectors,
i.e.

Aj = aja
∗
j ∈ Hn, (1.10)

where aj ∈ Cn. Here, Hn denotes the space of complex Hermitian n × n matrices, which has real
dimension n2. Measurements of that type occur naturally in convex relaxations of the phase retrieval
problem [11, 13, 30, 31]. In fact, suppose phaseless measurements of the form bj = |〈x, aj〉|2 of a vector
x ∈ Cn are given. Then we can rewrite bj = tr(xx∗aja∗

j ) = tr(XAj) as linear measurements of the rank-
one matrix X = xx∗. We will expand on this aspect in Section 2.1. Rank-one measurements of low-rank
matrices feature prominently in quantum state tomography as well, see also below.

The prior information that the desired matrix is Hermitian limits the search space in the convex
optimization problem (1.4) and it simplifies to

min
Z∈Hn

‖Z‖∗ subject to ‖A (Z) − b‖�q ≤ η. (1.11)

Arguably, the most generic measurement matrices of the form (1.10) result from choosing each aj

to be an independent complex standard Gaussian vector. For the particular case of phase retrieval—i.e.
where the matrix of interest X = xx∗ is itself proportional to a rank-one projector—uniform recovery
guarantees by means of (1.11) have been established for m = Cn independent measurements in [14].
Recently, this result has been generalized to recovery of any Hermitian rank r-matrix by means of
m = Crn such measurements in [45]. Our refined analysis of the null space property enables us to
further strengthen this result by additionally guaranteeing stability under passing to approximately
low-rank matrices:

Theorem 1.2 Consider the measurement process described in (1.1) with m measurement matrices of the
form (1.10), where each ai is an independent complex standard Gaussian vector. Fix r ≤ n, 0 < ρ < 1
and suppose that

m ≥ C1ρ
−2nr.

Then with probability at least 1 − e−C2m it holds that for any X ∈ Hn, any solution X� to the convex
optimization problem (1.11) with noisy measurements b = A (X) + ε, where ‖ε‖�q ≤ η, obeys

‖X − X�‖F ≤ 2(1 + ρ)2

(1 − ρ)
√

r
‖Xc‖∗ + (3 + ρ)C3

(1 − ρ)
· η

m1/q
. (1.12)

Here, C1, C2 and C3 denote positive universal constants. (In particular, for η = 0 and X of rank at most
r one has exact reconstruction.)
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6 M. KABANAVA ET AL.

In addition to the Gaussian measurement setting, we also consider measurement matrices that arise
from taking the outer product of elements chosen independently from an approximate complex projective
4-design. Complex projective t-designs are finite sets of unit vectors in Cn that exhibit a very particular
structure. Roughly, sampling independently from a complex projective t-design reproduces the first t
moments of sampling uniformly from the complex unit sphere. Likewise, approximate complex projec-
tive t-designs obey such a structural requirement approximately—for a precise introduction, we refer
to Definition 7.1. As a consequence, they serve as a general purpose tool for partially de-randomizing
results that initially required Gaussian random vectors [30, 44]. This is also the case here and employing
complex projective 4-designs allows for partially de-randomizing Theorem 1.2 at the cost of a slightly
larger sampling rate. Here, we content ourselves with presenting and shortened version of this result and
refer the reader to Theorem 7.1, where precise requirements on the approximate design are stated.

Theorem 1.3 Let r, ρ be as in Theorem 1.2 and suppose that each measurement matrix Aj is of the form
(1.10), where aj, j = 1, . . . , m, are chosen independently from a (sufficiently accurate approximate)
complex projective 4-design. If

m ≥ C4ρ
−2nr log n,

then the assertions of Theorem 1.2 remain valid, possibly with different universal constants.

Note that Theorems 1.1, 1.2 and 1.3, and Theorem 4.1 below and their proofs are presented in
condensed versions in the conference papers [36, 37].

1.3 Recovery of positive semidefinite matrices reduces to a feasibility problem

Imposing additional structure on the matrices to be recovered can further strengthen low-rank recov-
ery guarantees. Positive semidefiniteness is one such structural prerequisite that, for instance, occurs
naturally in the phase retrieval problem, quantum mechanics and kernel-based learning methods [64].
Motivated by the former, Demanet and Hand [22] pointed out that minimizing the nuclear norm—in
the sense of algorithm (1.4)—can be superfluous for recovering positive semidefinite matrices of rank
one. Instead, they propose to reduce the recovery algorithm to a mere feasibility problem, and proved
that such a reduction works w.h.p. for rank-one projective measurements onto Gaussian vectors (the
measurement scenario considered in Theorem 1.2). Subsequently, this recovery guarantee was strength-
ened by Candès and Li [14]. Here, we go one step further and generalize these results to cover uniform
and stable recovery of positive semidefinite matrices of arbitrary rank. Relying on ideas presented in
[38], we establish the following statement. (We refer to Section 1.4 for the definition of the Schatten
p-norm ‖ · ‖p used in (1.13).)

Theorem 1.4 Fix r ≤ n and consider the measurement processes introduced in Theorem 1.2 (Gaussian
vectors) or Theorem 1.3 (complex projective 4-designs), respectively. Assume that m ≥ C1nr (in the
Gaussian case), respectively, m ≥ C2snr log n (in the design case), where s ≥ 1 is arbitrary. Then, for
1 ≤ p ≤ 2 and any two positive semidefinite matrices X, Z ∈ Hn,

‖Z − X‖p ≤ C3

r1−1/p
‖Xc‖1 + C4r1/p−1/2

m1/q
‖A (Z) − A (X)‖�q (1.13)
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 7

holds universally with probability exceeding 1 − e−C5m for the Gaussian case and 1 − e−sr in the design
case. Here, C1, . . . , C5 denote suitable positive universal constants.

This statement renders nuclear norm minimization in the sense of (1.4) redundant and allows for a
regularization-free estimation. Moreover, knowledge of a noise bound ‖w‖�q ≤ η for the measurement
process (1.3) is no longer required, since we can estimate any X � 0 by solving an �q-minimization
problem of the form (1.6), i.e.

min
Z∈Hn

‖A (Z) − b‖�q subject to Z � 0. (1.14)

Of course, the cases p = 2 (least squares) as well as p = 1 and p = ∞ are the most important.
Theorem 1.4 assures in particular that the minimizer Z� of this optimization program obeys

‖Z� − X‖F ≤ C3√
r
‖Xc‖1 + C4

m1/q

∥∥A (Z�) − A (X)
∥∥

�q
≤ C3√

r
‖Xc‖1 + 2C4

m1/q
‖w‖�q ,

where w ∈ Rm represents additive noise in the measurement process. It is worthwhile to mention that if a
matrix X of interest has rank at most r and no noise is present in the sampling process (1.3), Theorem 1.4
assures

{Z : Z � 0, A (Z) = A (X)} = {X} (1.15)

with high probability. Hence, recovering X from noiseless measurements indeed reduces to a feasibility
problem.

We emphasize that Theorem 1.4 is only established for rank-one projective measurements. For the
other measurement ensembles considered here—matrices with independent entries—one cannot expect
such a statement to hold. This pessimistic prediction is due to negative results recently established in
[66, Proposition 2]. Focusing on real matrices, the authors show that if the measurement matrices Aj are
chosen independently from a Gaussian orthogonal ensemble, then estimating any symmetric, positive
semidefinite matrix X via (1.14) becomes ill-posed, unless the number of measurements obeys

m ≥ 1

4
n(n + 1) = O(n2).

Finally, we want to point out that the fruitfulness of plain least squares regression for recovering
positive semidefinite matrices was already pointed out and explored by Slawski et al. [66]. However, there
is a crucial difference in the mindset of [66] and the results presented here. The main result of Slawski
et al. [66, Theorem 2] assumes a fixed signal X � 0 of interest, and provides bounds for the reconstruction
error in terms of geometric properties of both X and the measurement ensemble. Conversely, Theorem
1.4 assumes fixed measurements (e.g. m = Crn projectors onto Gaussian random vectors) and w.h.p.
assures robust recovery of all matrices X � 0 having approximately rank-r simultaneously.

1.4 Notation

The Schatten p-norm of Z ∈ Cn1×n2 is given by

‖Z‖p =
(

n∑
j=1

σj(Z)p

)1/p

, p ≥ 1,
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8 M. KABANAVA ET AL.

where σj(Z), j = 1, . . . , n, denote the singular values of Z . It reduces to the nuclear norm ‖ · ‖∗ for p = 1
and the Frobenius norm ‖ · ‖F for p = 2. It is a common convention that the singular values of Z are
non-increasingly ordered. We write Z = Zr + Zc, where Zr is the best rank-r approximation of Z with
respect to any Schatten p-norm of Z .

2 Applications

2.1 Phase retrieval

The problem of retrieving a complex signal x ∈ Cn from measurements that are ignorant towards phase
information has long been abundant in many areas of science. Measurements of that type correspond to

bi = |〈ai, x〉|2 + wi i = 1, . . . , m, (2.1)

where a1, . . . , am ∈ Cn are measurement vectors and wi denotes additive noise. Recently, the problem’s
mathematical structure has received considerable attention in its own right. It is clearly ill-posed, since
all phase information is lost in the measurement process and, moreover, the measurements (2.1) are of a
nonlinear nature. This second obstacle can be overcome by a trick [5] well known in conic programming:
the quadratic expressions (2.1) are linear in the outer products xx∗ and aia∗

i :

bi = |〈ai, x〉|2 + wi = tr
(
(aiai)

∗ (xx∗)
) + wi. (2.2)

Note that such a ‘lift’ allows for reinterpreting the phase-less sampling process as A (xx∗) = b + w.
Also, the new object of interest X := xx∗ is an Hermitian, positive semidefinite matrix of rank one. In
turn, the measurement matrices Ai = aia∗

i are constrained to be proportional to rank-one projectors.
Consequently, such a ‘lift’ turns the phase retrieval problem into a very particular instance of low-rank
matrix recovery—a fact that was first observed by Candè et al. [11, 13]. Subsequently, uniform recovery
guarantees for m = Cn complex standard Gaussian measurement vectors ai have been established,
which are stable towards additive noise. The main result in [14] establishes with high probability that
for any X = xx∗, solving the convex optimization problem (PhaseLift)

min
Z∈Hn

‖A (Z) − b‖�1 subject to Z � 0 (2.3)

yields an estimator Z� obeying ‖Z� − xx∗‖2 ≤ C‖w‖1/m. If a bound ‖w‖�2 ≤ η on the noise in the
sampling process (2.1) is available, an extension of [45, Theorem 2] (see Section 2.3.2 in loc. cit.)
establishes a comparable recovery guarantee via solving

min
Z∈Hn

tr(Z) subject to ‖A (Z) − b‖�2 ≤ η, Z � 0 (2.4)

instead of PhaseLift. Our findings allow for establishing novel recovery guarantees for retrieving phases.
Indeed, since (2.2) assures that any signal of interest is positive semidefinite and has precisely rank one,
Theorem 1.4 is applicable and yields the following corollary.

Corollary 2.1 Consider m ≥ Cn phaseless measurements of the form (2.1), where each ai is a
complex standard Gaussian vector. Then with probability at least 1 − e−C′m, these measurements allow
for estimating any signal x ∈ Cn via solving

min
Z∈Hn

‖A (Z) − b‖�q subject to Z � 0. (2.5)
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 9

The resulting minimizer Z� of (2.5) obeys

‖Z� − xx∗‖�q ≤ C‖w‖�q

m1/q
,

where C denotes a positive constant and w ∈ Rm represents additive noise in the sampling process (2.1).
An analogous statement is true—with a weaker probability of success 1 − e−s for s ≥ 1—for

m ≥ C′sn log(n) rank-one projective measurements onto independent elements of an approximate
4-design.

This recovery procedure is in spirit very similar to (2.3), but it utilizes an �2-regression instead of
an �1-norm minimization. Numerical studies indicate that algorithm (2.5) outperforms (2.4) as well as
(2.3). These studies were motivated and accompany actual quantum mechanical experiments, and will
be published elsewhere [43].

Finally, we want to relate Corollary 2.1 to a non-convex phaseless recovery procedure devised by
Candès et al. [15]. There, the authors refrain from applying the aforementioned ‘lifting’ trick to render
the phase retrieval problem linear. Instead, they use a careful initialization step, followed by a gradient
descent scheme (based on Wirtinger derivatives) to minimize the problem’s least squares loss function
directly over complex vectors z ∈ Cn. Mathematically, such an optimization is equivalent to solving

min
Z∈Hn

‖A (Z) − b‖�2 subject to Z � 0, rank(Z) = 1 (2.6)

and the rank-constraint manifests the problem’s non-convex nature. Hence, the convex optimization
problem (2.5) can be viewed as a convex relaxation of (2.6), obtained by omitting the non-convex rank
constraint.

2.2 Quantum information

In this section we describe implications and possible applications of our findings to problems in quantum
information science. For the sake of being self-contained, we have included a brief introduction to
crucial notions of quantum mechanics in the Appendix. Quantum mechanics postulates that a finite
n-dimensional quantum system is described by an Hermitian, positive semidefinite matrix X with unit
trace, called a density operator. This ‘quantum shape constraint’ assures that all density operators meet
the requirements of Theorem 1.4. Furthermore, the rank-one projective measurements assumed in that
theorem can be recast as valid quantum mechanical measurements—see [45, Section 3] for possible
implementations and further discussion on this topic. Note, however, that such a reinterpretation is in
general not possible for the measurement matrices with independent entries considered in Theorem 1.1,
because these matrices fail to be Hermitian. With Theorem 1.4 at hand, we underline its implications
for two prominent issues in (finite-dimensional) quantum mechanics.

2.2.1 Quantum state tomography Inferring a quantum mechanical description of a physical system
is equivalent to assigning it a density operator (or quantum state)—a process referred to as quantum
state tomography [6, 25]. Tomography is now a routine task for designing, testing and tuning qubits in
the quest of building quantum information processing devices. Since the size of controllable quantum
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10 M. KABANAVA ET AL.

mechanical systems is ever increasing1 it is very desirable to exploit additional structure—if present—
when performing such a task. One such structural property—often encountered in actual experiments—is
approximate purity, i.e. the density operator X is well approximated by a low-rank matrix. Performing
quantum state tomography under such a prior assumption therefore constitutes a particular instance of
low-rank matrix recovery [26, 32].

The results presented in this article provide recovery guarantees for tomography protocols that
stably tolerate noisy measurements and, moreover, are robust towards the prior assumption of approx-
imate purity. In the context of tomography, results of this type so far have already been established for
m = Cnr log6 n random (generalized) Pauli measurements [49, Proposition 2.3] via proving a rank-RIP
for such measurement matrices and then resorting to [16, Lemma 3.2]. However, this auxiliary result
manifestly requires additive Gaussian noise and using a type of Dantzig or Lasso selector to recover
the best rank-r approximation of a given density operator. This is not the case for the result established
here, where performing a plain least squares regression of the form (1.14) is sufficient.

Corollary 2.2 Fix r ≤ n and suppose that the measurement operator A : Hn → Rm is of the form

A (X) =
m∑

i=1

√
(n + 1)n〈ai, Xai〉ei + w ∈ Rm with m ≥ C1rn log n,

where each ai ∈ Cn is chosen independently from an approximate 4-design and w ∈ Rm denotes additive
noise. We consider the minimization problem

min
Z∈Hn

‖A (Z) − A (X)‖�q subject to Z � 0, tr (Z) = 1, (2.7)

for some q ≥ 1. Then with probability at least 1 − e−C2m, any minimizer Z� of this optimization obeys

‖X − Z�‖1 ≤ C3‖Xc‖1 + C4

m1/q

√
r‖w‖�q , (2.8)

where C1, C2, C3 and C4 denote positive constants.

This statement is a consequence of Theorem 1.4 and the particular structure of density operators.
We comment on its derivation in Remark 8.1 below.

Corollary 2.2 is valid for any type of additive noise and no a priori knowledge of its magnitude is
required. This includes the particularly relevant case of a Bernoulli error model—see e.g. [18, Section
2.2.2] and also [26]—which is particularly relevant for tomography experiments. Also, note that the
recovery error is bounded in nuclear norm (an error estimate in the Frobenius norm is also possible).
Such a bound is very meaningful for tomography, since quantum mechanics is a probabilistic theory, and
the nuclear norm encapsulates total variational distance. Moreover, Helstrom’s theorem [34] provides
an operational interpretation of the nuclear norm distance bounded in (2.8): it is proportional to the
maximal bias achievable in the task of distinguishing the two quantum states X and Z�, provided that
any physical measurement can be implemented.

1 Nowadays, experimentalists are able to create and control multi-partite systems of overall dimension n = 28 in their
laboratories [63]. This results in a density operator of size 256 × 256 (a priori 65 536 parameters).
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 11

Finally, note that the bound on the probability of failure in Corollary 2.2 is considerably stronger
than the one provided in Theorem 1.4. Such a refinement is possible, because the trace of any density
operator equals one—see Remark 8.1 below.

2.2.2 Distinguishing quantum states One crucial prerequisite in the task of inferring density operators
from measurement data is the ability to faithfully distinguish any two density operators via quantum
mechanical measurements. The most general notion of a quantum measurement is a positive opera-
tor valued measure (POVM) M = {

Em : Em � 0,
∑

m Em = id
}

[55, Chapter 2.2]. A POVM M is
called informationally complete (IC) [65] if for any two density operators X �= Z ∈ Hn there exists
Em ∈ M ⊆ Hn such that

tr (EmX) �= tr (EmZ). (2.9)

This assures the possibility of discriminating any two quantum states via such a measurement in the
absence of noise. Without additional restrictions, such an IC POVM must contain at least n2 elements.
However, such a lower bound can be too pessimistic, if the density operators of interest have additional
structure. Approximate purity introduced in the previous subsection can serve as such an additional
structural restriction:

Definition 2.1 (Rank-r IC, Definition 1 in [33]) For r ≤ n, we call a POVM M = {Em}m∈I rank-r
restricted informationally complete (rank-r IC), if (2.9) holds for any two density operators of rank at
most r.

Bounds for the number m of POVM elements required to assure rank-r-IC have been established in
[33, 39, 40]. These approaches exploit topological obstructions of embeddings for establishing lower
bounds and explicit POVM constructions for upper bounds. For instance, in [33] a particular rank-r-IC
POVM containing m = 4r(n − r) − 1 elements is constructed.

Focusing less on establishing tight bounds and more on identifying entire families of rank-r IC
measurements, Kalev et al. [38] observed that each measurement ensemble fulfilling the rank-RIP for
some r ≤ n is also rank-r IC. This in particular applies with high probability to m = C log6 n nr random
(generalized) Pauli measurements [49]. Theorem 1.4, and likewise Corollary 2.2, allows us to draw
similar conclusions without having to rely on any rank-RIP. Indeed, in the absence of noise, these results
guarantee for any rank-r density operator X

{Z : Z � 0, A (Z) = A (X)} = {X} (2.10)

with high probability. If this is the case, the measurement operator A allows for uniquely identifying
any rank-r density operator X. This in turn implies that A is rank-r IC and the following corollary is
immediate:

Corollary 2.3 Fix r ≤ n arbitrary and let C, C′ be absolute constants of sufficient size. Then

1. Any POVM containing m = Cnr projectors onto Haar2 random vectors is rank-r IC with probability
at least 1 − eC2m.

2 Haar random vectors are vectors drawn uniformly from the complex unit sphere in Cn. They can be obtained from complex
standard Gaussian vectors by rescaling them to unit length. Property (2.10) is invariant under such a re-scaling, and Theorem 1.2
therefore assures rank-r IC for both Gaussian and Haar random vectors.
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12 M. KABANAVA ET AL.

2. Any POVM containing m = C′nr log n projectors onto random elements of a (sufficiently accurate
approximate) 4-design is rank-r IC with probability at least 1 − e−C̃2m.

This statement is reminiscent of a conclusion drawn in [3, 50]: in the task of distinguishing quantum
states, a POVM containing a 4-design essentially performs as good as the uniform POVM (the union of
all rank-one projectors).

Remark 2.1 In the process of finishing this article, we became aware of recent work by Kech and
Wolf [41], who showed that the elements of a generic Parseval frame generate a rank-r IC map A if
m ≥ 4r(n−r). In fact, Xu showed in [71] that m ≥ 4r(n−r) is both a sufficient and necessary condition
for identifiability of complex rank r matrices in Cn×n. We emphasize, however, that these results are only
concerned with pure identifiability, and do not come with a practical and stable recovery algorithm.

3 The null space property for low-rank matrix recovery

The crucial tool for our analysis of low-rank recovery is the Frobenius-robust rank null space property
(with respect to �q) of the measurement map A : Cn1×n2 → Cm, see [28, Chapter 4.3] for the analogue in
the sparse recovery case. It provides control of the recovery error by the error of the best approximation
of X by low-rank matrices, as well as by the norm of noise on the measurements. It is stronger than the
stable rank null space property and very close to the matrix-variant of the so-called restricted eigenvalue
property, see below for more details.

Definition 3.1 For q ≥ 1, we say that A : Cn1×n2 → Cm satisfies the Frobenius-robust rank null space
property with respect to �q of order r with constants 0 < ρ < 1 and τ > 0 if for all M ∈ Cn1×n2 , the
singular values of M satisfy

‖Mr‖2 ≤ ρ√
r
‖Mc‖1 + τ‖A (M)‖�q .

The stability and robustness of (1.4) are established by the following theorem.

Theorem 3.1 Let A : Cn1×n2 → Cm satisfy the Frobenius-robust rank null space property with respect
to �q of order r with constants 0 < ρ < 1 and τ > 0. Let n = min{n1, n2}. Then for any X ∈ Cn1×n2 any
solution X� of (1.4) with b = A (X) + w, ‖w‖�q ≤ η, approximates X with error

‖X − X�‖2 ≤ 2(1 + ρ)2

(1 − ρ)
√

r
‖Xc‖1 + 2τ(3 + ρ)

1 − ρ
η.

Theorem 3.1 can be deduced from the following stronger result.

Theorem 3.2 Let 1 ≤ p ≤ 2 and n = min{n1, n2}. Suppose that A : Cn1×n2 → Cm satisfies the
Frobenius-robust rank null space property with respect to �q of order r with constants 0 < ρ < 1 and
τ > 0. Then for any X, Z ∈ Cn1×n2 ,

‖Z − X‖p ≤ (1 + ρ)2

(1 − ρ)r1−1/p
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) + τ(3 + ρ)

1 − ρ
r1/p−1/2‖A (Z − X)‖�q . (3.1)
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 13

The proof requires some auxiliary lemmas. We start with a matrix version of Stechkin’s bound.

Lemma 3.1 Let M ∈ Cn1×n2 and r ≤ min{n1, n2}. Then, for p > 0,

‖Mc‖p ≤ ‖M‖1

r1−1/p
.

Proof. This follows immediately from [28, Proposition 2.3], but for convenience we give the proof.
Since the singular values of M are non-increasingly ordered, it holds

‖Mc‖p
p =

n∑
j=r+1

(σj(M))p ≤ (σr(M))p−1
n∑

j=r+1

σj(M) ≤
[

1

r

r∑
j=1

σj(M)

]p−1 n∑
j=r+1

σj(M)

≤ 1

rp−1
‖M‖p−1

1 ‖M‖1 = ‖M‖p
1

rp−1
.

�

The next result shows that under the Frobenius-robust rank null space property, the distance between
two matrices is controlled by the difference between their norms and the �q-norm of the difference
between their measurements.

Lemma 3.2 Suppose that A : Cn1×n2 → Cm satisfies the Frobenius-robust rank null space property with
respect to �q of order r with constants 0 < ρ < 1 and τ > 0. Let X, Z ∈ Cn1×n2 and n = min{n1, n2}.
Then

‖X − Z‖1 ≤ 1 + ρ

1 − ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) + 2τ

√
r

1 − ρ
‖A (X − Z)‖�q .

Proof. Theorem 7.4.9.1 in [35] states that for matrices A, B of the same size over C

‖A − B‖ ≥ ‖Σ(A) − Σ(B)‖,

where ‖ · ‖ is any unitarily invariant norm and Σ(·) denotes the diagonal matrix of singular values of its
argument. Hence,

‖Z‖1 = ‖X − (X − Z)‖1 ≥
n∑

j=1

∣∣σj(X) − σj(X − Z)
∣∣

=
r∑

j=1

∣∣σj(X) − σj(X − Z)
∣∣ + n∑

j=r+1

∣∣σj(X) − σj(X − Z)
∣∣

≥
r∑

j=1

(
σj(X) − σj(X − Z)

) +
n∑

j=r+1

(
σj(X − Z) − σj(X)

)
.
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14 M. KABANAVA ET AL.

Hence,

‖(X − Z)c‖1 =
n∑

j=r+1

σj(X − Z) ≤ ‖Z‖1 −
r∑

j=1

σj(X) +
r∑

j=1

σj(X − Z) + ‖Xc‖1

≤ ‖Z‖1 − ‖X‖1 + √
r‖(X − Z)r‖2 + 2‖Xc‖1.

Applying the Frobenius-robust null space property of A , we obtain

‖(X − Z)c‖1 ≤ ‖Z‖1 − ‖X‖1 + ρ‖(X − Z)c‖1 + τ
√

r‖A (X − Z)‖�q + 2‖Xc‖1.

By rearranging the terms in the above inequality, we obtain

‖(X − Z)c‖1 ≤ 1

1 − ρ

(‖Z‖1 − ‖X‖1 + τ
√

r‖A (X − Z)‖�q + 2‖Xc‖1

)
.

In order to bound ‖X − Z‖1 we use Hölder’s inequality, the Frobenius-robust rank null space property
of A and the inequality above,

‖X − Z‖1 = ‖(X − Z)r‖1 + ‖(X − Z)c‖1 ≤ √
r‖(X − Z)r‖2 + ‖(X − Z)c‖1

≤ (1 + ρ)‖(X − Z)c‖1 + τ
√

r‖A (Z − X)‖�q

≤ 1 + ρ

1 − ρ

(‖Z‖1 − ‖X‖1 + τ
√

r‖A (X − Z)‖�q + 2‖Xc‖1

) + τ
√

r‖A (X − Z)‖�q

= 1 + ρ

1 − ρ
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) + 2τ

√
r

1 − ρ
‖A (X − Z)‖�q .

This concludes the proof. �

Now we return to the proof of the theorem.

Proof of Theorem 3.2. By Hölder’s inequality, Lemma 3.1 and the Frobenius-robust rank null space
property of A

‖Z − X‖p ≤ ‖(X − Z)r‖p + ‖(X − Z)c‖p ≤ r1/p−1/2‖(X − Z)r‖2 + ‖(X − Z)c‖p

≤ ρ

r1−1/p
‖(X − Z)c‖1 + τ r1/p−1/2‖A (X − Z)‖�q + 1

r1−1/p
‖X − Z‖1

≤ 1 + ρ

r1−1/p
‖X − Z‖1 + τ r1/p−1/2‖A (X − Z)‖�q . (3.2)

Substituting the result of Lemma 3.2 into (3.2) yields the desired inequality. �

As a corollary of Theorem 3.2, we obtain that if X ∈ Cn1×n2 is a matrix of rank at most r and the
measurements are noiseless (η = 0), then the Frobenius-robust rank null space property implies that X
is the unique solution of

min
Z∈Cn1×n2

‖Z‖1 subject to A (Z) = b. (3.3)
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 15

It was first stated in [60] that a slightly weaker property is actually equivalent to the successful recovery
of X via (3.3).

Theorem 3.3 (Null space property) Given A : Cn1×n2 → Cm, every X ∈ Cn1×n2 of rank at most r is
the unique solution of (3.3) with b = A (X) if and only if, for all M ∈ ker A \ {0}, it holds

‖Mr‖1 < ‖Mc‖1. (3.4)

For the proof we refer to [60] and [28, Chapter 4.6]. According to Lemma 3.2, another implication
of the Frobenius-robust rank null space property consists in the following error estimate in ‖ · ‖1 for the
case of noiseless measurements,

‖X − X�‖1 ≤ 2(1 + ρ)

1 − ρ
‖Xc‖1.

The above estimate remains true, if we require that for all M ∈ ker A , the singular values of M satisfy

‖Mr‖1 ≤ ρ‖Mc‖1, 0 < ρ < 1.

This property is known as the stable rank null space property of order r with constant ρ. It is clear that
if A : Cn1×n2 → Cm satisfies the Frobenius-robust rank null space property, then it satisfies the stable
rank null space property. The approach used in [56] to verify that the stable null space property accounts
for stable recovery of matrices which are not exactly of low rank, exploits the similarity between the
sparse vector recovery and the low-rank matrix recovery. It shows that if some condition is sufficient
for stable and robust recovery of any sparse vector with at most r non-zero entries, then the extension
of this condition to the matrix case is sufficient for the stable and robust recovery of any matrix up
to rank r. The advantage of the Frobenius-robust rank null space property is that, on the one hand, it
allows to estimate the error in ‖ · ‖2-norm, which obeys the same decay rate in r as the error of the best
rank-r approximation in ‖ · ‖2. And on the other hand, it takes into consideration the presence of noise
in measurements.

In order to check whether the measurement map A : Cn1×n2 → Cm satisfies the Frobenius-robust
rank null space property, we introduce the set

Tρ,r :=
{

M ∈ Cn1×n2 : ‖M‖2 = 1, ‖Mr‖2 >
ρ√

r
‖Mc‖1

}
.

Lemma 3.3 If

inf{‖A (M)‖�q : M ∈ Tρ,r} >
1

τ
, (3.5)

then A satisfies the Frobenius-robust rank null space property with respect to �q of order r with constants
ρ and τ .

Proof. Suppose that

inf{‖A (M)‖�q : M ∈ Tρ,r} >
1

τ
. (3.6)
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16 M. KABANAVA ET AL.

It follows that for any M ∈ Cn1×n2 such that ‖A (M)‖�q ≤ ‖M‖2
τ

it holds

‖Mr‖2 ≤ ρ√
r
‖Mc‖1. (3.7)

For the remaining M ∈ Cn1×n2 with ‖A (M)‖�q >
‖M‖2

τ
we have

‖Mr‖2 ≤ ‖M‖2 < τ‖A (M)‖�q .

Together with (3.7) this leads to

‖Mr‖2 ≤ ρ√
r
‖Mc‖1 + τ‖A (M)‖�q ,

for any M ∈ Cn1×n2 . �

Remark 3.1 Since ‖Mr‖1 > ρ‖Mc‖1 implies that ‖Mr‖2 > ρ√
r ‖Mc‖1, it follows that if (3.5) holds (with

q = 2), then

inf{‖A (M)‖�2 : ‖M‖2 = 1, ‖Mr‖1 > ρ‖Mc‖1} >
1

τ
,

which is in its turn equivalent to

‖A (M)‖�2 >
1

τ
‖M‖2 ≥ 1

τ
‖Mr‖2 for all M ∈ Cρ,r , (3.8)

where Cρ,r = {M ∈ Cn1×n2 : ‖Mr‖1 > ρ‖Mc‖1}. Property (3.8) can be considered as a matrix counterpart
of the restricted eigenvalue property introduced in [8, 58]. Thus (3.5) is a stronger condition, but it also
provides a better decay rate of the error.

It is natural to expect that the recovery error gets smaller as the number of measurements increases.
This can be taken into account by establishing the null space property for τ = κ

m1/q . Then the error bound
reads as follows

‖X − X�‖2 ≤ 2(1 + ρ)2

(1 − ρ)
√

r
‖Xc‖1 + 2κ(3 + ρ)

m1/q(1 − ρ)
η.

An important property of the set Tρ,r is that it is imbedded in a set with a simple structure. The next
lemma relies on the ideas presented in [62] for the compressed sensing setting.

Lemma 3.4 Let D be the set defined by

D := conv
{
M ∈ Cn1×n2 : ‖M‖2 = 1, rank M ≤ r

}
, (3.9)

where conv stands for the convex hull.
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 17

(a) Then D is the unit ball with respect to the norm

‖M‖D :=
L∑

j=1

⎡
⎣∑

i∈Ij

(σi(M))2

⎤
⎦

1/2

,

where L = � n
r �,

Ij =
{ {r(j − 1) + 1, . . . , rj} j = 1, . . . , L − 1,

{r(L − 1) + 1, . . . , n} j = L.

(b) It holds

Tρ,r ⊂
√

1 + (1 + ρ−1)2D. (3.10)

Let us argue briefly why ‖ · ‖D is a norm. Define g : Cn → [0, ∞) by

g(x) :=
L∑

j=1

⎛
⎝∑

i∈Ij

(
x∗

i

)2

⎞
⎠

1/2

,

where L and Ij are defined in the same way as in item (a) of Lemma 3.4. Then g is a symmetric gauge
function and ‖M‖D = g(σ (M)) for any M ∈ Cn1×n2 . The norm property follows from [35, Theorem
7.4.7.2].

Proof of Lemma 3.4. (a) Any M ∈ D can be written as

M =
∑

i

αiXi

with

rank Xi ≤ r, ‖Xi‖2 = 1, αi ≥ 0,
∑

i

αi = 1.

Thus

‖M‖D ≤
∑

i

αi‖Xi‖D =
∑

i

αi‖Xi‖2 =
∑

i

αi = 1.

Conversely, suppose that ‖M‖D ≤ 1, and let M have a singular value decomposition M = UΣV ∗ =
L∑

j=1

∑
i∈Ij

σi(M)uiv∗
i , where ui ∈ Cn1 and vi ∈ Cn2 are column vectors of U and V , respectively. Set
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18 M. KABANAVA ET AL.

Mj := ∑
i∈Ij

σi(M)uiv∗
i and αj := ‖Mj‖2, j = 1, . . . , L. Then each Mj is a sum of r rank-one matrices, so

that rank Mj ≤ r, and we can write M as

M =
∑

j:αj �=0

αj

(
1

αj
Mj

)

with

∑
j:αj �=0

αj =
∑

j

‖Mj‖2 = ‖M‖D ≤ 1 and

∥∥∥∥ 1

αj
Mj

∥∥∥∥
2

= 1

αj
‖Mj‖2 = 1.

Hence M ∈ D.
(b) To prove the embedding of Tρ,r into a scaled version of D, we estimate the norm of an arbitrary

element M of Tρ,r . According to the definition of the ‖ · ‖D-norm

‖M‖D =
L∑

�=1

⎡
⎣∑

i∈I�

(σi(M))2

⎤
⎦

1
2

= ‖Mr‖2 +
[

2r∑
i=r+1

(σi(M))2

] 1
2

+
L∑

�≥3

⎡
⎣∑

i∈I�

(σi(M))2

⎤
⎦

1
2

. (3.11)

To bound the last term in the inequality above, we first note that for each i ∈ I�, � ≥ 3,

σi(M) ≤ 1

r

∑
j∈I�−1

σj(M),

and hence

⎡
⎣∑

i∈I�

(σi(M))2

⎤
⎦

1/2

≤ 1√
r

∑
j∈I�−1

σj(M).

Summing up over � ≥ 3 yields

L∑
�≥3

⎡
⎣∑

i∈I�

(σi(M))2

⎤
⎦

1
2

≤ 1√
r

∑
l≥2

∑
j∈I�

σj(M) = 1√
r

n∑
j=r+1

σj(M) = 1√
r
‖Mc‖1

and taking into account the inequality for the singular values of M ∈ Tρ,r

L∑
�≥3

⎡
⎣∑

i∈I�

(σi(M))2

⎤
⎦

1
2

≤ ρ−1‖Mr‖2.
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 19

Applying the last estimate to (3.11), we derive that

‖M‖D ≤ (1 + ρ−1)‖Mr‖2+
[

2r∑
i=r+1

(σi(M))2

] 1
2

≤ (1 + ρ−1)‖Mr‖2 + (
1 − ‖Mr‖2

2

) 1
2 .

Set a = ‖Mr‖2. The maximum of the function

f (a) := (1 + ρ−1)a +
√

1 − a2, 0 ≤ a ≤ 1,

is attained at the point

a = 1 + ρ−1√
1 + (1 + ρ−1)2

and is equal to
√

1 + (1 + ρ−1)2. Thus for any M ∈ Tρ,r it holds

‖M‖D ≤
√

1 + (1 + ρ−1)2,

which proves (3.10). �

Remark 3.2 The previous results hold true in the real-valued case and in the case of Hermitian matrices,
when the nuclear norm minimization problem is solved over the set of matrices of that special type.
As a set D, we then take the convex hull of corresponding matrices of rank r and unit Frobenius norm.
The only difference in the proof of Lemma 3.4 occurs at the point, where we have to show that any
M with ‖M‖D ≤ 1 belongs to D. Say, M ∈ Cn×n is Hermitian and ‖M‖D ≤ 1. Then M = UΛU∗ =

L∑
j=1

∑
i∈Ij

σi(M)uiu∗
i , where ui ∈ Cn, and Mj := ∑

i∈Ij

σi(M)uiu∗
i is Hermitian. The rest of the proof remains

unchained.

Employing the matrix representation of the measurement map A , the problem of estimating the
probability of the event (3.6) is reduced to the problem of giving a lower bound for the quantities of the
form inf

x∈T
‖Ax‖2. This is not an easy task for deterministic matrices, but the situation significantly changes

for matrices chosen at random.

4 Gaussian measurements

Our main result for Gaussian measurements reads as follows.

Theorem 4.1 Let A : Rn1×n2 → Rm be the linear map (1.1) generated by a sequence A1, . . . , Am of
independent standard Gaussian matrices, let 0 < ρ < 1, κ > 1 and 0 < ε < 1. If

m2

m + 1
≥ r(1 + (1 + ρ−1)2)κ2

(κ − 1)2

[
√

n1 + √
n2 +

√
2 ln(ε−1)

r(1 + (1 + ρ−1)2)

]2

, (4.1)
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20 M. KABANAVA ET AL.

then with probability at least 1 − ε, for every X ∈ Rn1×n2 , a solution X� of (1.4) with b = A (X) + w,
‖w‖�2 ≤ η, approximates X with error

‖X − X�‖2 ≤ 2(1 + ρ)2

(1 − ρ)
√

r
‖Xc‖1 + 2κ

√
2(3 + ρ)√

m(1 − ρ)
η.

In order to prove Theorem 4.1, we employ Gordon’s escape through a mesh theorem that provides an
estimate of the probability of the event (3.6). First we recall some definitions. Let g ∈ Rm be a standard
Gaussian random vector, that is, a vector of independent mean zero, variance one normal distributed
random variables. Then for

Em := E ‖g‖2 = √
2

Γ ((m + 1)/2)

Γ (m/2)

we have

m√
m + 1

≤ Em ≤ √
m,

see [28, 29]. For a set T ⊂ Rn we define its Gaussian width by

�(T) := E sup
x∈T

〈x, g〉,

where g ∈ Rn is a standard Gaussian random vector.

Theorem 4.2 (Gordon’s escape through a mesh [29]) Let A ∈ Rm×n be a Gaussian random matrix and
T be a subset of the unit sphere Sn−1. Then, for t > 0,

P
(

inf
x∈T

‖Ax‖2 > Em − �(T) − t
)

≥ 1 − e− t2
2 . (4.2)

In order to apply this result to our measurement process (1.1), we unravel the columns of
Aj, j = 1, . . . , m, into a single row and collect all of these in a m × n1n2-matrix A, so that n = n1n2

when applying (4.2). In order to give a bound on the number of Gaussian measurements, Theorem 4.2
requires to estimate the Gaussian width of the set Tρ,r from above. As it was pointed out in the previous
section, Tρ,r is a subset of a scaled version of D, which has a relatively simple structure. So instead of
evaluating �(Tρ,r), we consider �(D).

Lemma 4.1 For the set D defined by (3.9), it holds

�(D) ≤ √
r(

√
n1 + √

n2). (4.3)

Proof. Let Γ ∈ Rn1×n2 have independent standard normal distributed entries. Then �(D) =
E sup

M∈D
〈Γ , M〉. Since a convex continuous real-valued function attains its maximum value at one of
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 21

the extreme points, it holds �(D) = E sup
‖M‖2=1
rank M≤r

〈Γ , M〉. By Hölder’s inequality,

�(D) ≤ E sup
‖M‖2=1
rank M≤r

‖Γ ‖∞‖M‖1 ≤ √
r sup

‖M‖2=1
rank M≤r

‖M‖2 E σ1(Γ ) ≤ √
r(

√
n1 + √

n2),

where the last inequality follows from an estimate for the expectation of the largest singular value of a
Gaussian matrix, see [28, Chapter 9.3]. �

Proof of Theorem 4.1. Set t := √
2 ln(ε−1). If m satisfies (4.1), then

Em

(
1 − 1

κ

)
≥
√

r(1 + (1 + ρ−1)2)(
√

n1 + √
n2) + t.

Together with (3.10) and (4.3), this yields

Em − �(Tρ,r) − t ≥ Em

κ
≥ 1

κ

√
m

2
.

According to Theorem 4.2

P
(

inf
M∈Tρ,r

‖A (M)‖2 >

√
m

κ
√

2

)
≥ 1 − ε,

which means that with probability at least 1 − ε map A satisfies the Frobenius-robust rank null space
property with constants ρ and κ

√
2√

m . The error estimate follows from Theorem 3.1. �

5 Measurement matrices with independent entries and four finite moments

In this section we prove Theorem 1.1, which is the generalization of Theorem 4.1 to the case when the
map A : Rn1×n2 → Rm is obtained from m independent samples of a random matrix Φ = (Xij)i,j with
the following properties:

• The Xij are independent random variables of mean zero,

• EX2
ij = 1 and EX4

ij ≤ C4 for all i, j and some constant C4.

Note that (by Hölder’s inequality) C4 ≥ 1.
As before, the idea of the proof is to show that the event (3.6) holds with high probability. In order

to do so we apply Mendelson’s small ball method [42, 52, 69] in the manner of [69].

Theorem 5.1 ([42, 52, 69]) Fix E ⊂ Rd and let φ1, . . . , φm be independent copies of a random vector
φ in Rd . For ξ > 0 let

Qξ (E; φ) = inf
u∈E

P{|〈φ, u〉| ≥ ξ}
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22 M. KABANAVA ET AL.

and

Wm(E; φ) = E sup
u∈E

〈h, u〉,

where h = 1√
m

∑m
j=1 εjφj with (εj) being a Rademacher sequence.3 Then for any ξ > 0 and any t ≥ 0

with probability at least 1 − e−2t2

inf
u∈E

(
m∑

i=1

|〈φi, u〉|2
)1/2

≥ ξ
√

mQ2ξ (E; φ) − 2Wm(E; φ) − ξ t.

Remark 5.1 The proof of the theorem shows in fact that with the same probability

1√
m

inf
u∈E

m∑
i=1

|〈φi, u〉| ≥ ξ
√

mQ2ξ (E; φ) − 2Wm(E; φ) − ξ t.

This implies that for q ≥ 1 (again with the same probability)

inf
u∈E

(
m∑

i=1

|〈φi, u〉|q
)1/q

≥ m1/q−1/2(ξ
√

mQ2ξ (E; φ) − 2Wm(E; φ) − ξ t).

In the sequel, we will use this version of the theorem. (Note that the case q = ∞ is allowed as well.)
Compare also the version in [23].

We start with two lemmas.

Lemma 5.1

inf
{Y ,‖Y‖2=1}

P
(

|〈Φ, Y〉| ≥ 1√
2

)
≥ 1

4C5
,

where C5 = max{3, C4}.

Proof. Assume that Y has Frobenius norm one. The Payley–Zygmund inequality (see e.g. [28,
Lemma 7.16] and also [69]), implies

P
{
|〈Φ, Y〉|2 ≥ 1

2
(E|〈Φ, Y〉|2)

}
≥ 1

4
· (E|〈Φ, Y〉|2)2

E|〈Φ, Y〉|4 . (5.1)

We compute numerator and denominator.

E|〈Φ, Y〉|2 =
∑
i,j,k,l

E(XijXkl) · YijYkl =
∑

i,j

EX2
ij · Y 2

ij =
∑

i,j

Y 2
ij = 1.

3 That is, the εj are independent and assume the values 1 and −1 with probability 1/2, respectively.

130



J_ID: imaiai Cust. A_ID: 00000.00 Cadmus Art: IMAIAI00000 CVO ID: OP-IMAI160011 — 2016/8/12 — page 23 — #23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 23

Likewise,

E|〈Φ, Y〉|4 =
∑

i1,...,i4,j1,...,j4

E(Xi1j1 · · · Xi4j4) · Yi1j1 · · · Yi4j4

=
∑

i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)�=(i2,j2)

E(X2
i1j1

X2
i2j2

) · Y 2
i1j1

Y 2
i2j2

=
∑

i,j

EX4
ij · Y 4

ij + 3
∑

i1,i2,j1,j2
(i1,j1)�=(i2,j2)

Y 2
i1j1

Y 2
i2j2

≤
∑

i,j

C4 · Y 4
ij + 3

∑
i1,i2,j1,j2

(i1,j1)�=(i2,j2)

Y 2
i1j1

Y 2
i2j2

≤ C5

∑
i1,i2,j1,j2

Y 2
i1j1

Y 2
i2j2

= C5

(∑
i,j

Y 2
ij

)2

= C5.

Combining this with (E|〈Φ, Y〉|2)2 = 1 and the estimate (5.1), the claim follows. �

Lemma 5.2 Let Φ1, . . . , Φm be independent copies of a random matrix Φ as above. Let ε1, . . . , εm be
independent Rademacher variables independent of everything else and let H = 1√

m

∑m
k=1 εkΦk . Then

E‖H‖∞ ≤ C1

√
n.

Here C1 is a constant that only depends on C4.

Proof. Let S = ∑m
k=1 Φk . We first desymmetrize the sum H (see [47, Lemma 6.3]) and obtain

E‖H‖∞ ≤ 2√
m

E‖S‖∞.

Therefore, it is enough to show that E‖S‖∞ ≤ c3
√

mn for a suitable constant c3. The matrix S has
independent mean zero entries, hence by a result of Latała [46] the following estimate holds for some
universal constant C2,

E‖S‖∞ ≤ C2

⎛
⎝max

i

√∑
j

ES2
ij + max

j

√∑
i

ES2
ij + 4

√∑
i,j

ES4
ij

⎞
⎠ .

Denoting the entries of Φk by Xk;ij, we have Sij = ∑
k Xk;ij. Hence, using the independence of the Xk;ij, we

obtain ES2
ij = E(

∑
k Xk;ij)

2 = ∑
k EX2

k;ij = m. Thus,
√∑

j ES2
ij ≤ √

nm for any i and
√∑

i ES2
ij ≤ √

nm

for any j. Finally, to estimate 4
√∑

i,j ES4
ij we calculate ES4

ij = E(
∑

k Xk;ij)
4. Using again that the Xk;ij are

independent and have mean zero, we obtain

ES4
ij =

∑
k

EX4
k;ij + 3

∑
k1 �=k2

EX2
k1;ijEX2

k2;ij.
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24 M. KABANAVA ET AL.

Using that EX2
k;ij = 1 for all i, j, k, we obtain ES4

ij ≤ C5m2, where C5 = max{3, C4}, and hence

4

√∑
i,j

ES4
ij ≤ 4

√
C5m2n2 = 4

√
C4

√
mn.

Hence, indeed E‖S‖∞ ≤ c3
√

mn for a suitable constant c3 that depends only on C4. �

Proof of Theorem 1.1. Let now Tρ,r and D be the sets defined in Section 3, but restricted to the real-
valued matrices. By Hölder’s inequality, for any n1 × n2 matrix Y of Frobenius norm 1 and rank at most
r and any n1 × n2 matrix H ,

〈H , Y〉 ≤ ‖Y‖1‖H‖∞ ≤ √
r‖H‖∞.

Hence

sup
Y∈D

〈H, Y〉 ≤ √
r‖H‖∞. (5.2)

Let H = 1√
m

∑m
j=1 εjΦj and let ξ = 1

2
√

2
and E = Tρ,r . Then it follows from (the remark below) Theorem

5.1 that for any t ≥ 0 with probability at least 1 − e−2t2

inf
Y∈Tρ,r

(
m∑

i=1

|〈Φi, Y〉|q
)1/q

≥ m1/q−1/2

( √
m

2
√

2
Q 1√

2
(Tρ,r ; Φ) − 2Wm(Tρ,r , Φ) − 1

2
√

2
t

)
. (5.3)

Using Lemma 5.1 and the fact that all elements of Tρ,r have Frobenius norm 1, we obtain

Q 1√
2
(Tρ,r ; Φ) ≥ 1

4C5
. (5.4)

Combining now the fact that Tρ,r ⊆ √
1 + (1 + ρ−1)2D (see Lemma 3.4) with estimate (5.2) and Lemma

5.2 leads to

Wm(Tρ,r , Φ) ≤
√

1 + (1 + ρ−1)2
√

r E‖H‖∞ ≤ C1

√
1 + (1 + ρ−1)2

√
r
√

n. (5.5)

Using (5.3), (5.4) and (5.5) we see that choosing m ≥ c1ρ
−2nr and t = c4m for suitable constants c1, c4,

we obtain with probability at least 1 − e−c2m

inf
Y∈Tρ,r

(
m∑

i=1

|〈Φi, Y〉|q
)1/q

≥ c3m1/q

for suitable constants c2, c3. Now the claim follows from Lemma 3.3 and Theorem 3.1 (both of which
also hold in the real-valued version by the same proofs, respectively). �
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 25

6 Rank-one Gaussian measurements

In this section we prove Theorem 1.2. The proof technique is an application of Mendelson’s small ball
method analogous to the proof of Theorem 1.1. Let

TH
ρ,r :=

{
M ∈ Hn : ‖M‖2 = 1, ‖Mr‖2 >

ρ√
r
‖Mc‖1

}
.

Let Tρ,r be defined as TH
ρ,r , but with Hn replaced by the set of all complex n × n-matrices (i.e. it is

defined as before with n1 = n2 = n). Then TH
ρ,r ⊆ Tρ,r . It is enough to show that with high probability

inf
Y∈TH

ρ,r

(
m∑

j=1

|〈aja
∗
j , Y〉|q

)1/q

≥ m1/q/C3. (6.1)

We apply Theorem 5.1 with E = TH
ρ,r . The next lemma estimates the small ball probability Q 1√

2
(E; φ)

used in Mendelson’s method.

Lemma 6.1 (see [45]) Q 1√
2
(E; φ) := infu∈E P

{
|〈aa∗, u〉| ≥ 1√

2

}
≥ 1

96 .

Let now (as in [45, 69])

H = 1√
m

m∑
j=1

εjaja
∗
j , (6.2)

where the εj form a Rademacher sequence. For any M ∈ Hn and any n × n matrix Y of Frobenius norm
1 and rank at most r

〈M, Y〉 ≤ ‖Y‖1‖M‖∞ ≤ √
r‖M‖∞.

Since E = TH
ρ,r ⊆ Tρ,r ⊆ √

1 + (1 + ρ−1)2D, this implies

Wm(E, φ) = E sup
Y∈E

〈H , Y〉 ≤
√

1 + (1 + ρ−1)2
√

rE‖H‖∞.

As in [45], we use now that by the arguments in [70, Section 5.4.1] we have E‖H‖∞ ≤ c2
√

n if m ≥ c3n
for suitable constants c2, c3, see also [69, Section 8]. Now the claim of Theorem 1.2 follows from
Theorem 5.1, comp. the proof of Theorem 1.1.

Remark 6.1 Inspecting the above proof, the proofs of the cited statements in [45], we see that the
real-valued analogue of Theorem 1.2 is also true. We even may assume for this that the aj are i.i.d.
subgaussian with kth moments, where k ≤ 8, equal to the corresponding kth moments of the Gaussian
standard distribution. The constants then depend only on the distribution of the aj. We also note that a
similar statement in the real case for the recovery of positive semidefinite matrices using subgaussian
measurements has been shown by Chen et al. in [20] using the rank-RIP.
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26 M. KABANAVA ET AL.

7 Rank-one measurements generated by 4-designs

Recall the definition of an approximate, weighted t-design.

Definition 7.1 (Approximate t-design, Definition 2 in [3]) We call a weighted set {pi, wi}N
i=1 of

normalized vectors an approximate t-design of p-norm accuracy θp, if

∥∥∥∥∥
N∑

i=1

pi

(
wiw

∗
i

)⊗t −
∫

‖w‖�2
=1

(ww∗)⊗t dw

∥∥∥∥∥
p

≤
(

n + t − 1

t

)−1

θp. (7.1)

A set of unit vectors obeying θp = 0 for 1 ≤ p ≤ ∞ is called an exact t-design, see [65] and also
[30, 45].

Theorem 7.1 Let {pi, wi}N
i=1 be an approximate 4-design with either θ∞ ≤ 1/(16r2) or θ1 ≤ 1/4 that

furthermore obeys
∥∥∥∑N

i=1 piwiw∗
i − 1

n id
∥∥∥

∞
≤ 1

n . Suppose that the measurement operator A is generated

by

m ≥ C4ρ
−2nr log n

measurement matrices Aj = √
n(n + 1)aja∗

j , where each aj is drawn independently from {pi, wi}N
i=1.

Then, with probability at least 1 − e−C5m, A obeys the Frobenius-robust rank null space property with
respect to �q of order r with constants 0 < ρ < 1 and τ = C6/m1/q. Here, C4, C5 and C6 denote positive
constants depending only on the design.

Theorem 1.3 readily follows from combining this statement with Theorem 3.2.

Proof of Theorem 7.1. We start by presenting a proof for measurements drawn from an exact 4-design.
Paralleling the proof of Theorem 1.2, the statement can be deduced from Theorem 5.1 by utilizing
results from [45]. Provided that a is randomly chosen from a re-scaled, weighted 4-design (such that
each element has Euclidean length ‖wi‖�2 = 4

√
(n + 1)n), [45, Proposition 12] implies that

inf
Z∈Tρ,r

P (|tr (aa∗Z)| ≥ ξ) ≥ inf
‖Z‖2=1

P (|tr (aa∗Z)| ≥ ξ) ≥ (1 − ξ 2)2

24
(7.2)

is valid for all ξ ∈ [0, 1]. Now let H = ∑m
i=1 εiaia∗

i be as in Theorem 5.1. Lemma 3.4, together with
the fact that D is the convex hull of all matrices of rank at most r and Frobenius norm 1, allows us to
conclude for m ≥ 2n log n that,

Wm

(
Tρ,r , aa∗) = E sup

M∈Tρ,r

tr (HM) ≤
√

1 + (1 + ρ−1)2 E sup
M∈D

tr (HM)

≤
√

1 + (1 + ρ−1)2 sup
M∈D

‖M‖1E‖H‖∞ ≤
√

1 + (1 + ρ−1)2
√

r E‖H‖∞

≤ 3.1049
√

1 + (1 + ρ−1)2rn log(2n),
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 27

where the last bound is due to [45, Proposition 13]. Fixing 0 < ξ < 1/2 arbitrarily and inserting these
two bounds into (the remark below), Theorem 5.1 completes the proof.

An analogous statement for approximate 4-designs—with slightly worse absolute constants—can
be obtained by resorting to the generalized versions of [45, Propositions 12 and 13] presented in
Section 4.5.1 in loc. cit. which are valid for approximate 4-designs that satisfy the conditions stated in
Theorem 7.1. �

8 The positive semidefinite case

Finally, we focus on the case, where the matrices of interest are Hermitian and positive semidefinite and
establish Theorem 1.4. In order to arrive at such a statement, we closely follow the ideas presented in [38],
which in turn were inspired by [10] containing an analogous statement for a non-negative compressed
sensing scenario.

We require two further concepts from matrix analysis. For every positive semidefinite matrix
W � 0 with eigenvalue decomposition W = ∑n

i=1 λiwiw∗
i , we define its square root to be W 1/2 :=∑n

i=1

√
λiwiw∗

i . In other words, W 1/2 is the unique positive semidefinite matrix which acts on the
eigenspace corresponding to the eigenvalue λi of W by multiplication by

√
λi. Note that this matrix

obeys W 1/2 · W 1/2 = W . Also, recall that the condition number κ(W) of a matrix W is the ratio between
its largest and smallest non-zero singular value. For an invertible Hermitian matrix with inverse W−1,
this number equals

κ(W) = ‖W‖∞‖W−1‖∞.

Suppose that the measurement process (1.3) is such that there exists t ∈ Rm which assures that
W := ∑m

j=1 tjAj is positive definite. We define the artificial measurement map

AW1/2 : Hn → Rm, Z �→ A (W−1/2ZW−1/2) (8.1)

and the endomorphism

Z �→ Z̃ := W 1/2ZW 1/2 (8.2)

of Hn. Note that these definitions assure

A (Z) = AW1/2(Z̃) for all Z ∈ Hn (8.3)

and the singular values of Z and Z̃ satisfy

σj(Z̃) ≤ ‖W 1/2‖2
∞σj(Z) = ‖W‖∞σj(Z), σj(Z) ≤ ‖W−1/2‖2

∞σj(Z̃) = ‖W−1‖∞σj(Z̃), (8.4)

see [7, p. 75]. Consequently, the mapping (8.2) preserves the rank of any matrix. The following result
assures that the artificial measurement operator AW1/2 obeys the Frobenius-robust rank null space
property, if the original A does.

Lemma 8.1 Suppose that A satisfies the Frobenius-robust rank null space property with respect to �q

of order r with constants ρ and τ , and suppose that W = ∑m
j=1 tjAj is positive definite. Then AW1/2 also
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28 M. KABANAVA ET AL.

obeys the Frobenius-robust rank null space property with respect to �q of order r, but with constants
ρ̃ = κ(W)ρ and τ̃ = ‖W‖∞τ .

Proof. Let Z̃ ∈ Hn. Relations (8.3) and (8.4) together with the Frobenius-robust rank null space property
of A imply that

‖Z̃r‖2 ≤ ‖W 1/2‖2
∞‖Zr‖2 ≤ ‖W‖∞

(
ρ√

r
‖Zc‖1 + τ‖A (Z)‖�q

)

≤ ‖W‖∞‖W−1‖∞ρ√
r

‖Z̃c‖1 + ‖W‖∞τ‖AW1/2(Z̃)‖�q . �

Lemma 8.2 Suppose there is t ∈ Rm such that W := ∑m
j=1 tjAj is positive definite. Let X̃ , Z̃ be positive

semidefinite. Then,

‖Z̃‖1 − ‖X̃‖1 ≤ ‖t‖�q′ ‖AW1/2(Z̃ − X̃)‖�q ,

where 1
q + 1

q′ = 1.

Proof. The claim follows from positive semidefiniteness of both Z̃ and X̃, and our choice of the
endomorphism (8.2). Indeed,

‖Z̃‖1 = tr(Z̃ − X̃) + ‖X̃‖1 = tr(W 1/2(Z − X)W 1/2) + ‖X̃‖1 = tr(W(Z − X)) + ‖X̃‖1

=
m∑

j=1

tj tr(Aj(Z − X)) + ‖X̃‖1 = 〈t, A (Z − X)〉 + ‖X̃‖1

= 〈t, AW1/2(Z̃ − X̃)〉 + ‖X̃‖1 ≤ ‖t‖�q′ ‖AW1/2(Z̃ − X̃)‖�q + ‖X̃‖1.

Here X and Z denote the preimage of X̃ and Z̃ , respectively, under the map (8.2). �

This simple technical statement allows us to establish the main result of this section.

Theorem 8.1 Suppose there exists t ∈ Rm such that W := ∑m
j=1 tjAj is positive definite and A satisfies

the Frobenius-robust rank null space property with respect to �q with constants 0 < ρ < 1
κ(W)

and τ > 0.
Let 1 ≤ p ≤ 2. Then, for any X, Z � 0,

‖Z − X‖p ≤ 2Cκ(W)

r1−1/p
‖Xc‖1 + r1/p−1/2‖A (Z) − A (X)‖�q‖W−1‖∞

(
C‖t‖q′√

r
+ D‖W‖∞τ

)
(8.5)

with constants C = (1+κ(W)ρ)2

1−κ(W)ρ
and D = 3+κ(W)ρ

1−κ(W)ρ
, and where 1

q + 1
q′ = 1.

Proof. Let X , Z � 0 be arbitrary. Then

‖Z − X‖p =
∥∥∥W−1/2

(
Z̃ − X̃

)
W−1/2

∥∥∥
p
≤ ‖W−1‖∞‖Z̃ − X̃‖p
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 29

holds and the resulting matrices Z̃ , X̃ are again positive semidefinite. Also, since A satisfies the
Frobenius-robust rank null space property with constants 0 < ρ < 1

κ(W)
and τ > 0, Lemma 8.1

assures that AW1/2 does the same with constants 0 < ρ̃ < 1 and τ̃ = ‖W‖∞τ > 0. Combining this with
Theorem 3.2 and Lemma 8.2 implies

‖Z̃ − X̃‖p ≤ C

r1−1/p

(
‖Z̃‖1 − ‖X̃‖1 + 2‖X̃c‖1

)
+ D‖W‖∞τ r1/p−1/2‖AW1/2(Z̃ − X̃)‖�q

≤ C

r1−1/p

(
‖t‖�q′ ‖AW1/2(Z̃ − X̃)‖�q + 2‖X̃c‖1

)
+ D‖W‖∞τ r1/p−1/2‖AW1/2(Z̃ − X̃)‖�q

≤ 2C

r1−1/p
‖X̃c‖1 + r1/p−1/2‖AW1/2(Z̃ − X̃)‖�q

(
C‖t‖�q′√

r
+ D‖W‖∞τ

)
.

The desired statement follows from this estimate by taking into account (8.3) and (8.4). �

Note that in contrast to other recovery guarantees established here, Theorem 8.1 does not require any
convex optimization procedure. However, it does require the measurement process to obey an additional
criterion: the intersection of the span of measurement matrices with the cone of positive definite matrices
must be non-empty. We show that this is the case for the rank-one projective measurements introduced
in the previous section with high probability. Since it has already been established that sufficiently many
measurements of this kind obey the Frobenius-robust rank null space property with high probability (see
Theorems 1.2 and 7.1 and their respective proofs), Theorem 1.4 can then be established by taking the
union bound over the individual probabilities of failure.

Proposition 8.1 Suppose m ≥ 4n and let A1, . . . , Am be matrices of the form aja∗
j , where each ai ∈ Cn is

a random complex standard Gaussian vector. Then with probability at least 1−2e−C10m, W := 1
m

∑m
j=1 Aj

is positive definite and obeys

max
{‖W‖∞, ‖W−1‖∞, κ(W)

} ≤ C11. (8.6)

Here, C9, C10, C11 > 0 denote universal positive constants.

Note that such a construction corresponds to setting t = 1
m (1, . . . , 1)T ∈ Rm, which obeys ‖t‖�q′ =

1/m1/q.

Proof. For the sake of simplicity, we are going to establish the statement for real standard Gaussian
vectors. Establishing the complex case can be done analogously and leads to slightly different constants.
Let e1, . . . , em denote the standard basis in Rm. We define the auxiliary m × n matrix A := ∑m

i=1 eia∗
i ,

which obeys

1

m
AT A = 1

m

m∑
i=1

aie
∗
i

m∑
j=1

eja
∗
j = 1

m

m∑
i=1

aia
∗
i = 1

m

m∑
i=1

Ai = W .

Also, by construction, A is a random matrix with standard Gaussian entries. Essentially, this relation
implies that mW is Wishart distributed. From (8) and the defining properties of eigen- and singular
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30 M. KABANAVA ET AL.

values, we infer that

√
λmin(W) = 1√

m

√
λmin (AT A) = 1√

m
λmin

(√
AT A

)
= 1√

m
σmin(A) (8.7)

and an analogous statement is true for the largest eigenvalue λmax(W). Since A is a Gaussian m × n
matrix, concentration of measure implies that for any τ̃ > 0

√
m − √

n − τ̃ ≤ σmin(A) ≤ σmax(A) ≤ √
m + √

n + τ̃ (8.8)

with probability at least 1 − 2e−τ̃2/2—see e.g. [70, Corollary 5.35] or [28, Theorem 9.26]. Combining
this with (8.7), recalling the assumption m ≥ 4n and defining τ = τ̃ /

√
m allows for establishing

1

2
− τ ≤ 1 −

√
n

m
− τ ≤ √

λmin(W) ≤ √
λmax(W) ≤ 1 +

√
n

m
+ τ ≤ 3

2
+ τ

with probability at least 1 − 2e−mτ2/2. This inequality chain remains valid, if we square the individual
terms. Setting τ = 1/4 thus allows us to conclude

max

{
λmax(W), λ−1

min(W),
λmax(W)

λmin(W)

}
≤
(

3/2 + τ

1/2 − τ

)2

= 49 = C11, (8.9)

with probability at least 1 − 2e−m/32. �

Alternatively, we could have relied on bounds on the condition number of Gaussian random matrices
presented in [21]. While these bounds would be slightly tighter, we feel that our derivation is more
illustrative and it suffices for our purpose.

Proposition 8.2 Suppose m ≥ C̃4nr log n and let A1, . . . , Am be matrices of the form aja∗
j , where each

aj ∈ Cn is chosen independently from a weighted set {pi, wi}N
i=1 of vectors obeying ‖wi‖2

�2
= √

n(n + 1)

for all 1 ≤ i ≤ N and

∥∥∥∥∥
N∑

i=1

piwiw
∗
i −

√
n + 1

n
id

∥∥∥∥∥
∞

≤ 1

2
. (8.10)

Then with probability at least 1 − e−γ C̃4r , the matrix W := 1
m

∑m
j=1 Aj is positive definite and obeys

max
{‖W‖∞, ‖W−1‖∞, κ(W)

} ≤ 8. (8.11)

Here, C̃4 > 1 and 0 < γ ≤ 1 denote absolute constants of adequate size.

Note that condition (8.10) is slightly stronger than the corresponding condition in Theorem 7.1.
Also, the construction of W again uses t = 1

m (1 . . . , 1)T ∈ Rm.
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STABLE LOW-RANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES 31

Proof. In order to show this statement, we are going to employ the matrix Bernstein inequality4 [68,
Theorem 6.1], see also [1], in order to establish∥∥∥∥∥W −

√
n + 1

n
id

∥∥∥∥∥
∞

≤ 3

4
(8.12)

with high probability. Let λ1(W), . . . , λn(W) denote the eigenvalues of W . Then such a bound together
with the definition of the operator norm assures

1 − λmin(W) ≤
√

n + 1

n
− λmin(W) ≤

∣∣∣∣∣
√

n + 1

n
− λmin(W)

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣
√

n + 1

n
− λi(W)

∣∣∣∣∣
=
∥∥∥∥∥
√

n + 1

n
id −W

∥∥∥∥∥
∞

≤ 3/4,

λmax(W) −
√

n + 1

n
≤
∣∣∣∣∣λmax(W) −

√
n + 1

n

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣
√

n + 1

n
− λi(W)

∣∣∣∣∣
=
∥∥∥∥∥W −

√
n + 1

n
id

∥∥∥∥∥
∞

≤ 3/4.

This in turn implies λmin(W) ≥ 1/4 as well as λmax(W) ≤ 3/4 +
√

n+1
n ≤ 2 for n ≥ 2 and the desired

bound (8.11) readily follows.
It remains to assure the validity of (8.12) with high probability. To this end, for 1 ≤ k ≤ m, we define

the random matrices Mk := 1
m

(
aka∗

k − E
[
aka∗

k

])
, where each ak is chosen independently at random from

the weighted set {pi, wi}N
i=1. This definition assures

∥∥∥∥∥W −
√

n + 1

n
id

∥∥∥∥∥
∞

=
∥∥∥∥∥

m∑
k=1

(
Mk + E

[
aka∗

k

] ) −
√

n + 1

n
id

∥∥∥∥∥
∞

≤
∥∥∥∥∥

m∑
k=1

Mk

∥∥∥∥∥
∞

+ 1

2
(8.13)

via the triangle inequality and assumption (8.10) and along similar lines

∥∥E
[
aka∗

k

]∥∥
∞ ≤ 1

2
+
√

n + 1

n
≤ 2 (8.14)

readily follows for any 1 ≤ k ≤ m. The random matrices Mk have mean zero by construction and each
of them obeys

‖Mk‖∞ = 1

m

∥∥aka∗
k − E

[
aka∗

k

]∥∥
∞ ≤ 1

m
max

{‖aka∗
k‖∞, ‖E

[
aka∗

k

] ‖∞
} = 1

m
‖ak‖2

�2
=

√
(n + 1)n

m
,

4 Resorting to the matrix Chernoff inequality would allow for establishing a similar result. However, in the case of an exact
tight frame, the numerical constants obtained by doing so are slightly worse.
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32 M. KABANAVA ET AL.

as well as

∥∥E
[
M2

k

]∥∥
∞ = 1

m2

∥∥∥E
[(

aka∗
k

)2
]

− E
[
aka∗

k

]2
∥∥∥

∞
= 1

m2

∥∥∥√(n + 1)nE
[
aka∗

k

] − E
[
aka∗

k

]2
∥∥∥

∞

= 2

m2
max

{√
(n + 1)n

∥∥E
[
aka∗

k

]∥∥
∞ ,

∥∥E
[
aka∗

k

]∥∥2

∞
}

≤ 2
√

(n + 1)n

m2
.

Hence ∥∥∥∥∥
m∑

k=1

E
[
M2

k

]∥∥∥∥∥
∞

≤ 2
√

(n + 1)n

m
.

These bounds allow us to set R :=
√

(n+1)n
m , σ 2 := 2

√
(n+1)n
m and apply the matrix Bernstein inequality

([68, Theorem 6.1], [1]) in order to establish

Pr

[∥∥∥∥∥
m∑

k=1

Mk

∥∥∥∥∥
∞

≥ τ

]
≤ n exp

(
− τ 2/2

σ 2 + Rτ

)
≤ n exp

(
− 3τ 2m

16
√

(n + 1)n

)

for 0 < τ ≤ σ 2/R = 2. Setting τ = 1/4 and inserting m ≥ C̃4nr log(n) (where C̃4 is large enough)
assures that (8.12) holds with probability of failure smaller than e−γ C̃4r via (8.13) for a suitable γ > 0.�

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We content ourselves with establishing the design case and point out that the
Gaussian case can be proved analogously (albeit with different constants). Fix 0 < ρ < 1/8 and
suppose that

m ≥ C3

(
1 + (

1 + ρ−1
)2
)

nr log n

measurement vectors have been chosen independently from an approximate 4-design. Theorem 7.1
then assures that the resulting measurement operator A obeys the Frobenius-robust rank null space
property with constants ρ < 1/8 and τ ≤ C̃6/m1/q with probability at least 1 − e−C̃5m. Likewise,
Proposition 8.2 assures that with probability at least 1 − e−γ C̃4r , setting t = 1

m (1, . . . , 1)T ∈ Rm leads
to a positive definite W = ∑m

j=1 tjAj obeying κ(W) ≤ 8. Note that such a t obeys ‖t‖�q′ = 1/m1/q and
also 0 < ρ < 1/8 ≤ 1/κ(W) holds by construction. The union bound over these two assertions failing
implies that the requirements of Theorem 8.1 are met with probability at least

1 − e−C̃5m − e−γ C̃4r ≥ 1 − e−γ̃ C̃4r ,

where γ̃ denotes a sufficiently small absolute constant and C̃4 = m/nr log n. The constants C4 and s
presented in Theorem 1.4 then amount to s = γ̃ C̃4 and C2 ≥ C̃4. Inserting ‖t‖�q′ = 1/m1/q and the

bounds on ‖W‖∞, ‖W−1‖∞, κ(W) from Proposition 8.2 into (8.5) yields

‖Z − X‖p ≤ 2Cκ(W)

r1−1/p
‖Xc‖1 + r1/p−1/2‖A (Z) − A (X)‖�q‖W−1‖∞

(
C‖t‖�q′√

r
+ D‖W‖∞τ

)
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≤ 16C

r1−1/p
‖Xc‖1 + 8r1/p−1/2‖A (Z) − A (X)‖�q

(
C√

rm1/q
+ 8DC̃6

m1/q

)

≤ C3

r1−1/p
‖Xc‖1 + C4r1/p−1/2

m1/q
‖A (Z) − A (X)‖�q

with constants C3 = 16C and C4 = 8C + 8DC̃6 (where C, D were introduced in Theorem 8.1). �

Remark 8.1 In Corollary 2.2 we focus on recovering density operators, i.e. positive semidefinite
matrices X with trace one. These properties assure

‖Z‖1 − ‖X‖1 = tr (Z) − tr (X) = 0

for any pair of density operators X, Z ∈ Hn. As a result, Theorem 3.2 implies that validity of the
Frobenius-robust rank null space property with parameters ρ, τ ensures

‖Z − X‖1 ≤ 2(1 + ρ)2

1 − ρ
‖Xc‖1 + τ(3 + ρ)

1 − ρ

√
r‖A (Z − X)‖�q

for any pair of density operators X , Z . Likewise, Theorem 7.1 assures that a measurement operator A
containing m ≥ C4ρ

−2nr log n approximate 4-design measurements Aj = √
n(n + 1)aja∗

j obeys this null

space property with parameters ρ and τ = C6
m1/q with probability at least 1 − e−C5m. Fixing 0 < ρ < 1,

setting C̃1 = C4ρ
−2, C̃3 = 2(1+ρ)2

(1−ρ)
and C̃4 = 2C6(3+ρ)

(1−ρ)
, we may conclude

‖Z − X‖1 ≤ C̃3‖Xc‖1 + C̃4
√

r

2m1/q
‖A (Z − X)‖�q ∀X, Z ∈ {Y ∈ Hn : Y � 0, tr(Y) = 1}

with probability at least 1 − e−C̃5m. Let now X be any density operator of interest and assume that we
have access to noisy measurements of the form A (X) = b + w. Then, the minimizer Z� of

min
Z∈Hn

‖A (Z) − b‖�q subject to Z � 0, tr(Z) = 1,

is also a density operator, which obeys

‖Z� − X‖1 ≤C̃3‖Xc‖1 + C̃4
√

r

2m1/q
‖(A (

Z�
) − b) + (b − A (X))‖�2

≤C̃3‖Xc‖1 + C̃4
√

r

2m1/q

(‖A (Z�) − b‖�2 + ‖A (X) − b‖�2

)

≤C̃3‖Xc‖1 + C̃4

m1/q

√
r‖w‖�2 ,

because ‖A (Z�) − b‖�2 ≤ ‖A (X) − b‖�2 = ‖w‖�2 by construction. This is the assertion of Corollary
2.2.
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Appendix: A brief review of finite-dimensional quantum mechanics

For the sake of being self-contained we briefly recapitulate crucial concepts of (finite-dimensional)
quantum mechanics without going too much into detail. For further reading on the topics introduced
here, we defer the interested reader to [55, Chapter 2.2].

An isolated quantum mechanical system is fully described by its density operator. For a finite n-
dimensional quantum system, such a density operator corresponds to an Hermitian, positive semidefinite
matrix ρ with unit trace.

The most general notion of a measurement is that of a POVM. For an n-dimensional quantum system,
a POVM corresponds to a collection M = {Em}m∈I of positive semidefinite n × n matrices that sum up
to identity, i.e.

∑
m∈I

Em = id.

The indices m ∈ I indicate the possible measurement outcomes of performing such a POVM measure-
ment. Upon performing M on a system described by ρ, quantum mechanics then postulates that the
probability of obtaining the outcome (labelled by) m corresponds to

p(m, ρ) = tr (Emρ) .

Repeating the same measurement (i.e. preparing ρ and measuring M ) many times allows one to estimate
the n probabilities p(λi, ρ) ever more accurately.

Note that the definitions of ρ and M assure that p(m, ρ)m∈I is in fact a valid probability distribution.
Indeed, p(m, ρ) ≥ 0 follows from positive semidefiniteness of both ρ and Em. Unit trace of ρ assures
proper normalization via

∑
m∈I

p(m, ρ) =
∑
m∈I

tr (Emρ) = tr (id ρ) = tr(ρ) = 1.
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In this work we analyze the problem of phase retrieval from Fourier measurements 
with random diffraction patterns. To this end, we consider the recently introduced 
PhaseLift algorithm, which expresses the problem in the language of convex 
optimization. We provide recovery guarantees which require O(log2 d) different 
diffraction patterns, thus improving on recent results by Candès et al. [1], which 
demand O(log4 d) different patterns.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The problem of phase retrieval

In this work we are interested in the problem of phase retrieval which is of considerable importance in 
many different areas of science, where capturing phase information is hard or even infeasible. Problems of 
this kind occur, for example, in X-ray crystallography, diffraction imaging, and astronomy.

More formally, phase retrieval is the problem of recovering an unknown complex vector x ∈ Cd from 
amplitude measurements

yi = |〈ai, x〉|2 i = 1, . . . ,m, (1)
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for a given set of measurement vectors a1, . . . , am ∈ Cd. The observations y = (y1, . . . , ym) are insensitive 
to a global phase change x �→ eiφx – hence in the following, notions like “recovery” or “injectivity” are 
always implied to mean “up to a global phase”. Clearly, the most fundamental question is: Which families 
of measurement vectors {ai} allow for a recovery of x in principle? I.e., for which measurements is the map 
x �→ y defined by (1) injective?

Approaches based on algebraic geometry (for example [2,3]) have established that for determining x, 
4d + o(1) generic measurements are sufficient and 4d − O(log d) such observations are necessary. Here, 
“generic” means that the measurement ensembles for which the property fails to hold lie on a low-dimensional 
subvariety of the algebraic variety of all tight measurement frames.

This notion of generic success, however, is mainly of theoretical interest. Namely, injectivity alone neither 
gives an indication on how to recover the unique solution, nor is there any chance to directly generalize the 
results to the case of noisy measurements. It should be noted, however, that recently the notion of injectivity 
has been refined to capture aspects of stability with respect to noise [4].

Paralleling these advances, there have been various attempts to find tractable recovery algorithms that 
yield recovery guarantees. Many of these approaches are based on a linear reformulation in matrix space, 
which is well-known in convex programming. The crucial underlying observation is that the quadratic 
constraints (1) on x are linear in the outer product X = xx∗:

yi = |〈ai, x〉|2 = tr ((aia
∗
i )X) . (2)

Balan et al. [5] observed that for the right choice of d2 measurement vectors ai, this linear system in the 
entries of X admits for a unique solution, so the problem can be explicitly solved using linear algebra 
techniques. This approach, however, does not make use of the low-rank structure of X, which is why the 
required number of measurements is so much larger than what is required for injectivity.

The PhaseLift algorithm proposed by Candès et al. [6–8] uses in addition the property that X is of rank 
one, so even when the number of measurements is smaller than d2 and there is an entire affine space of 
matrices satisfying (2), X is the solution of smallest rank. While finding the smallest rank solution of a 
linear system is, in general, NP hard, there are a number of algorithms known to recover the smallest rank 
solution provided the system satisfies some regularity conditions. The first such results were based on convex 
relaxation (see, for example, [9–11]). PhaseLift is also based on this strategy. For measurement vectors drawn 
independently at random from a Gaussian distribution, the number of measurements required to guarantee 
recovery with high probability was shown to be of optimal order, scaling linearly in the dimension [7,8]
– see also [12] for a comparable statement valid for recovering matrices of arbitrary rank. A generalized 
version of this result – valid for projective measurements onto random subspaces rather than random 
vectors – was established in [13]. Moreover, Ref. [14] even identifies a deterministic, explicitly engineered set 
of 4d − 4 measurement vectors and proves that PhaseLift will successfully recover generic signals from the 
associated measurements. Conversely, any complex vector is uniquely determined by 4d −4 generic phaseless 
measurements [15].

Since these first constructive results for the phase retrieval problem, recovery guarantees have been proved 
for a number of more efficient algorithms closer to the heuristic approaches typically used in practice. For 
example, in [16], an approach based on polarization is analyzed and in [17], the authors study an alternating 
minimization algorithm. In both works, recovery guarantees are again proved for Gaussian measurements. 
Further numerical approaches have been proposed and studied in [18].

To relate all these results to practice, the structure of applications needs to be incorporated into the 
setup, which corresponds to reducing randomness and considering structured measurements. For PhaseLift, 
the first partial derandomization has been provided by the authors of this paper, considering measurements 
sampled from spherical designs, that is, polynomial-size sets which generalize the notion of a tight frame 
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to higher-order tensors [19]. Recently, this result has been considerably improved in [12]. Arguably, these 
derandomized measurement setups are still mainly of theoretical interest.

A structured measurement setup closer to applications is that of coded diffraction patterns. These corre-
spond to the composition of diagonal matrices and the Fourier transform and model the modified application 
setup where diffraction masks are placed between the object and the screen as originally proposed in [20]. 
The first recovery guarantees from masked Fourier measurements were provided for polarization based recov-
ery [21], where the design of the masks is very specific and intimately connected to the recovery algorithm. 
The required number of masks is O(log d), which corresponds to O(d log d) measurements.

For the PhaseLift algorithm, recovery guarantees from masked Fourier measurements were first provided 
in [1]. The results require O(d log4 d) measurements and hold with high probability when the masks are 
chosen at random, which is in line with the observation from [20] that random diffraction patterns are 
particularly suitable.

In this paper, we consider the same measurement setup as [1], but improve the bound on the required 
number of measurements to O(d log2 d).

2. Problem setup and main results

2.1. Coded diffraction patterns

As in [1], we will work with the following setup:
In every step, we collect the magnitudes of the discrete Fourier transform (DFT) of a random modulation 

of the unknown signal x. Each such modulation pattern is modeled by a random diagonal matrix. More 
formally, for ω := exp

( 2πi
d

)
a d-th root of unity and {e1, . . . , ed} the standard basis of Cd, denote by

fk =
d∑

j=1
ωjkej (3)

the k-th discrete Fourier vector, normalized so that each entry has unit modulus. Furthermore, consider the 
diagonal matrix

Dl =
d∑

i=1
εl,ieie

∗
i (4)

where the εl,i’s are independent copies of a real-valued1 random variable ε which obeys

E[ε] = E[ε3] = 0,

|ε| ≤ b almost surely for some b > 0, (5)

E[ε4] = 2 E[ε2]2 and we define ν := E
[
ε2
]
. (6)

Then the measurements corresponding to L such diffraction patterns are given by

yk,l = |〈fk, Dlx〉|2 1 ≤ k ≤ d, 1 ≤ l ≤ L. (7)

It turns out (Lemma 7 below) that condition (6) on ε ensures that the measurement ensemble forms a 
spherical 2-design, which draws a connection to [5] and [19].

1 Ref. [1] also included a strongly related model where ε is a complex random variable. We have opted to keep ε real, which 
implies that the Dl are hermitian. This, in turn, has allowed us to slightly simplify notation throughout.
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As an example, the criteria above include the model

ε ∼

⎧
⎨
⎩

√
2 with prob. 1/4,

0 with prob. 1/2,
−

√
2 with prob. 1/4.

(8)

which has been discussed in [1]. In this case, each modulation is given by a Rademacher vector with random 
erasures.

2.2. Convex relaxation

Following [5], we rewrite the measurement constraints as the inner product of two rank 1 matrices, one 
representing the signal, the other one the measurement coefficients. In the coded diffraction setup, we obtain, 
as in [1], that the inner product of (7) can be translated into matrix form by applying the following “lifts”:

X := xx∗ and Fk,l := Dlfkf
∗
kDl.

Occasionally, we will make use of the representation with respect to the standard basis, which reads

Fk,l =
d∑

i,j=1
εl,iεl,jω

k(i−j)eie
∗
j . (9)

With these definitions, the dL individual linear measurements assume the following form

yk,l = Tr (Fk,lX) k = 1, . . . , d, 1 ≤ l ≤ L

and the phase retrieval problem thus becomes the problem of finding rank 1 solutions X = xx∗ compatible 
with these affine constraints. Rank-minimization over affine spaces is NP-hard in general. However, it is 
now well-appreciated [9–11,7] that nuclear-norm based convex relaxations solve this problems efficiently in 
many relevant instances. Applied to phase retrieval, the relaxation becomes

argminX′ ‖X ′‖1
subject to tr (Fk,lX

′) = yk,l k = 1, . . . n, 1 ≤ l ≤ L,

X ′ = (X ′)∗

X ′ ≥ 0, (10)

which has been dubbed Phaselift by its inventors [6–8]. For this convex relaxation, recovery guarantees are 
known for measurement vectors drawn i.i.d. at random from a Gaussian distribution [7,8], t-designs [19,12], 
or in the masked Fourier setting [1].

We want to point out that access to additional information can considerably simplify Phaselift. In partic-
ular, knowledge of the signal’s intensity y0 = ‖x‖2

�2
results in an additional trace constraint which together 

with X ′ ≥ 0 implies ‖X ′‖1 = y0 for any feasible X ′. Consequently, minimizing the nuclear norm becomes 
redundant and (10) can be replaced by the feasibility problem

find X ′

subject to tr (Fk,lX
′) = yk,l k = 1, . . . n, 1 ≤ l ≤ L,

X ′ = (X ′)∗

tr(X ′) = y0,

X ′ ≥ 0. (11)
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2.3. Our contribution

In this paper, we adopt the setup from [1]. Our main message is that recovery of x can be guaranteed 
already for

L ≥ C log2 d

random diffraction patterns, provided that the signal’s intensity y0 = ‖x‖2
�2

is known.2 This improves the 
bound given in [1] by a factor of O(log2 d). It is significant, as it indicates that the provably achievable rates 
are approaching the ultimate limit. Indeed, for the Rademacher masks with random erasures introduced 
above, a lower bound for the number of diffraction patterns required to allow for recovery with any algo-
rithm is given by O(log d). This follows from a standard coupon collector’s argument similar to the ones 
provided in [10,11]. For completeness, the lower bound is precisely formulated and proved in Lemma 19 in 
Appendix A.

Thus there cannot be a recovery algorithm requiring fewer than O(logd) masks and there is only a single 
log-factor separating our results from an asymptotically tight solution.

More precisely, our version of [1, Theorem 1.1] reads:

Theorem 1 (Main theorem). Let x ∈ Cd be an unknown signal with ‖x‖�2 = 1 and let d ≥ 3 be an odd number. 
Suppose that L complete Fourier measurements using independent random diffraction patterns (as defined 
in Section 2.1) are performed. Then with probability at least (1 − e−ω) Phaselift (the convex optimization 
problem (10) endowed with the additional constraint tr(X ′) = 1, or the feasibility problem (11)) recovers x
up to a global phase, provided that

L ≥ Cω log2 d.

Here, ω ≥ 1 is an arbitrary parameter and C a dimension-independent constant that can be explicitly 
bounded.

The number C is of the form C = C̃ b8

ν4 log2
2
(
b2/ν

)
, where b and ν were defined in (5) and (6), respectively. 

Also, C̃ an absolute constant for which an explicit estimate can be extracted from our proof.
For the benefit of the technically-minded reader, we briefly sketch the relation between the proof tech-

niques used here, as compared to References [1] and [19].

• The general structure of this document closely mimics [19] (which bears remarkable similarity to [1], 
even though the papers were written completely independently and with different aims in mind).

• From [1] we borrow the use of Hoeffding’s inequality to bound the probability of “the inner product 
between the measurement vectors and the signal becoming too large”. This is Lemma 13 below. Our 
previous work also bounded the probability of such events [19, Lemma 13] – however in a weaker way 
(relying only on certain t-th moments as opposed to a Hoeffding bound).

• Both [19,1] as well as the present paper estimate the condition number of the measurement oper-
ator restricted to the tangent space at xx∗ (“robust injectivity”). Our Proposition 8 improves over 
[1, Section 3.3] by using an operator Bernstein inequality instead of a weaker operator Hoeffding 
bound.

• Finally, we use a slightly refined version of the golfing scheme to construct an approximate dual certifi-
cate (following [11, Section III.B]).

2 This can, for instance, be achieved by starting the measurement process with a trivial modulation pattern – i.e. D0 corresponds 
to the identity matrix – and summing up the d corresponding measurements (7).
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2.4. More general bases and outlook

The result allows for a fairly general distribution of the masks Dl, but refers specifically to the 
Fourier basis. An obvious question is how sensitively the statements depend on the properties of this 
basis.

We begin by pointing out that Theorem 1 immediately implies a corollary for higher-dimensional Fourier 
transforms. In diffraction imaging applications, for example, one would naturally employ a 2-D Fourier 
basis

fk,l =
dx∑

i=1

dy∑

j=1
ωik

dx
ωjl

dy
ei,j , (12)

with dx and dy the horizontal and vertical resolution respectively, ωdx
:= exp

(
2πi
dx

)
, ωdy

:= exp
(

2πi
dy

)
, 

and ei,j the position space basis vector representing a signal located at coordinates (i, j). Superfi-
cially, (12) looks quite different from the one-dimensional case (3). However, a basic application of 
the Chinese Remainder Theorem shows that if dx and dy are co-prime, then the 2-D transform re-
duces to the 1-D one for dimension dxdy (in the sense that the respective bases agree up to relabel-
ing) [22]. An analogous result holds for higher-dimensional transforms [22], proving the following corol-
lary.

Corollary 2. Assume d =
∏k

i=1 di is the product of mutually co-prime odd numbers greater than 3. Then 
Theorem 1 remains valid for the k-dimensional Fourier transform over d1, . . . , dk.

More generally speaking, our argument employs the particular properties of Fourier bases in two places: 
Lemma 7 and Lemma 9.

The former lemma shows that the measurements are drawn from an isotropic ensemble (or tight frame) in 
the relevant space of hermitian matrices. A similar condition is frequently used in works on phase retrieval, 
low-rank matrix completion, and compressed sensing (e.g. [19,1,23,24,11]). Properties of the Fourier basis 
are used in the proof of Lemma 7 only for concreteness. Using relatively straight-forward representation 
theory, one can give a far more abstract version of the result which is valid for any basis satisfying two 
explicit polynomial relations (cf. the remark below the lemma). The combinatorial structure of Fourier 
transforms is immaterial at this point.

This contrasts with Lemma 9 which currently prevents us from generalizing the main result to a broader 
class of bases. Its proof uses explicit coordinate expressions of the Fourier basis to facilitate a series of 
simplifications. Identifying the abstract gist of the manipulations is the main open problem which we hope 
to address in future work.

We make use of the condition that d be odd only for Lemma 7. While that particular Lemma fails to 
hold for even dimensions, we find it plausible that the result as a whole remains essentially true for even 
dimensions.

It would also be interesting to use the techniques of the present paper to re-visit the problem of 
quantum state tomography [25–28] (which was the initial motivation for one of the authors to become 
interested in low-rank recovery methods). Indeed, the original work on quantum state tomography and 
low-rank recovery [25] was based on a model where the expectation value of a Pauli matrix is the el-
ementary unity of information extractable from a quantum experiment. While this correctly describes 
some experiments, it is arguably more common that the statistics of the eigenbasis of an observable are 
the objects that can be physically directly accessed. For this practically more relevant case, no recovery 
guarantees seem to be currently known and the methods used here could be used to amend that situa-
tion.
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3. Technical background and notation

3.1. Vectors, matrices, and matrix valued operators

The signals x are assumed to live in Cd equipped with the usual inner product 〈·, ·〉. We denote the 
induced norm by

‖z‖�2 =
√

〈z, z〉 ∀z ∈ Cd.

Vectors in Cd will be denoted by lower case Latin characters. For z ∈ Cd we define the absolute value 
|z| ∈ Rd

+ component-wise |z|i = |zi|.
On the level of matrices we will exclusively encounter d × d hermitian matrices and denote them by 

capital Latin characters. Endowed with the Hilbert–Schmidt (or Frobenius) scalar product

(Z, Y ) = tr(ZY ) (13)

the space Hd of all d × d hermitian matrices becomes a Hilbert space itself. In addition to that, we will 
require three different matrix norms

‖Z‖1 = tr(|Z|) (trace or nuclear norm),

‖Z‖2 =
√

tr(Z2) (Frobenius norm),

‖Z‖∞ = sup
y∈Cd

|〈y, Zy〉|
‖y‖2

�2

(operator norm). (14)

In the definition of the trace norm, |Z| denotes the unique positive semidefinite matrix obeying |Z|2 = Z2

(or equivalently |Z| =
√
Z2 which is unique). For arbitrary matrices Z of rank at most r, the norms above 

are related via the inequalities

‖Z‖2 ≤ ‖Z‖1 ≤ √
r‖Z‖2 and ‖Z‖∞ ≤ ‖Z‖2 ≤ √

r‖Z‖∞.

Recall that a hermitian matrix Z is positive semidefinite if one has 〈y, Zy〉 ≥ 0 for all y ∈ Cd. We write 
Y ≥ Z iff Y − Z is positive semidefinite.

In this work, hermitian rank-1 projectors are of particular importance. They are of the form Z = zz∗

with z ∈ Cd. The vector z can then be recovered from Z up to a global phase factor via the singular value 
decomposition. In this work, the most prominent rank-1 projectors are X = xx∗ and Fk,l = Dlfk(Dlfk)∗.

Finally, we will also encounter matrix-valued operators acting on the matrix space Hd. Here, we will 
restrict ourselves to operators that are hermitian with respect to the Hilbert–Schmidt inner product. We 
label such objects with calligraphic letters. The operator norm becomes

‖M‖op = sup
Z∈Hd

| tr(ZMZ)|
‖Z‖2

2
. (15)

It turns out that only two classes of such operators will appear in our work, namely the identity map

I : Hd → Hd

Z �→ Z ∀Z ∈ Hd

and (scalar multiples of) projectors onto some matrix Y ∈ Hd as given by
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ΠY : Hd → Hd

Z �→ Y (Y,Z) = Y tr(Y Z) ∀Z ∈ Hd.

An important example of the latter class is

Π1 : Z �→ 1 tr(1Z) = tr(Z)1 ∀Z ∈ Hd.

Note that the normalization is such that 1
dΠ1 is idempotent, i.e. a properly normalized projection. Indeed, 

for Z ∈ Hd arbitrary it holds that

(d−1Π1)2Z = d−21 tr(1Π1Z) = d−2 tr(1) tr(Z)1 = d−1Π1Z. (16)

The notion of positive-semidefiniteness directly translates to matrix valued operators. It is easy to check 
that all the operators introduced so far are positive semidefinite. From (16) we obtain the ordering

0 ≤ Π1 ≤ dI. (17)

3.2. Tools from probability theory

In this section, we recall some concentration inequalities which will prove useful for our argument. Our 
first tool is a slight extension of Hoeffding’s inequality [29].

Theorem 3. Let z = (z1, . . . , zd) ∈ Cd be an arbitrary vector and let εi, i = 1, . . . d, be independent copies of 
a real-valued, centered random variable ε which is almost surely bounded in modulus by b > 0. Then

Pr
[∣∣∣∣∣

d∑

i=1
εizi

∣∣∣∣∣ ≥ t‖z‖�2

]
≤ 4 exp

(
−t2/(4b2)

)
. (18)

One way to prove this statement, is to split up z into x + iy with x, y ∈ Rd and noting that 
‖z‖�2 ≥ (‖x‖�2 + ‖y‖�2) /

√
2 holds. Splitting up the sum into real and imaginary parts, applying the trian-

gle inequality and bounding Pr
[∣∣∣
∑d

i=1 εixi

∣∣∣ ≥ t‖x‖�2/
√

2
]

and Pr
[∣∣∣
∑d

i=1 εiyi

∣∣∣ ≥ t‖y‖�2/
√

2
]

individually 

by means of Hoeffding’s inequality (or a slightly generalized version thereof [30, Corollary 7.21]) then es-
tablishes (18) via the union bound.

Secondly, we will require two matrix versions of Bernstein’s inequality. Such matrix valued large deviation 
bounds have been established first in the field of quantum information by Ahlswede and Winter [31] and 
introduced to sparse and low-rank recovery in [25,11]. We make use of refined versions from [32,33], see also 
[30, Chapter 8.5] for the former. Note that as Hd is a finite dimensional vector space, the results also apply 
to matrix valued operators as introduced in Section 3.1.

Theorem 4 (Uniform operator Bernstein inequality). (See [32,11].) Consider a finite sequence {Mk} of 
independent random self-adjoint matrices. Assume that each Mk satisfies E [Mk] = 0 and ‖Mk‖∞ ≤ R

(for some finite constant R) almost surely. Then with the variance parameter σ2 := ‖ 
∑

k E 
[
M2

k

]
‖∞, the 

following chain of inequalities holds for all t ≥ 0.

Pr
[∥∥∥
∑

k

Mk

∥∥∥
∞

≥ t

]
≤ d exp

(
− t2/2

σ2 + Rt/3

)
≤
{

d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.
(19)
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Theorem 5 (Smallest eigenvalue Bernstein inequality). (See [33].) Let S =
∑

k Mk be a sum of i.i.d. random 
matrices Mk which obey E [MK ] = 0 and λmin(Mk) ≥ −R almost surely for some fixed R. With the variance 
parameter σ2(S) = ‖ 

∑
k E 

[
M2

k

]
‖∞ the following chain of inequalities holds for all t ≥ 0.

Pr [λmin(S) ≤ −t] ≤ d exp
(

− t2/2
σ2 + Rt/3

)
≤
{

d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.

Finally, we are also going to require a type of vector Bernstein inequality. Note that, since Hd is a 
d2-dimensional real vector space, the statement remains valid for a sum of random hermitian matrices.

Theorem 6 (Vector Bernstein inequality). Consider a finite sequence {Mk} of independent random vectors. 
Assume that each Mk satisfies E [Mk] = 0 and ‖Mk‖2 ≤ B (for some finite constant B) almost surely. Then 
with the variance parameter σ2 :=

∑
k E 

[
‖Mk‖2

2
]
,

Pr
[∥∥∥∥∥
∑

k

Mk

∥∥∥∥∥
2

≥ t

]
≤ exp

(
− t2

4σ2 + 1
4

)

holds for any t ≤ σ2/B.

This particular vector-valued Bernstein inequality is based on the exposition in [34, Chapter 6.3, equa-
tion (6.12)] and a direct proof can be found in [11].

4. Proof ingredients

4.1. Near-isotropicity

In this section we study the measurement operator3

R : Hd → Hd, R :=
L∑

l=1
Ml with (20)

MlZ := 1
ν2dL

d∑

k=1
ΠFk,l

Z = 1
ν2dL

d∑

k=1
Fk,l tr(Fk,lZ), (21)

which just corresponds to R = 1
ν2dLA∗A, where ν was defined in (6).

The following result shows that this operator is near-isotropic in the sense of [19,6].

Lemma 7 (R is near-isotropic). The operator R defined in (20) is near-isotropic in the sense that

E[R] = LE [Ml] = I + Π1 or E [R(Z)] = Z + tr(Z)1 ∀Z ∈ Hd. (22)

A proof of Lemma 7 can be found in [1]. However, we still present a proof – which is of a slightly different 
spirit – in Appendix A for the sake of being self-contained.

Two remarks are in order with regard to the previous lemma.
First, it is worthwhile to point out that near-isotropicity of R is equivalent to stating that the set of all 

possible realizations of Dlfk form a 2-design. This has been made explicit recently in [35, Lemma 1]. The 

3 We are going to use the notations M(Z) and MZ equivalently.

154



JID:YACHA AID:1058 /FLA [m3L; v1.159; Prn:11/08/2015; 11:59] P.10 (1-28)
10 D. Gross et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

notion of higher-order spherical designs is the basic mathematical object of our previous work [19] on phase 
retrieval.

Second, our proof of Lemma 7 uses the explicit representation of the measurement vectors with respect 
to the standard basis. As alluded to in Section 2.4, a more abstract proof can be given. We sketch the 
basic idea here and refer the reader to an upcoming work for details [36]. Consider the case where ε is a 
symmetric random variable (i.e., where ε has the same distribution as −ε). In that case, the distribution of 
the Dl is plainly invariant under permutations of the main diagonal elements and under element-wise sign 
changes. These are the symmetries of the d-cube. They constitute the group Zd

2 � Sd, sometimes referred 
to as the hyperoctahedral group. Using a standard technique [37,38], conditions for near-isotropicity can 
be phrased in terms of the representation theory of the hyperoctahedral group acting on Sym2(Cd). This 
action decomposes into three explicitly identifiable irreducible components, from which one can deduce that 
near-isotropicity holds for any basis that fulfills two 4th order polynomial equations [36].

Let now x ∈ Cd be the signal we aim to recover. Since the intensity of x (i.e., its �2-norm) is known by 
assumption, we can w.l.o.g. assume that ‖x‖�2 = 1. As in [7,19,1] we consider the space

T :=
{
xz∗ + zx∗ : z ∈ Cd

}
⊂ Hd (23)

which is the tangent space of the manifold of all rank-1 hermitian matrices at the point X = xx∗. The 
orthogonal projection onto this space can be given explicitly:

PT : Hd → Hd

Z �→ XZ + ZX − XZX (24)

= XZ + ZX − tr(XZ)X. (25)

The Frobenius inner product allows us to define an ortho-complement T⊥ of T in Hd. We denote the 
projection onto T⊥ by P⊥

T and decompose any matrix Z ∈ Hd as

Z = PTZ + P⊥
T Z =: ZT + Z⊥

T .

We point out that, in particular,

PT Π1PT = ΠX and ‖PTZ‖∞ ≤ 2‖Z‖∞ (26)

holds for any Z ∈ Hd. The first fact follows by direct calculation, while the second one comes from

‖ZT ‖∞ = ‖Z − Z⊥
T ‖∞ ≤ ‖Z‖∞ + ‖Z⊥

T ‖∞ ≤ 2‖Z‖∞

where the last estimate used the pinching inequality [39] (Problem II.5.4).

4.2. Well-posedness/injectivity

In this section, we follow [7,11,1] in order to establish a certain injectivity property of the measurement 
operator A.

Our Proposition 8 is the analogue of Lemma 3.7 in [1]. The latter contained a factor of O(log2 d) in the 
exponent of the failure probability, which does not appear here. The reason is that we employ a single-sided 
Bernstein inequality, instead of a symmetric Hoeffding inequality.

Proposition 8 (Robust injectivity, lower bound). With probability of failure smaller than d2 exp
(
− ν4L

C1b8

)
the 

inequality
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1
ν2dL

‖A(Z)‖2
�2 >

1
4‖Z‖2

2 (27)

is valid for all matrices Z ∈ T simultaneously. Here b and ν are as in (5), (6) and C1 is an absolute 
constant.

We require bounds on certain variances for the proof of this statement. The technical Lemma 9 serves 
this purpose.

Lemma 9. Let Z ∈ T be an arbitrary matrix and let Ml be as in (21). Then it holds that

∥∥E
[
Ml(Z)2

]∥∥
∞ ≤ 30b8

ν4L2 ‖Z‖2
2, (28)

and

tr
(
E
[
(PT Ml(Z))2

])
≤ 60b8

ν4L2 ‖Z‖2
2. (29)

In the following proof we will use that for a, b ∈ Zd = {0, . . . , d − 1} one has

1
d

d∑

k=1
ωk(a�b) = δa,b =

{
1 if a = b,

0 else.
(30)

The symbols ⊕ and � denote addition and subtraction modulo d.

Proof of Lemma 9. Let y, z, v ∈ Cd be vectors of unit length. Compute:

ν4L2E [Ml(yy∗)Ml(zz∗)] v

= 1
d2

d∑

k,j=1
E

⎡
⎣
⎛
⎝

d∑

i3,i4=1
εi3εi4ω

k(i3−i4)ȳi3yi4

⎞
⎠
⎛
⎝

d∑

i5,i6=1
εi5εi6ω

j(i5−i6)z̄i5zi6

⎞
⎠

×
d∑

i1,i2,i7,i8=1
εi1εi2ω

k(i2−i1)εi7εi8ω
j(i8−i7)ei2δi1,i8vi7

⎤
⎦ (31)

=
∑

i1,...,i7

E
[
ε2i1εi2 · · · εi7

]
(

1
d

∑

k

ωk(i2+i3−i1−i4)

)⎛
⎝1

d

∑

j

ωj(i5+i1−i6−i7)

⎞
⎠

× ȳi3yi4 z̄i5zi6vi7 ei2

=
∑

i1,...,i7

E
[
ε2i1εi2 · · · εi7

]
δi1,(i2⊕i3�i4)δi1,(i6⊕i7�i5)ȳi3yi4 z̄i5zi6vi7 ei2 (32)

=
∑

i2,...,i7

E
[
ε2i2⊕i3�i4εi2 · · · εi7

]
δi2,(i4⊕i6⊕i7�i3�i5)ȳi3yi4 z̄i5zi6vi7 ei2 , (33)

where in (31) we have inserted the definition of Ml, in (32) have made use of (30), and in (33) we have 
eliminated i1. We now make the crucial observation that the expectation

E
[
ε2i2⊕i3�i4εi2 · · · εi7

]
(34)

vanishes unless every number in i2, . . . , i7 appears at least twice. More formally, the expectation is zero 
unless the set {2, . . . , 7} can be partitioned into a disjoint union of pairs {2, . . . , 7} =

⋃
{k,l}∈E{k, l} such 
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that ik = il for every {k, l} ∈ E (in graph theory, E would be a set of edges constituting a matching). 
Indeed, assume to the contrary that there is some j such that ij is unmatched (i.e., ij �= ik for all k �= j). 
We distinguish two cases: If ij �= i2 ⊕ i3 � i4, then εj appears only once in the product in (34) and the 
expectation vanishes because E[εj ] = 0 by assumption. If ij = i2 ⊕ i3 � i4, then the same conclusion holds 
because we have also assumed that E[ε3j ] = 0 (this is the only point in the argument where we need third 
moments of ε to vanish).

With this insight, we can proceed to put a tight bound on the �2-norm of the initial expression.

‖ν4L2E [M(yy∗)M(zz∗)] v‖�2

=
∥∥∥

d∑

i2,...,i7=1
E
[
ε2i2⊕i3�i4εi2 · · · εi7

]
δi2,(i4⊕i6⊕i7�i3�i5)ȳi3yi4 z̄i5zi6vi7 ei2

∥∥∥
�2

≤
∥∥∥

d∑

i2,...,i7=1
E
[
ε2i2⊕i3�i4εi2 · · · εi7

]
ȳi3yi4 z̄i5zi6vi7 ei2

∥∥∥
�2

≤
∑

matchings E

∥∥∥
∑

i2,...,i7
ik=il for {k,l}∈E

∣∣E
[
ε2i2⊕i3�i4εi2 · · · εi7

]
ȳi3yi4 z̄i5zi6vi7

∣∣ ei2

∥∥∥
�2

≤ b8
∑

matchings E

∥∥∥
∑

i2,...,i7
ik=il for {k,l}∈E

|ȳi3yi4 z̄i5zi6vi7 | ei2

∥∥∥
�2
, (35)

where the three inequalities follow, in that order, by realizing that making individual coefficients of ei2

larger will increase the norm; restricting to non-zero expectation values as per the discussion above; and 
using the assumed bound |ε| ≤ b.

Now fix a matching E. Let x(1) be the vector in {v, ȳ, y, ̄z, z} whose index in (35) is paired with i2. Label 
the remaining four vectors in that set by x(2), . . . , x(5) in such a way that x(2) and x(3) are paired and the 
same is true for x(4) and x(5). Then the summand corresponding to that matching becomes

‖
d∑

a,b,c=1

∣∣∣x(1)
a x

(2)
b x

(3)
b x(4)

c x(5)
c

∣∣∣ ea‖�2

=
(

d∑

b=1
|x(2)

b x
(3)
b |

)(
d∑

c=1
|x(4)

c x(4)
c |

)∥∥∥∥∥
d∑

a=1
|x(1)

a |ea

∥∥∥∥∥
�2

≤ 1,

by the Cauchy–Schwarz inequality and the fact that all the x(i) are of length one. As there are 15 possible 
matchings of 6 indices, we arrive at

‖E [M(yy∗)M(zz∗)] v‖�2
≤ 15b8

ν4L2 .

Finally, let Z ∈ T . As Z has rank at most two, we can choose normalized vectors y, z ∈ Cd such that 
Z = λ1yy

∗ + λ2zz
∗. Then

∥∥E[M(Z)2]
∥∥

∞ ≤
2∑

i,j=1
|λi| |λj |

15b8
ν4L2 = ‖Z‖2

1
15b8
ν4L2 ≤ ‖Z‖2

2
30b8
ν4L2 .
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For (29) we insert (24) for PT , expand the product, cancel terms using X2 = X = xx∗ and use cyclicity 
of the trace to arrive at

tr
(
E
[
(PT Ml(Z))2

])
= 2 tr

(
E
[
XMl(Z)2

])
− tr (E [(XMl(Z))(Ml(Z)X)])

≤ 2 tr
(
X E

[
Ml(Z)2

])
= 2〈x,E

[
Ml(Z)2

]
x〉

≤ 2‖E
[
Ml(Z)2

]
‖∞.

The upper bound in (29) is thus implied by (28). �
With Lemma 9 at hand, we can proceed to the lower bound on robust injectivity.

Proof of Proposition 8. We strongly follow the ideas presented in [19, Proposition 9] and aim to show the 
more general statement

Pr
[
(ν2dL)−1‖A(Z)‖2

�2 ≤ (1 − δ)‖Z‖2
2 ∀Z ∈ T

]
≤ d2 exp

(
−ν4δ2L

C̃1b8

)
(36)

for any δ ∈ (0, 1), where C̃1 is a numerical constant.
Pick Z ∈ T arbitrary and use near isotropicity (22) of R in order to write

(ν2dL)−1‖A(Z)‖2
�2

= (ν2dL)−1
L∑

l=1

d∑

k=1
(tr(Fk,lZ))2 = tr

(
Z

1
ν2dL

L∑

l=1

d∑

k=1
Fk,l tr(Fk,lZ)

)

= tr(ZRZ) = tr (Z(R − E[R])Z) + tr (Z(I + Π1)Z)

= tr (ZPT (R − E[R])PTZ) + tr(Z2) + tr(Z)2

≥ tr (ZPT (R − E[R])PTZ) + tr(Z2)

≥ (1 + λmin (PT (R − E[R])PT ))‖Z‖2
2, (37)

where we have used the fact that M ≥ λmin(M)I for any matrix valued operator M as well as PTZ = Z. 
Therefore it suffices to bound the smallest eigenvalue of PT (R − E[R])PT from below. To this end we aim 
to use the Operator Bernstein inequality – Theorem 5 – and decompose

PT (R − E[R])PT =
L∑

l=1

(
M̃l − E[M̃l]

)
with M̃l = PT MlPT ,

where Ml was defined in (21). Note that these summands have mean zero by construction. Furthermore 
(26) implies

− 1
ν2L

I − 1
ν2L

ΠX ≤ − 1
ν2L

PT IPT − 1
ν2L

PT Π1PT = − 1
L

PT E[R]PT

= −PT E[Ml]PT ≤ M̃l − E[M̃l],

where the last inequality follows from M̃l ≥ 0. This yields an a priori bound

λmin(M̃l − E[M̃l]) ≥ −2/(ν2L) =: −R.

For the variance we use the standard identity
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0 ≤ E
[
(M̃l − E[M̃l])2

]
= E

[
M̃2

l

]
− E

[
M̃l

]2
≤ E

[
M̃2

l

]

and focus on the last expression. For obtaining a bound on the total variance we are going to apply (15)
to ‖E[M̃2

l ]‖op. To this end, fix Z ∈ T arbitrary – this restriction is valid, due to the particular structure of 
M̃l – and observe

| tr
(
Z E

[
M̃2

l

]
Z
)

| = |E [tr (Ml(Z)PT Ml(Z)]) | = | tr
(
E
[
(PT Ml(Z))2

])
| ≤ 60b8

ν4L2 ‖Z‖2
2.

The first equality follows from inserting the definition (21) of Ml and rewriting the expression of interest. 
For the second equality, we have used the fact that tr(ABT ) = tr(ATBT ) for any matrix pair A, B ∈ Hd

(PT is an orthogonal projection with respect to the Frobenius inner product) and the last estimate is due 
to (29) in Lemma 9. Since Z ∈ T was arbitrary, we have obtained a bound on ‖E[M̃2

l ]‖op which in turn 
allows us to set σ2 := 60b8

ν4L for the variance. Now we are ready to apply Theorem 5 which implies

Pr [λmin (PT (R − E[R])PT ) ≤ −δ] ≤ d2 exp
(

−ν4δ2L

C̃1b8

)

for any 0 ≤ δ ≤ 1 < 60b8/ν2 = σ2/R and C̃1 is an absolute constant. This gives a suitable bound on the 
probability of the undesired event

{λmin (PT (R − E[R])PT ) ≤ −δ} .

If this is not the case, (37) implies

(dL)−1‖A(Z)‖2
�2 > (1 − δ)‖Z‖2

2

for all matrices Z ∈ T simultaneously. This proves (36) and setting δ = 3/4 yields Proposition 8 (with 
C1 = 16

9 C̃1). �
For our proof we will also require a uniform upper bound on ‖A(Z)‖�2 .

Lemma 10 (Robust injectivity, upper bound). Let A be as above. Then the statement

1
dL

‖A(Z)‖2
�2 ≤ b4d‖Z‖2

2 (38)

holds with probability one for all matrices Z ∈ Hd simultaneously.

Proof. Estimate

1
dL

‖A(Z)‖2
�2 = 1

dL

∑

k,l

(tr(fkf
∗
kDlZDl))2 ≤ max

1≤k≤d
‖fkf

∗
k‖2

2
1
dL

∑

l

‖DlZDl‖2
2

≤ d‖Dl‖4
∞‖Z‖2

2 ≤ db4‖Z‖2
2,

where the first inequality holds because the fkf
∗
k ’s are mutually orthogonal. The second inequality follows 

from the fact that the Frobenius norm (and more generally: any unitarily invariant norm) is symmetric
[39, Proposition IV.2.4] – i.e., ‖ABC‖2 ≤ ‖A‖∞‖B‖2‖C‖∞ for any A, B, C ∈ Hd – and the last one is due 
to the a-priori bound ‖Dl‖∞ ≤ b. �
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5. Proof of the main theorem / convex geometry

In this section, we will prove that the convex program (10) indeed recovers the signal x with high 
probability. A common approach to prove recovery is to show the existence of an approximate dual certificate, 
which in our problem setup can be formalized by the following definition.

Definition 11 (Approximate dual certificate). Assume that the sampling process corresponds to (7). Then 
we call Y ∈ Hd an approximate dual certificate if Y ∈ range (A∗) and

‖YT − X‖2 ≤ ν

4b2
√
d

as well as ‖Y ⊥
T ‖∞ ≤ 1

2 . (39)

The following proposition, showing that the existence of such a dual certificate indeed guarantees recovery, 
is just a slight variation of Proposition 12 in [19]. For completeness, we have nevertheless included a proof 
in Appendix A.

Proposition 12. Suppose that the measurement gives us access to ‖x‖2
�2

and yk,l = |〈fk, Dlx〉|2 for 1 ≤ k ≤ n

and 1 ≤ l ≤ L. Then the convex optimization (10) recovers the unknown x (up to a global phase), provided 
that (27) holds and an approximate dual certificate Y exists.

Proposition 12 proves the Main Theorem of this paper, provided that an approximate dual certificate 
exists. A first approach to construct an approximate dual certificate is to set

Y = R(X) − tr(X)1. (40)

Note that any such Y is indeed in the range of our measurement process and, in expectation, yields an 
exact dual certificate, E[Y ] = X. One can then show using an operator Bernstein or Hoeffding inequality 
that Y is close to its expectation, but the number of measurements required is too large to make the 
result meaningful. This obstacle can be overcome using the golfing scheme, a refined construction procedure 
originally introduced in [11].

A main difference between our approach and the approach in [1] is that the authors of that paper use 
Hoeffding’s inequality in the golfing scheme, while we employ Bernstein’s inequality. The resulting bounds 
are sharper, but require to estimate an additional variance parameter.

An issue that remains is that such bounds heavily depend on the worst-case operator norm of the 
individual summands. In this framework these are proportional to |〈fk, Dlx〉|2, which a priori can reach b2d
(recall that ‖fk‖2

2 = d). To deal with this issue, we follow the approach from [19,1] to condition on the event 
that their maximal value is not too large.

Lemma 13. For Z ∈ T arbitrary and a parameter γ ≥ 1 we introduce the event

Uk,l :=
{
| tr(Fk,lZ)| ≤ 4b2γ log d‖Z‖2

}
, (41)

If Dl is chosen according to (4) it holds that

max
1≤k≤d

Pr
[
U c

k,l

]
≤ 4d−γ .

In the following, we refer to γ as the truncation rate (cf. [19]). Here, we fix

γ = 8 + 2 log2
(
b2/ν

)
, (42)

for reasons that shall become clear in the proofs of Propositions 16 and 17. Here b and ν are as in (5) and (6).
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Proof of Lemma 13. Fix Z ∈ T arbitrary and apply an eigenvalue decomposition

Z = λ1yy
∗ + λ2zz

∗

with normalized eigenvectors y, z ∈ Cd. Then one has for 1 ≤ k ≤ d:

Pr
[
U c

k,l

]
≤ Pr

[
| tr(Fk,lZ)| ≥ 4b2γ log d‖Z‖1

]

≤ Pr
[
|λ1||〈fk, Dl, y〉|2 + |λ2||〈fk, Dl, z〉|2 ≥ (|λ1| + |λ2|)4b2γ log d

]

≤ Pr
[
|〈fk, Dly〉| ≥

√
4b2γ log d

]
+ Pr

[
|〈fk, Dlz〉| ≥

√
4b2γ log d

]
,

where the last inequality uses a union bound. The desired statement thus follows from

Pr
[
|〈fk, Dlu〉| ≥ b

√
4γ log d‖u‖�2

]
≤ 4d−γ ∀u ∈ Cd ∀1 ≤ k ≤ d,

which we now aim to show. Fix 1 ≤ k ≤ d and u = (u1, . . . , ud) ∈ Cd arbitrary and insert the definitions of 
fk and Dl to obtain

|〈fk, Dlu〉| = |
d∑

i=1
εi
(
ωkiui

)
| = |

d∑

i=1
εiũi|.

Here we have defined ũ =
(
ωku1, . . . , ω

k(d−1)ud−1, ud

)
. Note that ‖ũ‖�2 = ‖u‖�2 holds and applying Theo-

rem 3 therefore yields

Pr
[∣∣∣∣∣

d∑

i=1
εiũi

∣∣∣∣∣ ≥ b
√

4γ log d‖u‖�2

]
= Pr

[∣∣∣∣∣
d∑

i=1
εiũi

∣∣∣∣∣ ≥ b
√

4γ log d‖ũ‖�2

]
≤ 4 exp (−γ log d) = 4d−γ . �

This result will be an important tool to bound the probability of extreme operator norms.

Definition 14. For Z ∈ T arbitrary and the corresponding Uk,l introduced in (41) we define the truncated 
measurement operator

RZ :=
L∑

l=1
MZ

l with MZ
l := 1

ν2dL

d∑

k=1
1Uk,l

ΠFk,l
, (43)

where 1Uk,l
denotes the indicator function associated with the event Uk,l.

We now show that in expectation, this truncated operator is close to the original one.

Lemma 15. Fix Z ∈ T arbitrary and let RZ and MZ
l be as in (43). Then

‖E[R − RZ ]‖op ≤ 4b4
ν2 d2−γ ,

‖E[(Ml(W ))2 − (MZ
l (W ))2]‖∞ ≤ 8b8

ν4L2 d
4−γ‖W‖2

∞,

E
[∥∥Ml − MZ

l

∥∥2
op

]
≤ 4b8

ν4L2 d
4−γ

for any W ∈ Hd.
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Proof. Note that E [R] = LE[Ml] as well as E[RZ ] = LE 
[
MZ

l

]
. For the first statement, we can therefore fix 

1 ≤ l ≤ L arbitrary and consider L‖E[Ml −MZ
l ]‖op. Due to Jensen’s inequality this expression is majorized 

by LE 
[∥∥Ml − MZ

l

∥∥
op

]
. Inserting the definitions and applying Lemma 13 then yields the first estimate via

LE
[
‖Ml − MZ

l ‖op
]

≤ 1
ν2d

E

[
d∑

k=1
(1 − 1Uk,l

)
∥∥ΠFk,l

∥∥
op

]
≤ b4d2

ν2d

d∑

k=1
E
[
1Uc

k,l

]

= b4d2

ν2d

d∑

k=1
Pr
[
U c

k,l

]
≤ b4d2

ν2 max
1≤k≤d

Pr[U c
k,l] ≤ 4b4

ν2 d2−γ ,

where the second inequality is due to ‖ΠFk,l
‖op ≤ b4d2 (which follows by direct calculation). Similarly

∥∥∥E
[
(Ml(W ))2 −

(
MZ

l (W )
)2]∥∥∥

∞

=

∥∥∥∥∥∥
1

(ν2dL)2
d∑

k,j=1
E
[
(1 − 1Uk,l

1Uj,l
) tr(Fk,lW ) tr(Fj,lW )Fk,lFj,l

]
∥∥∥∥∥∥

∞

≤ 1
ν4L2d2

d∑

k,j=1
E
[
1Uc

k,l∪Uc
j,l

| tr(Fk,lW ) tr(Fj,lW )|‖Fk,l‖∞‖Fj,l‖∞
]

≤ b8d4

ν4L2 ‖W‖2
∞ max

1≤k,j≤d

(
Pr[U c

k,l] + Pr[U c
j,l]
)

≤ 8b8
ν4L2 d

4−γ‖W‖2
∞

Here we have used | tr(Fk,lW )| ≤ b2d‖W‖∞ for any W ∈ Hd and ‖Fk,l‖∞ ≤ b2d (both estimates are direct 
consequences of the definition of Fk,l). Finally

E
[∥∥Ml − MZ

l

∥∥2
op

]
≤ 1

(ν2dL)2 E

⎡
⎣
(

d∑

k=1
(1 − 1Uk,l

)‖ΠFk,l
‖op

)2⎤
⎦

≤ b8d4

ν4d2L2

d∑

k,j=1
E
[
1Uc

k,l
1Uc

j,l

]
≤ b8d4

ν4L2 max
1≤k≤d

Pr
[
U c

k,l

]

≤ 4b8
ν4L2 d

4−γ

follows in a similar fashion. �
We will now establish two technical ingredients for the golfing scheme.

Proposition 16. Assume d ≥ 3, fix Z ∈ T arbitrary and let RZ be as in (43). Then

Pr
[
‖P⊥

T (RZ(Z) − tr(Z)1)‖∞ ≥ t‖Z‖2
]

≤ d exp
(

− tν4L

C2b8γ log d

)
(44)

for any t ≥ 1/4 and γ defined in (42). Here C2 denotes an absolute constant.

Proof. Assume w.l.o.g. that ‖Z‖2 = 1. By Lemma 7,

P⊥
T E[R(Z)] = P⊥

T (Z + tr(Z)1) = 0 + tr(Z)P⊥
T 1,
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because Z ∈ T by assumption. We can thus rewrite the desired expression as

‖P⊥
T (RZ(Z) − E[R(Z)]) ‖∞ ≤ ‖P⊥

T (RZ(Z) − E[RZ(Z)]) ‖∞ + ‖P⊥
T E [RZ(Z) − R(Z)] ‖2

≤ ‖RZ(Z) − E[RZ(Z)]‖∞ + ‖E[RZ − R]‖op‖Z‖2

≤ ‖RZ(Z) − E[RZ(Z)]‖∞ + t/4. (45)

In the third line, we have used that ‖P⊥
T W‖ ≤ ‖W‖ for any W ∈ Hd and any unitarily invariant norm ‖ · ‖

(pinching, cf. [39] (Problem II.5.4)). The last inequality follows from

‖E[RZ − R]‖op ≤ 4b4
ν2 d2−γ ≤ b4

ν2 24−γ ≤ 1
16 ≤ t

4 , (46)

which in turn follows from Lemma 15 and the assumptions on d, t and γ. By (45), it remains to bound the 
probability of the complement of the event

E := {‖RZ(Z) − E[RZ(Z)]‖∞ ≤ 3t/4}

To this end, we use the Operator Bernstein inequality (Theorem 4). We decompose

RZ(Z) − E[RZ(Z)] =
L∑

l=1
(Ml − E[Ml]) with Ml := MZ

l (Z),

where MZ
l was defined in (43). To find an a priori bound for the individual summands, we write, using that 

Fk,l ≥ 0 holds for all 1 ≤ k ≤ d,

‖Ml − E [Ml] ‖∞ ≤ ‖Ml‖∞ + ‖E
[
Ml(Z) − MZ

l (Z)
]
‖∞ + ‖E [Ml(Z)] ‖∞

≤ ‖Ml‖∞ + 1
L

‖E
[
Rl − RZ

l

]
‖op‖Z‖2 + 1

L
‖Z + tr(Z)‖∞

≤
∥∥∥∥∥

1
ν2dL

d∑

k=1
1Uk,l

| tr(Fk,lZ)|Fk,l

∥∥∥∥∥
∞

+ 1
L

(
b4

ν2 d
2−γ + 1 +

√
2
)

‖Z‖2

≤ b4

ν2L

(
4γ log d + d2−γ + 3

)
‖Z‖2 ≤ 608b8γ log d

3ν4L
=: R.

Here we have employed near-isotropy of R, the first estimate in Lemma 15 and the fact that Z ∈ T has 
rank at most two. The last but one inequality follows from 1

d

∑d
k=1 fkf

∗
k = 1, ‖D2

l ‖∞ ≤ b2, and ν ≤ b2. 
The last estimate is far from tight, but will slightly simplify the resulting operator Bernstein bound. For 
the variance we start with the standard estimate

E
[
(Ml − E[Ml])2

]
= E

[
M2

l

]
− E[Ml]2 ≤ E

[
M2

l

]

and bound this expression via

‖E
[
M2

l

]
‖∞ =

∥∥∥E
[(

MZ
l (Z)

)2]∥∥∥
∞

≤
∥∥∥E

[(
MZ

l (Z)
)2 − (Ml(Z))2

]∥∥∥
∞

+
∥∥∥E

[
(Ml(Z))2

]∥∥∥
∞

≤ 8b8
ν4L2 d

4−γ‖Z‖2
∞ + 30b8

ν4L2 ‖Z‖2
2,
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where we have used Lemmas 15 and 9. Using ‖Z‖∞ ≤ ‖Z‖2 = 1 and noting that ν ≤ b2 entails γ =
8 + 2 log2(b2/ν) ≥ 8 we conclude

‖
L∑

l=1
E[M2

l ]‖∞ ≤
L∑

l=1
‖E[M2

l ]‖∞ ≤ 8b8
ν4L

d−4 + 30b8
ν4L

≤ 38b8
ν4L

=: σ2.

Our choice for R now guarantees σ2/R = 3/(16γ log d) ≤ 3t/4 for any t ≥ 1/4 (here we have used γ ≥ 1
and our assumption d ≥ 3 which entails log d ≥ 1). Consequently

Pr [Ec] = Pr
[∥∥∥∥∥

L∑

l=1
(Ml − E[Ml])

∥∥∥∥∥
∞

> 3t/4
]

≤ d exp
(

− tν4L

C2b8γ log d

)

with C2 an absolute constant. This completes the proof. �
Proposition 17. Assume d ≥ 2 and fix Z ∈ T arbitrary and let RZ be as in (43) with γ defined in (42). Then

Pr [‖PT (RZ(Z) − Z − tr(Z)1)‖2 ≥ c‖Z‖2] ≤ exp
(

− c2ν4L

C3b8γ log d
+ 1

4

)
(47)

holds for any 1/(2 log d) ≤ c ≤ 1. Here, C3 is again an absolute constant.

Proof. Similar to the previous proof, we start by assuming ‖Z‖2 = 1 and using near-isotropy of R to bound 
the desired expression by

‖PT (RZ(Z) − E [R(Z)]) ‖2 ≤ ‖PT (RZ(Z) − E [RZ(Z)]) ‖2 + ‖PT E [R(Z) − RZ(Z)] ‖2

≤ ‖PT (RZ(Z) − E [RZ(Z)]) ‖2 + ‖PT E [R − RZ ] ‖op‖Z‖2

≤ ‖PT (RZ(Z) − E [RZ(Z)]) ‖2 + c/4.

Here, we have used ‖PTW‖2 ≤ ‖W‖2 for any matrix W (this follows e.g. from the entry-wise definition of 
the Frobenius norm) and a calculation similar to (46):

‖E [RZ − R] ‖op ≤ 4b4
ν2d

d3−γ ≤ b4

ν2 log d
25−γ ≤ 1

8 log d
≤ c

4 ,

where we have used d ≥ 2, γ ≥ 8 and the assumption c ≥ 1/(2 log d). Paralleling our idea from the previous 
proof, we define the event

E′ := {‖PT (RZ(Z) − E[RZ(Z)])‖∞ ≤ 3c/4}

which guarantees that the desired inequality is valid. However, in order to bound the probability of (E′)c, 
this time we are going to employ the vector Bernstein inequality – Theorem 6. Decompose

PT (RZ(Z) − E [RZ(Z)]) =
L∑

l=1

(
M̃l − E

[
M̃l

])
.

Note that the M̃l’s are related to Ml in the previous proof via M̃l = PTMl = PT MZ
l (Z) and in particular, 

M̃l has at most rank two. Consequently
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‖M̃l − E
[
M̃l

]
‖2 ≤

√
2‖PTMl‖∞ + ‖PT E

[
MZ

l (Z) − Ml(Z)
]
‖2 + ‖PT E [Ml(Z)] ‖2

≤
√

2 2‖Ml‖∞ + ‖E
[
Ml − MZ

l

]
‖op‖Z‖2 + 1

L
‖PT (Z + tr(Z)1) ‖2

≤
√

2 8b2γ log d

ν2L
‖Z‖2‖D2

l ‖∞ + 4b4
ν2L

d2−γ‖Z‖2 + ‖Z‖2 + | tr(Z)|
L

≤ 19b4γ log d

ν2L
‖Z‖2 =: B,

where we have used near-isotropy of Ml, the estimate of ‖Ml‖∞ presented in (47), ‖PT1‖2 = ‖X‖2 = 1
and | tr(Z)| ≤ ‖Z‖1 ≤

√
2‖Z‖2 =

√
2, because Z ∈ T has rank at most two. For the variance, we estimate

E
[∥∥M̃l − E

[
M̃l

]∥∥2
2

]
= E

[∥∥PT

(
MZ

l (Z) − E
[
MZ

l (Z)
])∥∥2

2

]

≤ E
[
‖PT Ml(Z)‖2

2
]
+ E

[∥∥PT

(
MZ

l (Z) − Ml(Z)
)∥∥2

2

]

+
∥∥PT E

[
MZ

l (Z) − Ml(Z)
]∥∥2

2 + ‖PT E [Ml(Z)]‖2
2

≤ E
[
tr
(
(PT Ml(Z))2

)]
+ 1

L2 ‖PT (Z + tr(Z)1)‖2
2

+ 2E
[∥∥Ml(Z) − MZ

l (Z)
∥∥2

op

]
‖Z‖2

2

≤ 60b8
ν4L2 ‖Z‖2

2 + ‖Z‖2
2 + tr(Z)2
L2 + 8b8

ν4L2 d
4−γ‖Z‖2

2 (48)

using Lemma 9 and Lemma 15. Applying b2 ≥ ν, tr(Z)2 ≤ 2‖Z‖2
2 = 2 and d4−γ ≤ 1 (because we choose 

γ ≥ 8) allows us to upper-bound (48) by 71b8/(ν4L2) and set

L∑

l=1
E
[∥∥M̃l − E

[
M̃l

]∥∥2
2

]
≤ 71b8

ν4L
≤ 19b8γ log d

ν4L
=: σ.

Again, the last estimate is far from tight, but assures σ2/B = b4/ν2 ≥ 1. Applying the vector Bernstein 
inequality – Theorem 6 – for t = 3c/4 yields the desired bound on the probability of (E′)c occurring. �

We are now ready to construct a suitable approximate dual certificate in the sense of Definition 11. The 
key idea here is an iterative procedure – dubbed the golfing scheme – that was first established in [11] (see 
also [40,24,1,19]).

Proposition 18. Assume d ≥ 3 and let ω ≥ 1 be arbitrary. If the total number of L of diffraction patterns 
fulfills

L ≥ Cω log2 d, (49)

then with probability larger than 1 − 5/6e−ω, an approximate dual certificate Y as in Definition 11 can be 
constructed using the golfing scheme. Here, C is a constant that only depends on the probability distribution 
used to generate the random masks Dl.

To be concrete, the constant C depends on the truncation rate γ – which we have fixed in (42) – and 
parameters b and ν of the random variable ε used to generate the diffraction patterns Dl:

C = C̃γ
b8

ν4 log2
(
b2/ν

)
= C̄

b8

ν4 log2
2
(
b2/ν

)
, (50)

where C̃ and C̄ are absolute constants.
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Proof of Proposition 18. This construction is inspired by [24,40] and [41]. As in [11], our construction of 
Y follows a recursive procedure of w iterations which can be summarized in the pseudo-code described in 
Algorithm 1. It depends on a number of parameters – w, Li, r, c.f. Input section of the algorithm – the 
values of which will be chosen below. If this algorithm succeeds, it outputs three lists

Y = [Y1, . . . , Yr+2] , Q = [Q0, . . . , Qr+2] , and ξ = [ξ1, . . . , ξw+2].

They obey iterative relations of the following form (c.f. [24, Lemma 14]):

Y := Yr+2 = RQr+1(Qr+1) − tr(Qr+1)1 + Yr+1

= · · · =
r+2∑

i=1

(
RQi−1(Qi−1) − tr (Qi−1) 1

)
and

Qi = X − PTYi = PT

(
Qi−1 + tr(Qi−1)1 − RQi−1(Qi−1)

)

= . . . =
i∏

j=1
PT

(
I + Π1 − RQj−1

)
Q0.

We now set

r = �1
2 log2 d� + �log2(b2/ν)� + 1

This choice, together with the validity of properties (44) and (47) for t = 1/8, c = 1/
√

2 log d in the first 
two steps and for t = log d/4, c = 1/2 in each remaining update (Yi → Yi+1 and Qi → Qi+1, respectively) 
together with Q0 = X then guarantee

‖YT − X‖2 = ‖Qr+2‖2 ≤ ‖Q‖0
1

2 log d

r+2∏

i=3

1
2 = 1

log d
2−(r+1) ≤ ν

4b2
√
d
,

‖Y ⊥
T ‖∞ ≤

r+2∑

i=1

∥∥PT

(
RQi−1(Qi−1) − tr(Qi−1)1

)∥∥
∞

≤ 1
8‖Q0‖2 + 1

8‖Q1‖ +
r+2∑

i=3

log d

4 ‖Qi−1‖2

≤

⎛
⎝1

8 + 1
8
√

2 log d
+

r+2∑

i=3

log d

4

(
1√

2 log d

)2 i−2∏

j=1

1
2

⎞
⎠ ‖Q0‖2

≤ 1
4

∞∑

i=0
2−i = 1

2

which are precisely the requirements (39) on Y .
What remains to be done now is to choose parameters w and {Li}w+2

i=1 such that the probability of the 
algorithm failing is smaller than 5

6e−ω. Recall that the ξi’s are Bernoulli random variables that indicate 
whether the i-th iteration of the algorithm failed (ξi = 0) or has been successful (ξi = 1). The complete 
Algorithm 1 fails exactly if one of the first two iterations fails

ξ1 = 0 or ξ2 = 0 (51)

or fewer than r of the remaining ones succeed
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Algorithm 1: Pseudo-code4 that summarizes the randomized “golfing scheme” for constructing an ap-
proximate dual certificate in the sense of Definition 11.

Input:
X ∈ Hd # signal to be recovered
w ∈ N # maximum number of iterations (after the first two steps)
{Li}w+2

i=1 ⊂ N # number of masks used in i-th iteration
r # require r “successful” iterations after the first two

# (i.e. iterations where we enter the inner if -block)
Initialize:

Y = [ ] # a list of matrices in Hd, initially empty
Q = [X] # a list of matrices in T , initialized to hold X as its only element
i = 1 # number of current iteration
ξ = [0, . . . , 0] # array of w + 1 zeros; ξi will be set to 1 if i-th iteration succeeds

Body:
for 1 ≤ i ≤ 2 do

set Q to be the last element of Q and Y to be the last element of Y
Sample Li masks independently according to (4) and construct RQ according to Definition 14
if (44), (47) hold for RQ and Q ∈ T with parameters t = 1/8, c = 1/

√
2 log d then

ξi = 1
Y ← RQQ − tr(Q)1 + Y , append Y to Y
Q ← X − PT Y , append Q to Q i ← i + 1

else
abort and report failure

end
end
while 3 ≤ i ≤ w + 2 and ∑i

j=3 ξj ≤ r do
set Q to be the last element of Q and Y to be the last element of Y,
sample Li+2 masks independently according to (4); construct RQ according to Definition 14.
if (44), (47) hold for RQ and Q ∈ T with parameters t = log d/4, c = 1/2 then

ξi = 1
Y ← RQQ − tr(Q)1 + Y , append Y to Y
Q ← X − PT Y , append Q to Q

end
i ← i + 1

end
if
∑w+2

i=3 ξi = r then
report success and output Y, Q, ξ

else
report failure

end

w+2∑

i=3
ξi < r. (52)

We start by estimating the probability of (51) occurring. Setting

L1 = L2 = C5
b8

ν4ωγ log2 d

for a sufficiently large absolute constant C5, and using the union bound over Propositions 16 and 17 (for 
Z = X), one obtains

Pr [ξ1 = 0]

≤ Pr [(44) fails to hold in the first step] + Pr [(47) fails to hold in the first step]

≤ exp
(

− (1/
√

2 log d)2ν4L1
C3b8γ log d

+ 1
4

)
+ d exp

(
− 4−1ν4L1

C2b8γ log d

)
≤ 1

6e−ω. (53)

4 Similar to [19] we use pseudo-code for a compact presentation of this randomized procedure. However, the reader should keep 
in mind that the construction is purely part of a proof and should not be confused with the recovery algorithm (which is given in 
Eq. (10)).
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An analogous bound holds for the probability of ξ2 = 0.
We turn to (52). Our aim is to bound Pr

[∑w+2
i=3 ξi < r

]
by a similar expression involving independent

Bernoulli variables ξ′
i. To achieve this, we observe

Pr
[

w+2∑

i=3
ξi < r

]
= E

[
Pr
[
ξw+2 < r −

w+1∑

i=3
ξi|ξw+1, . . . , ξ3

]]
.

Conditioned on an arbitrary instance of ξw+1, . . . , ξ3, the variable ξw+2 follows a Bernoulli distribution with 
some parameter p (ξw, . . . , ξ2). Now note that if ξ ∼ B(p) is a Bernoulli variable with parameter p, then 
for every fixed t ∈ R, the probability Prξ∼B(p) [ξ < t] is non-increasing as a function of p. This observation 
implies that the estimate

Pr
[

w+2∑

i=3
ξi < r

]
≤ Pr

[
ξ′
w+2 +

w+1∑

i=3
ξi < r

]
(54)

is valid, provided that ξ′
w+1 is an independent p′-Bernoulli distributed random variable with

p′ ≤ min
ξw+1,...,ξ3

p (ξw+1, . . . , ξ3) .

A combination of Propositions 16 and 17 provides a uniform lower bound on p (ξw+1, . . . , ξ3). Indeed, setting 
Z = Qw and invoking them with

L := C4
b8

ν4 γ log d

– where C4 is a sufficiently large constant – assures a probability of success of at least 9/10 for any Q. This 
estimate is in particular independent of ξw+1, . . . , ξ3. Consequently, by choosing p′ = 9/10 and Li = L for 
all 3 ≤ i ≤ w + 2, we can iterate the estimate (54) and arrive at

Pr
[

w+2∑

i=3
ξi < r

]
≤ Pr

[
ξ′
w+2 +

w+1∑

i=3
ξi < r

]
≤ · · · ≤ Pr

[
w+2∑

i=3
ξ′
i < r

]
, (55)

where the ξ′
i’s on the right hand side are independent Bernoulli variables with parameter 9/10. A standard 

one-sided Chernoff bound (e.g. [42, Section Concentration: Theorem 2.1]) gives

Pr
[

w+2∑

i=3
ξ′
i ≤ w(9/10 − t)

]
≤ e−2wt2 .

Choosing t = 9/10 − r/w, we then obtain

Pr
[

w+2∑

i=3
ξ′
i < r

]
≤ Pr

[
w+2∑

i=3
ξ′
i ≤ r

]
= Pr

[
w+2∑

i=3
ξ′
i ≤ w (9/10 − t)

]

≤ exp
(

−2w
(

9
10 − r

w

)2
)

. (56)

Setting the number of iterations generously to

w = 10ωr = 10ω
(

�1
2 log2 d� + �log2(b2/ν)� + 1

)168
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guarantees

2w
(

9
10 − r

w

)2
≥ 20ωr (8/10)2 ≥ 12ωr ≥ ω + log 2,

where we have used ω ≥ 1 in the first and last step. From this estimate we can conclude

Pr
[

w+2∑

i=3
ξi < r

]
≤ e−ω−log 2 = 1

2e−ω (57)

which suffices for our purpose.
The desired bound of 5

6e−ω on the probability of the algorithm failing now follows from taking the union 
bound over (57) and two times (53).

Finally we note that with our construction the total amount of masks obeys

L =
w+2∑

i=1
Li = 2C5

b8

ν4ωγ log2 d + 10ω
(
�0.5 log2 d� + �log2(b2/ν�

)
C4

b8

ν4 γ log d

≤ C̃γ
b8

ν4 log2
(
b2/ν

)
ω log2 d = Cω log2 d

for a sufficiently large absolute constant C̃ (recall that we have chosen γ = 8 + log2
(
b2/ν

)
in (42)) and C

as in (50). �
We now have all the ingredients for the proof of our main result, Theorem 1.

Proof of the main theorem. With probability at least 1 − 5/6e−ω, the construction of Proposition 18 yields 
an approximate dual certificate provided that the total number of masks L obeys

L ≥ C̄
b8

ν4 log2
2
(
n2/ν

)
ω log2 d,

where C̄ is a sufficiently large constant. In addition, by Proposition 8, one has (27) with probability at least 
1 − 1/6e−ω, potentially with an increased value of C̄. Thus the result follows from Proposition 12 and a 
union bound over the two probabilities of failure. �
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Appendix A

Lemma 19. Consider as signal the first standard basis vector e1 ∈ Cd. Let a�, � = 1, . . . , m = Ld. Then for 
every δ > 0 there exists c > 0 such that the following holds for the measurement vectors corresponding to 
L < c log2 d masked Fourier measurements of e1 as introduced in Section 2.1 with random masks ε� drawn 
independently at random according to the distribution given in (8). With probability at least 1 −δ, there exists 
another signal that produces the exact same measurements. Thus no algorithm will be able to distinguish 
these signals based on their measurements.

Proof. As e1 as well as any other standard basis vector e� is 1-sparse, their phaseless measurements corre-
sponding to one mask will just consist of the entry-wise absolute values first (or �-th, respectively) column 
of the corresponding masked Fourier transform matrix. As all entries of the Fourier transform matrix are of 
unit modulus, the measurements of e� are hence completely determined by the vector v� consisting of the 
�-th entry of every mask. As a consequence, e1 and e� produce the same measurements if the entries of v1
and v� have the same absolute value. There are L masks, and each entry’s absolute value can be either 0
or 

√
2. So there are 2L possible choices for |v�|. For each � > 1, one of them is drawn uniformly at random. 

Hence by the coupon collector’s problem, a v� with the same absolute values as v1 appears again with high 
probability within the first Θ(L2L) draws, where by increasing the constant, one can make the probability 
arbitrarily small. For L < c log2(d), we obtain L2L < cdc log2(d), which for c small enough is less than d −1. 
Thus there will exist another v� with |v�| = |v1|, which proves the lemma. �
Proof of Lemma 7. We prove formula (22) in a way that is slightly different from the proof provided in [1]. 
We show that the set of all possible Dlfk’s is in fact proportional to a 2-design and deduce near-isotropicity
of R from this. We refer to [19] for further clarification of the concepts used here. Concretely, for 1 ≤ l ≤ L

we aim to show

1
ν2d

d∑

k=1
E
[
F⊗2

k,l

]
= 2PSym2 , (58)

where PSym2 denotes the projector onto the totally symmetric subspace of Cd ⊗ Cd. Near isotropicity of R
directly follows from (58) by applying [35, Lemma 1] (with α = β = 1):

E [R]Z = 1
ν2dL

d∑

k=1

L∑

l=1
E [Fk,l tr(Fk,lZ)] = 1

ν2d

d∑

k=1
E [Fk,1 tr(Fk,1Z)] = (I + Π1)Z.

So let us proceed to deriving equation (58). We do this by exploring the action of the equation’s left hand 
side on a tensor product ei ⊗ ej (1 ≤ i, j ≤ d) of two standard basis vectors in Cd. Here it is important to 
distinguish two special cases, namely i = j and i �= j. For the former we get by inserting standard basis 
representations

1
ν2d

d∑

k=1
E
[
F⊗2

k

]
(ei ⊗ ei) = 1

ν2d

d∑

k=1
E
[
ε2i 〈fk, ei〉2D⊗2(fk ⊗ fk)

]170
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= 1
ν2

d∑

a,b=1
E
[
ε2i εaεb

]
(

1
d

d∑

k=1
ωk(a+b−2i)

)
(ea ⊗ eb)

= 1
ν2

d∑

a,b=1
δ(a⊕b),(2i)E

[
ε2i εaεb

]
(ea ⊗ eb),

where we have used (30) and the fact that for odd d, there is a multiplicative inverse of 2 modulo d. Now 
E[εa] = E[εb] = 0 implies that one obtains a non-vanishing summand only if a = b. Therefore one in fact 
gets

1
ν2d

d∑

k=1
E
[
F⊗2

k

]
(ei ⊗ ei) = 1

ν2

d∑

a=1
δ(2a),(2i)E

[
ε2i ε

2
a

]
(ea ⊗ eb) = 1

ν2 E
[
ε4i
]
(ei ⊗ ei) = 2(ei ⊗ ei),

where we have used the moment condition (6) in the last step. This however is equivalent to the action of 
2PSym2 on symmetric basis states.

Let us now focus on the second case, namely i �= j. A similar calculation then yields

1
ν2d

d∑

k=1
E
[
F⊗2

k

]
(ei ⊗ ej) = 1

ν2

d∑

a,b=1
E [εiεjεaεb] δ(a+b),(i+j)(ea ⊗ eb).

Again, E[ε] = 0 demands that the ε’s have to “pair up”. Since i �= j by assumption, there are only two such 
possibilities, namely (i = a, j = b) and (i = b, j = a). Both pairings obey the additional delta-constraint 
and we therefore get

1
ν2d

d∑

k=1
E
[
F⊗2

k

]
(ei ⊗ ej) = 1

ν2 E
[
ε2i ε

2
j

]
(ei ⊗ ej + ej ⊗ ei) = (ei ⊗ ej) + (ej ⊗ ei),

where we have once more used (6) in the final step. This, however is again just the action of 2PSym2 on 
vectors ei ⊗ ej with i �= j. Since the extended standard basis {(ei ⊗ ej)}1≤i,j≤d forms a complete basis of 
Cd ⊗ Cd, we can deduce equation (58) from this. �
Proof of Proposition 12. Let X ′ be an arbitrary feasible point of (10) and we decompose it as X ′ = X +Δ, 
where Δ is a feasible displacement. Feasibility then implies A(X ′) = A(X) and consequently A(Δ) = 0
must hold. The pinching inequality [39] (Problem II.5.4) now implies

‖X ′‖1 = ‖X + Δ‖1 ≥ ‖X‖1 + tr(ΔT ) + ‖Δ⊥
T ‖1

and X is guaranteed to be the minimum of (10) if

tr(ΔT ) + ‖Δ⊥
T ‖1 > 0 (59)

is true for any feasible displacement Δ. Therefore it suffices to show that (59) is guaranteed to hold under 
the assumptions of the proposition. In order to do so, we combine feasibility of Δ with Proposition 8 and 
Lemma 10 to obtain

‖ΔT ‖2 <
2√

ν2dL
‖A(ΔT )‖�2 = 2

ν
√
dL

‖A(Δ⊥
T )‖�2 ≤ 2b2

√
d

ν
‖Δ⊥

T ‖2. (60)

Feasibility of Δ also implies (Y, Δ) = 0, because Y ∈ range(A∗) by definition. Combining this insight with 
(60) and the defining property (39) of Y now yields
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0 = (Y,Δ) = (YT − X,ΔT ) + (X,ΔT ) + (Y ⊥
T ,Δ⊥

T )

≤ ‖YT − X‖2‖ΔT ‖2 + tr(ΔT ) + ‖Y ⊥
T ‖∞‖Δ⊥

T ‖1

< tr(ΔT ) + ‖YT − X‖22b2
√
d/ν‖Δ⊥

T ‖2 + ‖Y ⊥
T ‖∞‖Δ⊥

T ‖1

≤ tr(ΔT ) + 1/2‖Δ⊥
T ‖2 + 1/2‖Δ⊥

T ‖1

≤ tr(ΔT ) + ‖Δ⊥
T ‖1,

which is just the optimality criterion (59). �
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Qubit stabilizer states are complex projective 3-designs
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A complex projective t-design is a configuration of vectors which is “evenly distributed” on a sphere
in the sense that sampling uniformly from it reproduces the moments of Haar measure up to order
2t. We show that the set of all n-qubit stabilizer states forms a complex projective 3-design in dimen-
sion 2n. Stabilizer states had previously only been known to constitute 2-designs. The main technical
ingredient is a general recursion formula for the so-called frame potential of stabilizer states. To es-
tablish it, we need to compute the number of stabilizer states with pre-described inner product with
respect to a reference state. This, in turn, reduces to a counting problem in discrete symplectic vec-
tor spaces for which we find a simple formula. We sketch applications in quantum information and
signal analysis.

I. INTRODUCTION AND MAIN RESULTS

A. Introduction

In its simplest incarnation, a D-dimensional complex

projctive t-design is a set of unit-length vectors inCD that
is evenly distributed on the sphere in the sense that sam-
pling uniformly from this set reproduces the moments
of Haar measure up to order 2t [1–5] (see Definition 1
below for a precise definition). In a variety of contexts
such a design structure is important:

In numerical integration, designs are known as cuba-
tures. It follows from the definition that the average of
a homogeneous polynomial p of order 2t over the com-
plex unit sphere equals p’s average over the design. If
the design has small order, this realization can be made
the basis for fast numerical procedures that compute
integrals of smooth functions over high-dimensional
spheres.

In quantum information theory, designs are a widely-
employed tool for derandomizing probabilistic construc-
tions. Recall that the probabilistic method [6] is a pow-
erful proof technique originally designed to tackle prob-
lems in combinatorics. At its core is the observation that
the existence of certain extremal combinatorial struc-
tures often can be be proved by showing that a suit-
ably chosen random construction would produce an ex-
ample with high probability. In quantum information,
randomized construction often rely on randomly chosen
Hilbert space vectors [7]. While this method has brought
about spectacular successes (such as the the celebrated
proof of strict sub-additivity of entanglement of forma-
tion [8]), it suffers e.g. from the problem that generic
Haar-random states of large quantum systems are un-
physical: they cannot be prepared from separable inputs
using a polynomial number of operations [9]. Designs,
in contrast, can be chosen to consist solely of highly-
structured and efficiently preparable vectors, while re-
taining “generic” properties in a precise sense. Thus
considerable efforts have been expended at designing
complex projective designs (and their unitary cousins)

[3, 10–13].

Lastly, randomized constructions in Hilbert spaces
have completely classical applications, e.g. in signal anal-
ysis. Take for instance the highly active field of com-
pressed sensing and related topics [14]: There, one is
interested in reconstructing objects that possess some
non-trivial structure (e.g. sparsity, or low rank) from a
small number of linear measurements. Strong recov-
ery guarantees can be proven for randomly constructed
measurement vectors. Once more, this raises the prob-
lem of finding sets of structured and well-understood
measurements that sufficiently resemble the properties
of generic random vectors. The use of designs for this
purpose has been proposed in [15–17].

Despite this wealth of applications and non-
constructive existence proofs [18], explicit constructions
for complex designs remain rare. There are varios
infinite families of complex projective 2-designs (e.g.
maximal sets of mutually unbiased bases [19, 20],
stabilizer states, or symmetric informationally complete
POVMs [2]); sporadic solutions for higher orders
[11, 21, 22]; and approximate constructions involving
random circuits [13]. To the best of our knowledge, an
infinite set of explicit complex projective 3-designs has
not been identified before.

Here, we show that the set of all stabilizer states in di-
mension 2n forms a complex projective 3-design for all
n ∈ N.

Recall that the stabilizer formalism is a ubiqutous tool
in quantum information theory [9, 23]. Stabilizer states
(and, slightly more general, stabilizer codes) are joint
eigenvectors of generalized Pauli matrices. Constituting
the main realization of quantum error correcting codes
[23], they can be efficiently prepared [24] and described
in terms of polynomially many parameters [9]. Yet they
exhibit non-trivial properties like multi-partite entangle-
ment [25]. Stabilizer states were instrumental in the de-
velopment of measurement-based quantum computa-
tion [26, 27]. In several precise ways, they can be seen
as the discrete analogue of Gaussian states [28]. Beyond
quantum information, stabilizer states have proved to
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be versatile enough to provide powerful models for one
of the most influential recent development in theoretical
condensed mater physics: the study of topological order
[29, 30].

Our main result thus identifies yet another aspect ac-
cording to which stabilizer states capture properties of
generic state vectors.

B. Designs and frame potential

In order to state our results more precisely, we need
to give a formal definition of complex projective designs
and introduce the related notion of frame potential. Fol-
lowing [4, 31, 32], we define

Definition 1. Fix a dimension D and let µ be a probability

measure on the unit sphere in CD. The measure µ is a com-
plex projective t-design if, for any order-t polynomial p, we
have

Ex,y∼µ

[
p
(
|〈x, y〉|2

)]
=
∫

x,y
p
(
|〈x, y〉|2

)
dxdy, (1)

where the right-hand-side integration is with respect to the
uniform (Haar) measure on the sphere.

In other words, sampling according to µ should give
the same expectation values as sampling according to
the uniform measure for any random variable that is a

polynomial in |〈x, y〉|2 of order at most t. From now on,
we will only be concerned with the case where µ is the
uniform measure on a finite set of unit vectors.

It is not hard to see that µ fulfills (1) for all polyno-
mials of order t or less, if equality holds for the specific
case of p(z) = zt. The resulting value is the t-th order
frame potential [33]

Ft(µ) := Ex,y∼µ

[
|〈x, y〉|2t

]
. (2)

It is known that the Haar integral on the r.h.s. of (1) min-
imizes the frame potential over the set of all measures µ
and that, in fact, its value is given by

Ft(µ) ≥ Wt (D) :=

(
D + t − 1

t

)−1

. (3)

This relation is known as Welch bound [34] or Sidelnikov
inequality [35]. In summary, we have:

Theorem 1 ([4, 31–33]). Fix a dimension D and let µ be a

probability measure on the unit sphere inCD . The measure µ
is a complex projective t-design if and only if its frame poten-
tial meets the Welch bound

Ft(µ) = Wt(D).

C. Main results

At the heart of this work is an explicit characteriza-
tion of the frame potential assumed by the uniform dis-
tribution over stabilizer states in prime power dimen-
sions D = dn. We denote the set of stabilizer states on(
Cd
)⊗n ≃ CD by Stabs(d, n). The unitary symmetry

group of the set of stabilizer states is the Clifford group
(for a precise definition, see Section II C). All results are
then implied by the following recursion formula over
the dimension’s exponent n = logd(D).

Theorem 2 (Main Theorem). Let d be a prime number and
let t ∈ N+. Then for all dimensions D = dn, the frame

potential Ft(Stabs(d, n)) of stabilizer states in CD is deter-
mined by the following recursion formula over n:

Ft(Stabs(d, 1)) =
d2−t + 1

(d + 1)d
, (4)

Ft (Stabs(d, n + 1))

Ft (Stabs(d, n))
=

dn−(t−2)+ 1

d (dn+1 + 1)
. (5)

Comparing this explicit characterization of the frame
potential to the Sidelnikov inequality (3) allows us to
draw the following conclusions:

Corollary 1. Let dn be a prime-power dimension. Then the
following statements are true

1. Stabs(d, n) forms a complex projective 2-design.

2. Stabs(d, n) constitutes a complex projective 3-design if
and only if d = 2.

3. The set Stabs(d, n) does not constitute a complex pro-
jective 4-design.

4. The Clifford group does not act irreducibly on

Sym4(CD) ⊂ (
CD
)⊗4

. In particular, it is not a uni-
tary 4-design.

As indicated before, the first fact was already widely
known [11, 19, 20]. The other results, however, are new
to the best of our knowledge. We reemphasize that these
assertions follow immediately form the Main Theorem,
which may be of independent interest.

D. Applications and Outlook

Here, we sketch relations of the result to problems
from signal analysis and quantum physics. Elaborating
on these connections will be the focus of future work.

In low-rank recovery [14, 36–38], a low-rank matrix X
is to be reconstructed from few linear measurements
of the form yi = tr (XAi). In the phase retrieval prob-
lem [15, 39, 40] one aims to recover a complex vector

x ∈ CD from the absolute value of a small number of
measurements yi = |〈x, ai〉| that are ignorant towards
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phase information. This task can be reduced to a partic-
ular instance of rank-one matrix recovery by rewriting
the measurements as [41, 42]

y2
i = tr

(|x〉〈x| |ai〉〈ai|
)
,

i.e. by setting X = |x〉〈x| and Ai = |ai〉〈ai|. For both
problems, strong recovery guarantees for randomly con-
structed measurements are known. Oftentimes these
rely on generic (e.g. Gaussian) measurement ensembles
and employing complex projective designs to partially
derandomize these result has been proposed in both
contexts [15, 16, 43].

Regarding both low rank matrix recovery and phase
retrieval, it is known that sampling measurement vec-
tors independently from a 2-design does not do the job
[15], while 4-designs already have an essentially optimal
performance [43, 44]. However, the remaining interme-
diate case for t = 3 is not yet fully understood. Numeri-
cal studies conducted by Drave and Rauhut [45] indicate
that random stabilizer-state measurements perform sur-
prisingly well at that task. The combinatorial properties
of prime power stabilizer states – e.g. Theorem 2 – may
help to clarify this situation. We believe this to be a po-
tentially very insightful open problem.

Finally, we want to point out that one nice structural
property of stabilizer states is that they come in bases,
i.e. the set of all stabilizer states is a union of different
orthonormal bases (see e.g. Theorem 3 below). This al-
lows for a considerably more structured random mea-
surement protocol: Select one such basis at random and
iteratively measure the trace inner product of an un-
known low rank matrix with all projectors onto the in-
dividual basis vectors. After having acquired D data
points that way, choose a new stabilizer basis at random
and repeat. We refer to [46] for a detailed description
of such a protocol. It should be clear that it has imme-
diate applications to quantum state tomography. In the
above paper, non-trivial recovery statements have been
announced for t-designs that admit such a basis struc-
ture and have strength t ≥ 3. Again, stabilizer states
obey these criteria and have been used for the numerical
experiments conducted there. However the announced
recovery statement suffers from a non-optimal sampling
rate for 3-designs and the rich combinatorial structure of
stabilizer bases might help to amend that situation.

E. Relation to previous work and history

After completion of this work (first announced at the
QIP 2013 conference [47]), we became aware of the fact
that a close analogue of our main result follows from a
statement proved in the field of algebraic combinatorics
[48] in 1999. The object of study there is a real version

of stabilizer states in R2n
, as well as their symmetries,

which are given by a real version of the Clifford group.
The key result is that under the action of the real Clif-

ford group, the space Sym3(R2n
) decomposes into ir-

reps in exactly the same way as it does under the action
of the full orthogonal group O(2n) [48, 49]. This implies
[50, 51] that any orbit of the real Clifford group gives
rise to a set that reproduces moments of Haar measure
up to order 6 (the established – if confusing – terminol-
ogy is to refer to such sets as spherical 6-designs [1], while
the complex-valued analogue would be called a complex
projective 3-design [2]).

The findings of [48] are formulated in the language
of algebraic invariant theory. While the present authors
were trying to relate them to the results we had estab-
lished in the context of quantum information, we be-
came aware of yet another development. Huangjun
Zhu [52] independently derived a very simple and el-
egant proof showing that the complex Clifford group
in dimensions d = 2n actually forms a unitary 3-design
[10, 11]. This means that the the irreducible repre-
sentation spaces of the action of the Clifford group on(
C2n)⊗3

coincide with those of the full unitary group

U(d). In particular, the Clifford group acts irreducibly

on Sym3(Cd) which, in turn, implies that that any orbit
of the group constitutes a complex projective 3-design.
The work of Zhu thus fully implies our main result.
What is more, the proof is simpler.

The appeal of the question treated here was under-
scored even more, when we learned a few days prior to
submission of this paper to the arxiv e-print server, that
yet another researcher – Zak Webb – had independently
obtained results related to the ones of Zhu [53].

In comparision to these works, our proof methods are
completely different: We rely on counting structures in
discrete symplectic vector spaces in order to compute
the angle set between stabilizer states, whereas [48] is
based on algebraic invariant theory and [52] on char-
acter theory. As a corollary, we derive an expression
for the number of stabilizer states with prescribed inner
product to a reference state. This finding might be of
independent interest. Also, we show that the set of sta-
bilizer states fails to be a 4-design in dimensions 2n and
that stabilizer states in dimensions other than powers of
two do not even constitute a 3-design. The simultane-
ously submitted papers seem to have left this possibility
open.

II. PROOF OF THE MAIN STATEMENT

A. Outline

We already mentioned in the introduction that there
is a geometric approach to stabilizer states building on
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the theory of discrete symplectic vector spaces1. This
phase space formalism will be introduced in Section II B.
We formally define stabilizer states and explain how to
compute inner products in this language in Section II C.
We then move on to briefly introducing Grassmannians
and some core concepts of discrete symplectic geome-
try. These tools will be used to establish Theorem 2 in
Section III.

B. Phase Space Formalism

We start by considering a d-dimensional Hilbert space
H, equipped with a basis {|q〉 | q ∈ Q}, where the con-
figuration space Q is given by Q := {0, . . . , d − 1} ⊂ Z

with arithmetics modulo d. Following [54, 55], we de-

fine two phase factors τ := eπi(d2+1)/d = (−1)deπi/d

and ω := τ2 = e2πi/d. For q, p ∈ Q, we introduce the
shift and boost operators defined by the relations

shift: x̂(q)|x〉 = |x + q〉, boost: ẑ(p)|x〉 = ωpx|x〉 (6)

for all x ∈ Q.
For p, q ∈ Q, the corresponding Weyl operator (or gen-

eralized Pauli operator) is defined as

w(p, q) = τ−pqẑ(p)x̂(q). (7)

Again following [54, 55], we adopt the convention that
any artihmetic expression in the exponent of τ is not un-
derstood to be modulo d, but rather as taking place in
the integers. This makes a difference for even dimen-
sions (see below). One could argue that it would be
slightly cleaner to syntactically distinguish the modu-
lar operations appearing in (6) from the non-modular
arithmetic in (7). However, the implicit convention does
declutter notation and we feel it is ultimately benefitial.

This definition is consistent with established conven-
tions. For example, one recovers the usual Pauli ma-
trices for the qubit case d = 2. We use the notation
V := Q × Q and consequently write w(v) := w(vp, vq)
for elements v = (vp, vq) ∈ V. Furthermore we define
the standard symplectic form

[u, v] := upvq − uqvp = uT Jv (8)

where

J =

(
0 1
−1 0

)

and u = (up, uq), v = (vp, vq) ∈ V. If d is prime,
the space V together with the non-degenerate symplec-
tic product (8) forms a symplectic vector space which

1 This is connected to the fact that stabilizer states are the natural
discrete analogue of Gaussian states of bosonic systems, where the
symplectic structure is well-appreciated. For a concise introduction
of this point of view, see [28].

is called phase space due to its resemblance to the phase
space appearing in classical mechanics.

The Weyl operators obey the composition and commu-
tation relations

w(u)w(v) = τ[u,v]w(u + v), (9)

w(u)w(v) = ω[u,v]w(v)w(u) ∀u, v ∈ V. (10)

which can be verified by direct computation.
It is worthwhile to point out that for odd d, the ring

Zd contains a multiplicative inverse of 2, namely 2−1 =
1
2 (d + 1) ∈ Zd. This in particular assures that τ is a dth
root of unity and hence the phase factors in (7, 9) de-
pend only on, respectively, pq and [u, v] modulo d. In
even dimensions, however, τ has order 2d. This some-
what complicates the theory of stabilizer states in the
even-d case – c.f. Section II C.

The preceeding definitions have been made with a
single d-dimensional system in mind. We now extend
our formalism to n such systems. The corresponding
configuration space is Q = Zn

d with elements q =
(q1, . . . , qn) and qi ∈ Zd. The associated phase space
will be denoted by V := Q × Q ≃ Z2n

d (dim V = 2n).
It carries a symplectic form given by the natural multi-
dimensional analogue of (8):

[u, v] := uT Jv, J =

(
0n×n In×n

−In×n 0n×n

)
.

With elements (p, q) ∈ V, we associate Weyl operators

w(p, q) =w(p1, . . . , pn, q1, . . . qn)

=w(p1, q1)⊗ . . . ⊗ w(pn, qn)

acting on the tensor product space
(
Cd
)⊗n

. With these
definitions, the composition and commutation relations
(9, 10) remain valid for n > 1.

We conclude this section with two formulas that will
be important in what follows and can both be verified
immediately. First, the Weyl operators are trace-less,
with the exception of the trivial one:

tr (w(v)) = dnδv,0. (11)

Second, for any vector v ∈ V and any subspace W ⊆ V
one has

∑
w∈W

ω[v,w] =

{
|W| if [v, w] = 0 ∀w ∈ W,

0 else.
(12)

C. Stabilizer States

Here, we will cast the established theory [9, 23] of sta-
bilizer states into the language of symplectic geometry
required for our proof. For previous similar expositions,
see [28, 56].
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Note that Equation (10) implies that two Weyl oper-
ators w(u) and w(v) commute if and only if [u, v] = 0.
Now consider the image of an entire subspace M ⊆ V
under the Weyl representation. We define

w(M) = {w(m) : m ∈ M}

and observe that w(M) consists of mutually commut-
ing operators if and only if [m, m′] = 0 holds for all
m, m′ ∈ M. Spaces having this property are called
isotropic. Assume now that M is isotropic.

If d is odd, then the w(M) not only commute, but ac-
tually form a group w(u)w(v) = w(u + v). That’s be-
cause in (9), the phase factor depends on [u, v] modulo
d, which is zero by assumption for u, v ∈ M. For even
dimensions, however, [u, v] might equal d and in this
case, the product w(u)w(v) = −w(u + v) does not lie
in w(M) (in other words, v 7→ w(v) is only a projective
representation of the additive group of M). This would
create problems in our analysis below. Fortunately, it
turns out that one can choose phases c(v) ∈ {±1} such
that v 7→ c(v)w(v) does become a true representation of
M. We will now describe this construction.

To this end, choose a basis B = {u1, . . . , udim M} of
M. For a given element m ∈ M, let m = ∑i miui be
the expansion of m with respect to this basis. Define the
(basis-dependent) Weyl operators to be:

wB(m) := ∏
i=1

w(ui)
mi . (13)

Using the fact that the w(ui) commute, one then obtains
for m, m′ ∈ M

wB(m)wB(m
′) =

n

∏
i=1

w(ui)
mi

n

∏
i=1

w(ui)
m′

i

=
n

∏
i=1

w(ui)
mi+m′

i = wB(m + m′).

This is the desired representation of M.
Stabilizer states turn out to be related to maximal

isotropic spaces M. We call a subspace M ⊆ V La-
grangian (LAG) – or maximally isotropic – if every vector
v ∈ V that commutes with all elements of M is already
contained in M. This is precisely the case if

M = {v ∈ V : [v, m] = 0 ∀m ∈ M} =: M⊥,

where M⊥ denotes the symplectic complement of M.
A basic result of symplectic geometry (e.g. Satz 9.11 in
[57]) states that this condition is fulfilled if and only if

dim M = 1
2 dim V = n, or equivalently |M| = dn.

We are now ready to state the relation between La-
grangian subspaces and state vectors in Hilbert space:

Theorem 3 (Stabilizer States). Let M ⊂ V be a Lagrangian
subspace, let B be a basis of M. Then the following assertions
are valid:

1. Up to a global phase, every v ∈ M singles out one unit
vector |M, v〉 ∈ H – called a stabilizer state that ful-
fills the eigenvalue equations

ω[v,m]wB(m)|M, v〉 = |M, v〉 ∀m ∈ M. (14)

2. Two elements u, v ∈ M define the same stabilizer
state if and only if they belong to the same affine space
[v]M := {v + m, m ∈ M} modulo M. If this is not
the case, the resulting stabilizer states are orthogonal,
i.e. 〈M, u|M, v〉 = 0.

3. V can be decomposed into a union of dn = dim(H)
different affine spaces modulo M. Via (14), this union
defines an orthonormal basis of stabilizer states associ-
ated with M.

This statement implies that each stabilizer state is
uniquely characterized by a Lagrangian subspace M ⊂
V and one particular affine space [v]M modulo M. In
the remainder of this article it will be convenient to rep-
resent each such affine space by a representative ζ ∈
[v]M ∈ V contained in it. We have opted to denote such
representatives of cosets ζ, ι ∈ V by greek letters to no-
tationally underline their origin.

Proof of Theorem 3. Define

ρM,v := d−n ∑
m∈M

ω[v,m]wB(m)

and compute

ρ2
M,v =d−2n ∑

m,m′∈M

ω[v,m]ω[v,m′]wB(m)wB(m′)

=d−2n ∑
m,m′∈M

ω[v,m+m′]wB(m + m′)

=d−n ∑
m∈M

ω[v,m]wB(m) = ρM,v,

as well as

tr ρM,v =d−n ∑
m,∈M

ω[v,m] tr wB(m)

=d−n tr wB(0) = 1

where we have employed (11). The first relation implies
that ρM,v is a projection and the second one that is has
rank one. One can check by direct calculation that

ω[v,m]wB(m)ρM,v = ρM,v,

holds for every m ∈ M. Consequently, the so that the
any vector from the range of ρM,v fulfills all eigenvalue
equations. However, since ρM,v has rank one, its range
corresponds to a single vector that we can associate with
|M, v〉 ∈ H up to a global phase. This proves the first
claim up to uniqueness which we are going to establish
later on.
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For the second claim, fix u, v ∈ V and observe

tr (ρM,uρM,v) =d−2n ∑
m,m′∈M

ω[u,m]ω[v,m′]tr
(
wB(m + m′)

)

=d−2n ∑
m,m′∈M

ω[u,m]ω[v,m′]dnδm+m′,0

=d−n ∑
m∈M

ω[u−v,m]

=d−n

{
|M| if [u − v, m] = 0 ∀m ∈ M,

0 else,

where we have used (12). But because M is maximally
isotropic, [u − v, m] = 0 ∀m ∈ M implies u − v ∈ M.
Thus, there is one ρM,u for each affine space u + M ⊂
V, and two distinct affine spaces give rise to othogonal
states which is just the second claim.

Finally, note that there are |V/M| = dn = dimH
such affine spaces, which proves that one obtains an
ortho-normal basis in this way. Moreover, this estab-
lishes the uniqueness part of the first statement and im-
plies, justifying that |M, v〉 is well-defined up to a global
phase.

In the remainder of this section, we will show how
to choose consistent bases for two, possibly intersecting,
Lagrangian spaces M, N and use these results to come
up with formulas for the inner product between two ar-
bitrary stabilizer states.

Lemma 1 (Compatible bases). Let M, N ⊂ V be two La-
grangian subspaces. Then there exists bases BM of M and
BN of N such that wBK

(m) = wBM
(m) = wBN

(m) for any
m ∈ M ∩ N. What is more, for m ∈ M and n ∈ N, it holds
that

tr
(
wBM

(m)wBN
(−n)

)
= dnδm,n. (15)

Proof. Choose a basis {u1, . . . , udim M∩N} of M ∩ N. By
elementary linear algebra, it can be extended both to a
basis BM of M and to a basis BN of N. The first claim
follows immediately from (13). For the second claim,
note that for from (9), we have that wBM

(m)wBN
(−n) =

±w(m − n). Thus, by (11), the trace in (15) vanishes un-
less m = −n. In that case, however, m, n ∈ K and thus,
by construction of the bases, wBM

(m) = wBK
(m) and

wBN
(−n) = wBK

(−n). Thus

wBM
(m)wBN

(−n) = wBK
(m − n) = wBK

(0) = w(0).

The claim then follows from (11).

We conclude this subsection with an important obser-
vation: The overlap of different stabilizer states is fully
characterized by the geometric intersection of their un-
derlying Lagrangian subspaces.

Lemma 2 (Overlap of stabilizer states). Let
|M, ζ〉, |N, ι〉 ∈ H be two stabilizer states characterized by
Lagrangian subspaces M, N ⊂ V (as well as corresponding

bases BM and BN if d is even) and representatives ζ, ι ∈ V
of cosets [ζ]M ∈ V/M and [ι]N ∈ V/N, respectively. Then,
setting K = M ∩ N, their inner product is given by

|〈M, ζ|N, ι〉|2 =

{
d−n|K| if [ζ, m] = [ι, m] ∀m ∈ K,

0 else.

(16)

Proof. The claim follows from direct computation. Ac-
cording to Lemma 1 we can pick bases BK of K :=
M ∩ N, BM of M and BN of N that are compatible with
each other. With respect to these bases we can write

|M, ζ〉〈M, ζ| = d−n ∑
m∈M

ω[ζ,m]wBM
(m),

|N, ι〉〈N, ι| = d−n ∑
m′∈N

ω−[ι,m′]wBN
(−m′).

Formula (15 ) now implies

|〈M, ζ|N, ι〉|2
=tr (|M, ζ〉〈M, ζ||N, ι〉〈N, ι|)
=d−2n ∑

m∈M
∑

m′∈N

ω[ζ,m]−[ι,m′]tr
(
wBM

(m)wBN
(−m′)

)

=d−n ∑
m∈M∩N

ω[ζ−ι,m]

=d−n

{
|M ∩ N| if [ζ − ι, m] = 0 ∀m ∈ M ∩ N

0 else,

where the last equation follows from formula (12).

D. Grassmannian subspaces and discrete symplectic
geometry

Let Q be a n-dimensional vector space over the fi-
nite field Zd. The Grassmannian G(d, n, k) is the set of
k-dimensional subspaces of V. A standard result – e.g
formula (9.2.2) in [58] – says that the size of G is given
by the Gaussian binomial coefficient:

|G(d, n, k)| =
(

n

k

)

d

:=

{
∏k−1

i=0
dn−i−1
dk−i−1

if k ≤ n,

0 else.
(17)

This is the analogue of the familiar binomial coefficient
for the finite field Zd. As such it exhibits similar proper-
ties, such as (n

k)d
= ( n

n−k)d
(symmetry), (n

n)d
= (n

0)d
= 1

(trivial coefficients) and Pascal’s identity

(
n

k

)

d

= dk

(
n − 1

k

)

d

+

(
n − 1

k − 1

)

d

. (18)

For further reading and proofs of these identities we re-
fer to Chapter 9 in [58] and move on to introducing some
core concepts of symplectic geometry:

Let V be a 2n-dimensional symplectic vector space
over the finite field Zd. A polarization (M, N) of V is
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the choice of two Lagrangian subspaces M, N which are
transverse in the sense that their direct sum spans the
entire space, i.e M ⊕ N = V. For a fixed Lagrangian M
we define the set

T (M) = {N | N Lagrangian; (M, N) is a polarization of V}
of all Lagrangian subspaces transverse to M. The set
T (M) appears in various contexts. For instance it labels
all graph states (in a sense explaind below) in quantum
information theory [25]

For the purpose of our counting argument, we need
to compute the size of T (M) ∈ V.

Proposition 1. Let V be a 2n-dimensional symplectic space
over Zd and let M be an arbitrary Lagrangian subspace.
Then, the cardinality of T (M) amounts to

T (d, n) :=
∣∣T (M)

∣∣ = d
1
2 n(n+1).

Proof. Fix M and note that a subset N ⊂ V has to be both
Lagrangian and transverse to M in order to lie in T (M).
These conditions can be made more explicit if we choose
a basis b1, . . . , b2n of V which obeys

M = span {b1, . . . , bn} and
[
bi, bj

]
= δn⊕i,j,

where ⊕ denotes addition modulo 2n. Such a basis al-
lows us to fully characterize any subspace N by a n ×
2n-generator matrix GN with column vectors a1, . . . , an

obeying span {a1, . . . , an} = N. Moreover, it will be
instructive to partition each generator matrix into two

n × n blocks A and B, i.e. GN =

(
A
B

)
. Due to our

choice of basis the generator matrix GM of M is particu-

larly simple, namely GM = ( In×n 0n×n )
T

. Transver-
sality can be restated in terms of these generator ma-
trizes: M ⊕ N = V if and only if the 2n × 2n-matrix
( GM GN ) has full rank. Due to the particular form of
GM this is however equivalent to demanding rank(B) =
n. Thus we can convert GN into the equivalent genera-

tor matrix G̃N =
(

ÃT In×n

)T
(and generators ã1, . . . ãn

as above) by applying a Gauss-Jordan elimination in the
columns of GN.

The generator matrix G̃N characterizes a Lagrangian
subspace if and only if [ãi, ãj] = 0 holds for all i, j =
1, . . . , n. These requirements can be summarized in a

single matrix equality, namely that G̃T
N JG̃N must iden-

tically vanish. Inserting the particular form of G̃N and
carrying out the math reveals that this is equivalent to

demanding that ÃT − Ã must be the zero matrix. Hence,
a subspace N is a polarization of M if and only if its gen-
erator matrix (with respect to the basis chosen above) is

Gauss-Jordan equivalent to GN = ( A In×n )
T

, where A
is a symmetric n× n-matrix over Zd. Therefore there is a
one-to-one correspondence between polarizations N of
M and symmetric n × n-matrizes over Zd. The dimen-

sionality of the latter is 1
2 n(n + 1) which completes the

proof.

The one-to-one correspondence between polariza-
tions of M and symmetric matrices in this proof gives
additional meaning to the set T (M). Recall that a stabi-
lizer state |N, ζ〉 is a graph state if N possesses a generator

matrix of the form ( A In×n )
T

, where A is a symmetric
n × n-matrix. Hence, T (M) is the set of all Lagrangian
subspaces N which lead to graph states.

The name graph state pays tribute to the fact that A
can be interpreted as the adjacency matrix of a (possi-
bly weighted) graph. Graph states possess a rich struc-
ture and many properties of |N, ζ〉 can be deduced from
the corresponding graph alone. However, here we con-
tent ourselves with pointing out the analogy between
graph states and T (M). For further reading we defer
the reader to [25].

Let us now turn to subspaces of the symplectic vector
space V. It is clear that a proper subspace W ⊂ V is itself
a vector space, however in general it fails to be symplec-
tic. This is due to the fact that the standard symplectic
inner product (8) of V becomes degenerate if we restrict
it to W. Therefore important tools – such as Proposi-
tion 1 – cannot be directly applied to the proper sub-
space W. However, this problem can be (partly) circum-
vent by applying a linear symplectic reduction. For W ⊆ V
we define the quotient

Ŵ = W/(W⊥ ∩ W). (19)

This space carries the non-degenerate symplectic form

[
[v], [w]

]
Ŵ

:= [v, w]V (20)

which is easily seen not to depend on the representatives

for [v] and [w]. Consequently, the space Ŵ endowed
with [·, ·]Ŵ is a symplectic vector space. We will need
such a reduction in the proof of Theorem 4.

III. PROOF OF THE MAIN THEOREM

In this section we show our main result – Theorem 2 –
which provides an explicit recursion fully characterizing
the frame potential Ft(Stabs(d, n)) of stabilizer states in
prime power dimensions D = dn. We denote the set of

all stabilizer states by Stabs(d, n) =
{

x1, . . . , xS(d,n)

}
⊂

CD, where S(d, n) := | Stabs(d, n)| is just the cardinal-
ity of that set. Recall that in our framework each sta-

bilizer state xi ∈ CD is specified by a Lagrangian sub-

space M in V = Z2n
d and a representative ζ ∈ V of the

coset [ζ]M ∈ V/M. The Clifford invariance [28] of sta-
bilizer states allows us to calculate any frame potential
Ft(Stabs(d, n)) by counting intersections of Lagrangian
subspaces. This is the content of the following result that
considerably simplifies the expression for frame poten-
tials.

Lemma 3. Let D = dn be a prime power. The t-th frame
potential of the set of all stabilizer states in dimension D is
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given by

Ft(Stabs(d, n)) =
1

S(d, n)

n

∑
k=1

κM(d, n, k)d(1−t)(n−k),

(21)
where κM(d, n, k) is the number of Lagrangian subspaces N
whose intersection with an arbitrary fixed Lagrangian sub-
space M is k-dimensional.

Proof. Stabilizer states constitute an orbit of a particular
finite unitary group – the Clifford group. Due to this
symmetry, the second summation in Ft(Stabs(d, n)) is
superfluous and we can write

Ft(Stabs(d, n)) =
1

S(d, n)2

N

∑
i,j=1

∣∣〈xi, xj〉
∣∣2t

=
1

S(d, n)

N

∑
i=1

|〈xk, xi〉|2t , (22)

where xk ∈ Stabs(d, n) is an arbitrary fixed stabilizer
state. Theorem 3 assures that any such xk is unambigu-
ously specified by a Lagrangian subspace M of V and
coset [ζ]M ∈ M/V. Since the choice of xk in (22) was
arbitrary, we can choose xk = |M, 0〉 – i.e. it is specified
by M and the particularly simple representative 0 ∈ V
of the coset [0]M. Such a choice of xk together with The-
orem 3 allows us to rewrite (22) as

Ft(Stabs(d, n)) =
1

S(d, n) ∑
N LAG

∑
[ζ]N∈V/N

|〈N, ζ|M, 0〉|2t ,

(23)
because instead of summing over stabilizer states, we
may as well sum over their characterizing Lagrangian
subspaces and cosets instead. Such a reformulation al-
lows us to employ Lemma 2 which implies

|〈N, ζ|M, 0〉|2t =

{
d−nt|K|t if [ζ, m] = 0 ∀m ∈ K,

0 else,

where K = M ∩ N denotes the intersection. If this in-
tersection is k-dimensional, |K| = dk and consequently

|〈N, ζ|M, 0〉|2t = d−t(n−k), provided that [ζ, m] = 0
for all elements m ∈ K. This requirement for a non-

vanishing overlap is met if and only if ζ ∈ K⊥. The num-
ber of representatives ζ which obey this property (and
single out different stabilizer states) is given by the or-

der of the quotient space |K⊥/N|. Since N ⊆ K⊥ (which

follows from K ⊆ N and N⊥ = N), such a quotient
space is well defined and its order amounts to

|K⊥/N| = ddim(K⊥/N) = d2n−k−n = dn−k.

Consequently, for each pair of Lagrangians M, N with

k-dimensional intersection, dn−k out of a total of dn sta-
bilizer states specified by N give rise to a non-vanishing

overlap |〈N, ζ|M, 0〉|2t = d−t(n−k) with the fixed stabi-
lizer state xk = |M, 0〉. Inserting this insight into (23)
reveals

Ft(Stabs(d, n)) =
1

S(d, n) ∑
N LAG

d(1−t)(n−dim(N∩M))

=
1

S(d, n)

N

∑
k=1

κM(d, n, k)d(1−t)(n−k),

where we have replaced the summation over the differ-
ent Lagrangian subspaces with an equivalent summa-
tion over the dimension k of the intersections M∩ N.

Lemma 3 shows that we can compute the stabilizer
frame potential Ft(Stabs(d, n)) provided that the num-
ber κM(d, n, k) is known for any Lagrangian subspace M
and any intersection space dimesion k ∈ {0, . . . , n}. The
following two statements characterize that number.

Theorem 4. Let V be a 2n-dimensional symplectic space
over Zd. Fix an arbitrary Lagrangian subspace M and a k-
dimensional subspace K of M. The number of Lagrangian
subspaces N that obey M ∩ N = K equals

T (d, n − k) = d
1
2 (n−k)(n−k+1).

The fact that each Lagrangian M admits |G(d, n, k)| =
(n

k)d
different k-dimensional subspaces K (formula (17))

immediately yields the following corollary.

Corollary 2 (Expression for κM(d, n, k) ). Let V be a 2n-
dimensional symplectic space over Zd. For an arbitrary La-
grangian subspace M ⊂ V and k ∈ {0, . . . , n}, the number
of Lagrangian subspaces N whose intersection with M is k-
dimensional amounts to

κM(d, n, k) =

(
n

k

)

d

d
1
2 (n−k)(n−k+1). (24)

Proof of Theorem 4. We need to count in how many ways
one can choose a Lagrangian space N ⊂ V that inter-
sects M exactly in K. Our strategy will be to relate the
set of such extensions N of K to a set T as in Proposi-

tion 1. To that end, set Ŵ := K⊥/K. Note that K ⊆ K⊥
(because K ⊆ M and M is Lagrangian) implies

Ŵ = K⊥/K = K⊥/
(
K ∩ K⊥) = K⊥/

(
(K⊥)⊥ ∩ K⊥).

Therefore Ŵ is the linear symplectic reduction of K⊥ as

defined in (19). The space Ŵ endowed with the induced
symplectic product [·, ·]Ŵ defined in (20) forms a sym-
plectic vector space with dimension

dim Ŵ = dim K⊥/K = 2n − k − k = 2(n − k).

Note that any isotropic space N containing K is in par-

ticular contained in K⊥. The canonical projection N 7→
N/K sets up a one-to-one correspondence between n-

dimensional subspaces of K⊥ containing K and (n − k)-
dimensional subspaces of Ŵ. We need two properties of
this correspondence:
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(i) N/K ⊂ Ŵ is isotropic if and only if N ⊂ V is.
Proof: This follows immediately from (20).

(ii) N/K ⊂ Ŵ is transverse to M/K if and only if M ∩
N = K. Proof: Basic linear algebra shows

(M + N)/K ≃ M/K + N/K.

For the left hand side:

dim(M + N) = dim(M) + dim(N)− dim(M ∩ N)

≤ 2n − k

with equality if and only if M∩ N = K. Hence dim(M+
N)/K ≤ 2(n − k) with the same condition for equality.
For the right hand side:

dim(M/K) + dim(N/K) ≤ dim M + dim N − 2 dim K

= 2(n − k)

with equality if and only if the two spaces are transverse.

It follows that M/K is a Lagrangian subspace of Ŵ
and there is a one-to-one correspondence between La-
grangian spaces N intersecting M in K and Lagrangian

subspaces of Ŵ transverse to M/K. Employing Propo-
sition 1 then yields the desired result.

Finally, we are going to require an explicit characteri-
zation of the number S(d, n) of stabilizer states. We bor-
row it from [28, Corollary 21]:

Proposition 2 (Number of stabilizer states). For H =(
Cd
)⊗n

, the cardinality S(d, n) of Stabs(d, n) ⊂ H
amounts to

S(d, n) = | Stabs(d, n)| = dn
n

∏
j=1

(
dj + 1

)
(25)

and thus obeys the recursion

S(d, n)

S(d, n + 1)
=

1

(dn+1 + 1)d
. (26)

Formula (25) combined with Corollary 2 allows us to
write down the frame potential (Lemma 3) explicitly:

Ft(Stabs(d, n)) =
1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

(27)
with S(d, n) defined in (25). Note that this is a purely
combinatorical expression that depends solely on d and
n. Analyzing its recursive dependence on n allows us to
establish the main result of this work – Theorem 2.

Proof of Theorem 2. Let us start with the base case (4)
which is readily established. Indeed, setting n = 1
and evaluating formula (27) reveals that for any d and
t Ft(Stabs(d, n)) amounts to

1

(d + 1)d

((
1

0

)

d

d
1
2 (4−2t) +

(
1

1

)

d

)
=

d2−t + 1

(d + 1)d
,

where we have used (n
0)d

= (n
n)d

= 1. Let us now move
on to establishing the recursive behavior. Replacing n by
(n + 1) in formula (27) and employing Pascal’s identity
(18) as well as trivial coefficients for Gaussian binomials
yields

Ft (Stabs(d, n + 1)) =
1

S(d, n + 1)

n+1

∑
k=0

(
n + 1

k

)

d

d
1
2 (n+1−k)(n+1−k+3−2t)

=
1

S(d, n + 1)

((
n + 1

0

)

d

d
1
2 (n+1)(n+4−2t)+

n

∑
k=1

(
n + 1

k

)

d

d
1
2 (n+1−k)(n−k+4−2t)+

(
n + 1

n + 1

)

d

)

=
1

S(d, n + 1)

(
d0

(
n

0

)

d

d
1
2 (n+1)(n+4−2t)+

n

∑
k=1

(
dk

(
n

k

)

d

+

(
n

k − 1

)

d

)
d

1
2 (n+1−k)(n−k+4−2t)+

(
n

n

)

d

)

=
1

S(d, n + 1)

(
n

∑
k=0

dk

(
n

k

)

d

d
1
2 (n+1−k)(n−k+4−2t)+

n+1

∑
k=1

(
n

k − 1

)
d

1
2 (n−(k−1))(n−(k−1)+3−2t)

)
, (28)

where we have encorporated the first and last terms
in the first and second summation, respectively.
Note that the second summation just corresponds to

∑n
k=0 (

n
k)d

d
1
2 (n−k)(n−k+3−2t) – which in that very form

also appears in (27). Importantly, a similar equivalence
is true for the first sum appearing in (28). Taking a closer
look at the overall exponent of d in that summation re-
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veals

k +
1

2
(n + 1 − k)(n − k + 4 − 2t)

=n − (t − 2) +
1

2
(n − k)(n − k + 3 − 2t)

and the first term is independent of the summation in-
dex. Consequently the first sum in (28) actually cor-

responds to dn−(t−2) ∑n
k=0 (

n
k)d

d
1
2 (n−k)(n−k+3−2t) and we

can conclude

Ft(Stabs(d, n + 1))

=
S(d, n)

S(d, n + 1)

(
dn−(t−2)+ 1

)

× 1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

=
dn−(t−2)+ 1

d(dn+1 + 1)

1

S(d, n)

n

∑
k=0

(
n

k

)

d

d
1
2 (n−k)(n−k+3−2t)

=
dn−(t−2)+ 1

d(dn+1 + 1)
Ft (Stab(d, n))

where we have employed (26).

We conclude this article with presenting a proof of
Corollary 1 which establishes some substantial insights
into the structure of stabilizer states.

Proof of Corollary 1. Start with the case t = 2. Then the
result of Theorem 2 reads

F2(Stabs(d, 1)) =
2

d(d + 1)

F2(Stabs(d, n + 1))

F2(Stabs(d, n))
=

dn + 1

d(dn+1 + 1)
.

But the Welch Bound (3) satisfies identical relations:

W2(d) =
2

d(d + 1)
(29)

W2(d, n + 1)

W2(d, n)
=

(dn+1
2 )

(dn+1+1
2 )

=
(dn + 1)dn

(dn+1 + 1)dn+1
(30)

The 3-design case can be proved along similar lines.
We have

F3(Stabs(d, 1)) =
1 + d−1

(d + 1)d
(31)

F3(Stabs(d, n + 1))

F3(Stabs(d, n))
=

dn−1 + 1

d(dn+1 + 1)
(32)

and the Welch bound satisfies

W3(d) =

(
d + 2

3

)−1

=
6

(d + 2)(d + 1)d
(33)

W3(d
n+1)

W3(dn)
=

(dn + 2)(dn + 1)

(dn+1 + 2)(dn+1 + 1)d
. (34)

The two base values (31) and (33) coincide for d ≤ 2.
Otherwise, the former is strictly larger than the latter.
Comparing the recursion factors yields

Eq. (34)

Eq. (32)
=

(dn + 2)(dn + 1)

(dn+1 + 2)((dn−1 + 1)
(35)

=
d2n + 3dn + 2

d2n + (2/d + d)dn + 2
≤ 1 (36)

with equality if and aonly if d = 1, 2. Consequently we
have F3(Stabs(d, n)) = W3(d

n) for any n ∈ N+ if and
only if d ≤ 2.

Finally, let us move on the the 4-design case, where
we have

F4 (Stabs(d, 1)) =
1 + d−2

(d + 1)d
, (37)

F4 (Stabs(d, n + 1))

F4 (Stabs(d, n))
=

dn−2 + 1

(dn+1 + 1)d
, (38)

(39)

and

W4(d) =
24

(d + 3)(d + 2)(d + 1)d
(40)

W4(d
n+1)

W4(dn)
=

(dn + 3)(dn + 2)(dn + 1)

(dn+1 + 3)(dn+1 + 2)(dn+1 + 1)d
. (41)

Comparing (37) to (40) reveals F4 (Stabs(d, 1)) ≥
W4 (d) with equality if and only if d = 1. An analo-
gous relation holds for (38) and (41) which assures that
F4(Stabs(d, n)) and W4(d

n) only ever coincide in the
trivial case d = 1.

For the final claim of Corollary 1, note that the set of
stabilizer states in prime-power dimensions form one
orbit under the action of the Clifford group [28]. Also,
any orbit of a unitary t-design is a complex projective
t-design [10, 11]. Thus Claim 3 implies that the Clifford
group is not a 4-design. Peter Turner has made us aware
of the fact that the frame potential of group orbits only
depends on the action of that group on the totally sym-

metric space Symt(CD). Following the reasoning of [11],
a group acting irreducibly on that space has the property
that any orbit constitutes a complex projective t-design.
Thus, the stronger statement in Claim 4 is also implied
by Claim 3.
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Abstract—Recent insights concerning the PhaseLift algorithm for
retrieving phases have furthered our understanding of low rank matrix
recovery from rank-one projective measurements. Motivated by the
structure of certain quantum mechanical experiments, we introduce
a particular class of such rank-one measurements: orthonormal basis
measurements. One such measurement corresponds to choosing an
orthonormal basis and treating all the rank-one projectors onto different
basis elements as a series of consecutive measurement matrices. We
elaborate on performing low-rank matrix recovery from few, sufficiently
random orthonormal basis measurements and sketch applications of
such a procedure in quantum physics. We conclude this article by
presenting numerical experiments testing such an approach.

Index Terms—Low rank matrix recovery, quantum information theory,
phase retrieval

I. INTRODUCTION

A. Low rank matrix recovery

The young but already extensive field of low rank matrix recovery
uses ideas from compressed sensing to reconstruct a given matrix of
low rank from highly incomplete data in a computationally efficient
way. Here we shall restrict our attention to hermitian n× n matrices
which form a real n2-dimensional vector space Hn. Let X ∈ Hn be
a rank-r matrix of interest (r � n) and suppose that we have access
to m linear measurements of the form

yi = tr (AiX) i = 1, . . . ,m, (1)

where A1, . . . , Am ∈ Hn denote measurement matrices. Having data
of this form at hand, the analogy to compressed sensing [1] suggests
to exploit the low-rank structure of X by means of a constrained
nuclear-norm1 minimization

minimize
Z∈Hn

‖Z‖∗ (2)

subject to tr (ZAi) = yi i = 1, . . . ,m,

which can be solved computationally efficiently. One aim of low-rank
matrix recovery is to identify instances for which m = Crnpolylog(n)
measurements of the form (1) suffice to prove that the convex program
(2) recovers the sought for X with high probability. Up to date many
such instances have been identified [2]–[8].

1In a sense, the nuclear norm ‖X‖∗ = tr (|X|) is the natural non-commutative
analogue of the `1-norm which features prominently in compressed sensing [1].
Furthermore, low rank assures that the matrix of interest is sparse in its eigenbasis.

B. The phase retrieval problem

The problem of retrieving a complex signal x ∈ Cn from
measurements of the form

yi = |〈ai, x〉|2 i = 1, . . . ,m, (3)

where a1, . . . , am ∈ Cn are measurement vectors, has long been
abundant in many areas of science. Recently, its mathematical structure
has received considerable attention in its own right. The problem is
clearly ill-posed, since all phase information is lost in the measurement
process and the measurements (3) are furthermore of a non-linear
nature. This second obstacle can be overcome by a trick [9] well
known in conic programming: the quadratic expressions (3) are linear
in the outer products xx∗ and aia∗i :

yi = |〈ai, x〉|2 = tr
(
(aiai)

∗
(xx∗)

)
.

Since the object of interest – X := xx∗ ∈ Hn – is proportional to a
rank-one projector, such a “lift” turns the phase retrieval problem into
a particular instance of low rank matrix recovery – a fact that was first
observed by Candès, Eldar, Strohmer and Voroninski [10]. In turn, the
measurement matrices Ai = aia

∗
i are constrained to be proportional

to rank-one projectors as well. These structural constraints prevent a
direct application of results from low-rank matrix recovery, because
signal and measurements fail to be sufficiently incoherent2 in the
sense of [5], [11]. Nonetheless, phase retrieval recovery guarantees by
means of the optimization (2) – dubbed PhaseLift for this particular
setting – have been established for different types of measurements.

The chronologically first result [12] of this kind proves a non-
uniform recovery guarantee for m = Cn log(n) measurement vectors
ai sampled independently and uniformly from the complex unit sphere.
This recovery guarantee was partially derandomized (at the cost of a
larger sampling rate) in [13] using the concept of spherical t-designs.
Both results were improved by means of uniform counterparts [14],
[15] getting by with lower sampling rates3.

Motivated by actual experimental setups, Candès, Li and
Soltanolkotabi [16] furthermore established a non-uniform recovery
guarantee for L = C log4(n) complete Fourier basis measurements

2Roughly, the incoherence paramter caputures the well-posedness of the inverse
problem.

3In fact, both references establish an optimal sampling rate (up to a multiplicative
constant) for measurement vectors drawn independently and uniformly from the complex
unit sphere.978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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that are randomly distorted. To be more concrete, one such measure-
ment encompasses n distorted Fourier vectors of the form ak,l = Dlfk
(1 ≤ i ≤ k), where each Dl (1 ≤ l ≤ L) is an instance of a random
matrix diagonal in the standard basis – e.g. a diagonally embedded
Rademacher vector with random erasures. Subsequently, a recovery
guarantee requiring fewer – namely L = C log2(n) – such coded
diffraction patterns was established in [17].

We conclude this section by pointing out that PhaseLift is just one
possibility for solving the phase retrieval problem. Other approaches
rely on polarization identities [18], alternate projections [19], or
Wirtinger flow methods [20].

II. LOW RANK MATRIX RECOVERY FROM ORTHONORMAL BASIS
MEASUREMENTS

Given these recent advances regarding the phase retrieval problem,
it seems natural to ask, whether these insights can be translated to
general low rank matrix recovery from certain types of rank-one
projective measurements. A first step in this direction was done in
[15], where uniform recovery guarantees for inferring hermitian rank
r-matrices from m = Crn projectors onto i.i.d Gauss-random vectors,
or from m = Crn log(n) projectors onto randomly chosen elements
of a spherical 4-design, were established.

Here – inspired by coded diffraction patterns [16], [17] – we
shall focus on randomly distorted basis measurements instead. More
formally: let X ∈ Hn be a rank-r matrix of interest and consider n
consecutive measurements of the form

y1,l = tr ((Dlb1b
∗
1D
∗
l )X) = 〈Dlb1, X Dlb1〉,

... (4)
yn,l = tr ((Dlbnb

∗
nD
∗
l )X) = 〈Dlbn, X Dlbn〉,

where b1, . . . , bn denotes an arbitrary orthonormal basis of Cn and
Dl is an instance of a random n × n matrix. Motivated by typical
quantum mechanical experiments – see Section III – we consider the
special case, where each Dl is unitary. Consequently each distorted
orthonormal basis measurement corresponds to measuring a different
orthonormal basis b(l)1 , . . . , b

(l)
n :

y1,l = tr
(
b
(l)
1

(
b
(l)
1

)∗
X
)

= 〈b(l)i , X b
(l)
1 〉,

... (5)

yn,l = tr
(
b
(l)
1

(
b
(l)
1

)∗
X
)

= 〈b(l)n , X b(l)n 〉.

Regarding such types of measurements, the following question is
imminent:

Are there unitary transformations Dl – or equivalently: orthonor-
mal bases b

(l)
1 , . . . , b

(l)
n – such that the convex optimization

(2) allows for recovering an unknown rank-r matrix X from
L = Crpolylog(n) orthonormal basis measurements of the form
(4), or (5), respectively?

It is highly conceivable, that this is the case for unitaries Dl chosen
uniformly from the Haar measure – or equivalently: orthonormal
bases b(l)1 , . . . , b

(l)
n obtained by choosing n standard complex Gaussian

vectors independently at random and orthonormalizing them (e.g. by
means of Gram-Schmitt). Clearly, such a procedure requires one to
be able to choose from a continuous, very generic union of bases.
However, the results in [13], [15] suggest that such a requirement

might not be necessary and that more structured, finite unions of
bases may suffice to establish low rank matrix recovery guarantees
by means of nuclear norm minimization. For going further into that
direction – and, by doing so, partially derandomizing the recovery
scheme proposed above – we rely on the concept of spherical designs.
These finite sets of unit vectors were first introduced in [21] and
serve as a general purpose tool for partial derandomization – see [13],
[22] for further reading on this aspect of spherical designs. To mimic
the problem’s structure, we need to equip spherical designs with an
additional structural property. This results in the following definition.

Definition 1 (spherical t-design with basis structure). We call a finite
union Λt = {b(i)1 , . . . , b

(i)
n }Ni=1 ⊂ Cn of orthonormal bases a spherical

t-design with basis structure, if the uniform distribution over the Nn
elements of Λt reproduces the first 2t moments of standard complex
Gaussian vectors renormalized to unit length.

Although demanding such an orthonormal basis structure in addition
to the t-design property might seem alien at first sight, there are
numerous examples for designs that admit it. Examples include
arbitrary orthonormal bases (1-designs), maximal sets of mutually
unbiased bases (2-designs) [23] which exist in prime power dimensions,
stabilizer states (3-designs in power-of-two-dimensions) [24] and orbits
{Uib1, . . . , Uibn}Ni=1 of an arbitrary orthonormal basis under the action
of a unitary t-design4 {Ui}Ni=1 [25], [26] (which constitute a spherical
t-designs of the same order).

Similar to [13], t-designs with basis structure suffice to establish a
non-uniform recovery guarantee for measurements of the form (5):

Theorem 2 (Low rank matrix recovery from orthonormal basis
measurements). Let X ∈ Hn be an arbitrary matrix of rank r and let
Λt be a t-design (t ≥ 3) with basis structure in the sense of Definition
1. Then choosing

L = Ctn2/tr log2(n) (6)

different bases independently and uniformly at random from Λt and
performing the corresponding orthonormal basis measurements of the
form (5) suffices to recover X by means of the convex optimization
(2) with high probability.

Note that the requirement t ≥ 3 on the design order is in fact
necessary. Similar to [13, Theorem 2], a counter-example can be
constructed for t = 2 using mutually unbiased bases. While Theorem
2 is non-trivial – as it allows for recovering X from a total of
m = Ln = Ctn1+2/tr log2(n) � n2 measurements (provided that
r � n and n is large enough) – the required number L of orthonormal
basis measurements contains the term n2/t. As a consequence, the
sampling rate only becomes optimal up to polylog-factors, if we
allow the design order t to grow logarithmically with the dimension
(t = 2 log(n)). However, we believe that the factor n2/t in (6) is
an artifact of the proof technique employed. It uses ideas presented
in [13] which resulted in a similar non-optimal factor appearing in
the sampling rate. There, employing different techniques allowed for
eradicating such a factor and substantially strengthening the statement
[15]. In turn, we believe that a more careful analysis will allow for

4Unitary t-design are a natural generalization of the spherical design concept to
unitaries. These finite sets of unitary matrices reproduce the Haar-uniform distribution
over the unitary group up to 2t-th moments.
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establishing a recovery guarantee getting by with a sampling rate that
already for t = 3, or t = 4, is optimal up to polylog-factors.

Furthermore, we want to point out that there is crucial difference
between Theorem 2 and the main result established in [13] (and
its generalization presented in [15]). There it is assumed that each
measurement is sampled independently and uniformly from Λt – which
strongly resembles the design’s defining property (see Definition 1).
In Theorem 2, on the other hand, one entire basis is selected at
random and n corresponding orthonormal basis measurements of
the form (5) are carried out. Evidently, these n measurements are
correlated. Such a situation bears more similarity to coded diffraction
patterns [16], [17] than it does to independent sampling of individual
design elements. In order to establish Theorem 2 we pay tribute to
this fact and combine proof techniques from [17] (which can handle
such correlated measurements) with others from [13] (that exploit
the underlying design-structure). A detailed presentation of such a
proof would go beyond the scope of this article and will be presented
elsewhere.

Finally we want to point out that Theorem 2 is stated for noiseless
measurements only. We leave establishing stability towards noise for
future work.

III. MOTIVATION: QUANTUM STATE TOMOGRAPHY

In this section, we briefly want to motivate the measurement setups
introduced in (4) and (5) without going into too much detail. For
further reading on the topics introduced here, we defer the interested
reader to [27, Chapter 2.2]. In quantum mechanics, the state of an
isolated finite n-dimensional quantum system is fully described by a
positive-semidefinite hermitian matrix ρ ∈ Hn with unit trace. Such
a matrix is called a density operator. Estimating the density operator
of a given quantum system is an important task in quantum physics
known as quantum state tomography [28], [29]. When performing
this task, it is highly desirable to exploit additional structure – if
present – especially when n is large5. One such structural property –
often encountered in actual experiments – is approximate purity, i.e.
the density operator ρ is well approximated by a low rank matrix.
Performing quantum state tomography under the prior assumption of
approximate purity therefore constitutes a particular instance of low
rank matrix recovery [31], [32].

The dynamics of an isolated quantum system – i.e. some physical
evolution – corresponds to a unitary transformation ρ 7→ ρ′ = UρU∗

of the system’s density operator ρ.
Finally, after preparing a quantum system ρ and letting it undergo

some physical evolution U , a typical experiment is terminated
by performing a measurement on the resulting system ρ′. While
substantially more general types of measurements are possible, non-
degenerate projective measurements constitute a particular important
subclass. Each such measurement is described by a non-degenerate
hermitian matrix M =

∑n
i=1 λibib

∗
i with eigenvalues λi ∈ R and

a corresponding orthonormal eigenbasis {b1, . . . , bn} ⊂ Cn. Upon
performing such a measurement on a system described by ρ, quantum
mechanics postulates that the probability of obtaining the outcome λi
is given by

p(λi, ρ) = tr (bib
∗
i ρ) = 〈bi, ρ bi〉.

5Nowadays, experimental physicists are able to create and control multi-partite
quantum systems of overall dimension n = 28 in their labs [30]. This results in a
density operator of size 256× 256 (a priori 65 536 parameters).

Repeating such an experiment (i.e. preparing ρ and measuring M )
many times allows one to estimate the n probabilities p(λi, ρ) ever
more accurately.

Consequently, combining a certain unitary evolution U of a density
operator ρ with performing a non-degenerate projective measurement
M =

∑
i λibib

∗
i , results in estimating n numbers of the form

p (λi, ρ
′) = tr (bib

∗
iUXU

∗) = 〈U∗bi, XU∗bi〉 i = 1, . . . , n. (7)

This exactly corresponds to one orthonormal basis measurement
introduced in (4) (with Dl = U∗) and the corresponding experiment
is sketched in Figure 1. With such a setup at hand, Theorem 2 yields
the following corollary relevant for quantum state tomography.

ρ U M

Fig. 1. Pictorial description of a typical quantum mechanical experiment. In
a first step, a quantum system described by a density operator ρ is produced.
The system then undergoes some physical evolution characterized by a unitary
matrix U : ρ 7→ ρ′ = UρU∗. The experiment is concluded by performing
a measurement M . If M =

∑n
i=1 λibib

∗
i is a non-degenerate projective

measurement, information about ρ′ can be gained via (7) by repeating
the experiment many times and inferring the probabilities p(λi, ρ

′) of the
individual measurement outcomes λi occurring.

Corollary 3 (Quantum state tomography from sufficiently random
evolutions). Let ρ be a density operator of rank r ≤ n and let M =∑n

i=1 λibib
∗
i denote a fixed non-degenerate projective measurement.

Then, L = Cr log3(n) independent instances of the basic experimental
protocol described in Figure 1 suffice to recover ρ via (2) with high
probability, provided that the unitary evolutions are chosen from a
sufficiently generic set – e.g. a unitary 2 log(n)-design.

Some remarks on the practicality of the protocol presented in
Corollary 3 may be appropriate: The postulates of quantum mechanics
demand that each instance of the scenario depicted in Figure 1 needs
to be repeated many times in order to infer the resulting probability
distribution. This obstacle is of a fundamental nature and cannot easily
be overcome. However, when it comes to imposing evolutions, some
unitaries are considerably more challenging to realize than others.
While the effort for implementing a generic Haar-random unitary
evolution is considerable, implementing an evolution corresponding to
a random element of a weighted, approximate unitary t-design can be
done much more easily [33]. Practicality issues of this type were our
main motivation for focusing on t-designs with basis structure, as they
include orbits {Uib1, . . . , Uibn}Ni=1 of any orthonormal basis under a
the action of a unitary t-design as a special case. Consequently, the
results in [33] assure that the L different instances of the experiment
proposed in Corollary 3 can be implemented in a practical way6.

Note that Corollary 3 is not the first approach to use low rank
matrix recovery techniques for quantum state tomography. Up to
now, recovery of approximately pure density operators by means
of the convex optimization problem (2) has been established for

6Technically, this conclusion is only valid if Theorem 2 remains true for weighted,
approximate t-designs with basis structure. That this is indeed the case, will be
established elsewhere.
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independently chosen (generalized) Pauli measurements [5], [31]
which can be implemented in a practical way for various experimental
setups. For this type of measurements, the statistics is well understood
[32], uniform recovery guarantees have been established [6] and the
procedure has been tested in experiments [34]. However, all the exist-
ing results manifestly require performing at least m = C ′rn log(n)
independently chosen Pauli-type measurements, each of which can
be interpreted as a highly degenerate projective measurement7. Here,
we propose and establish a novel approach that goes beyond the
Pauli setting and exploits a much more fine-grained measurement
outcome statistics. Arguably, our protocol requires a more complicated
experimental setup and the theoretical assertions are weaker (so far),
but it gets by with only L = Cr log3(n) different measurement
settings.

IV. NUMERICAL EXPERIMENTS

Finally, we complement our theoretical observations and claims
with numerical experiments. These were implemented in Matlab, using
CVX [35]. To this end, we used stabilizers states [27, Chapter 10.5] –
a highly structured union of orthonormal bases that forms a 3-design
in power-of-two-dimensions [24] (this is false for other dimensions).
Due to their rich combinatorial structure, choosing one stabilizer basis
independently at random can be implemented efficiently and we have
used this in our numerical simulations. The results for dimensions
n = 16 and n = 32 are depicted in Figure 2. In each case we ran
a total of 30 independent experiments for matrix ranks between 1
and 3n/4 (x-axis) and the number L of measured stabilizer bases
ranging from 1 to 70 and 1 to 120, respectively (y-axis). For each
experiment we first constructed a rank-r test matrix X =

∑r
i=1 viv

∗
i ,

where each vi ∈ Cn was a standard Gaussian random vector and
renormalized X to Frobenius norm one. We then chose L stabilizer
bases uniformly at random and for each such basis, we evaluated
the n measurement outcomes y1,l, . . . , yn,l according to (5). Using
these Ln data points, we ran the convex optimization (2) and declared
the recovery a “success” if the Frobenius-norm distance between the
reconstructed matrix X] and the true test signal X was smaller than
10−3. Figure 2 illustrates the resulting empirical success probability
for dimensions n = 16 and n = 32: black corresponds to only failures,
white to exclusively successes.
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Compressed sensing is the art of reconstructing a sparse vector from

its inner products with respect to a small set of randomly chosen

measurement vectors. It is usually assumed that the ensemble of

measurement vectors is in isotropic position in the sense that the

associated covariance matrix is proportional to the identity matrix.

In this paper, we establish bounds on the number of required mea-

surements in the anisotropic case, where the ensemble of measure-

ment vectors possesses a non-trivial covariance matrix. Essentially,

we find that the required sampling rate grows proportionally to the

condition number of the covariance matrix. In contrast to other re-

cent contributions to this problem, our arguments do not rely on any

restricted isometry properties (RIP’s), but rather on ideas from convex

geometry which have been systematically studied in the theory of

low-rank matrix recovery. This allows for a simple argument and

slightly improved bounds, but may lead to a worse dependency on

noise (which we do not consider in the present paper).
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1. Introduction and results

Compressed sensing is a highly active research field in statistics and signal analysis [1–4]. It can be

thought of as being concerned with establishing Nyquist-type sampling theorems for signals which

are sparse, rather than band-limited.

∗ Corresponding author.

E-mail address: david.gross@physik.uni-freiburg.de (D. Gross)
1 www.qc.uni-freiburg.de.

0024-3795/$ - see front matter © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2013.04.018

191



R. Kueng, D. Gross / Linear Algebra and its Applications 441 (2014) 110–123 111

More precisely, let x ∈ Cn be a vector with no more than s non-zero entries (i.e. x is s-sparse).

Suppose we have no information about x apart from its sparsity and the inner products 〈ai, x〉, i =
1, . . . ,m between x and m � n vectors ai. The central question is: under what conditions on m and

the ai’s is it possible to uniquely and computationally efficiently recover x? Early celebrated results

[1–3] establishede.g. that if themeasurement vectors {ai} are randomly chosendiscrete Fourier vectors

andm = O(s log n), then, with high probability, the unknown vector x is the unique minimizer of the

�1-norm in the affine space defined by the known inner products.

The precise statement of our results in this introductory section will follow very closely the exhi-

bition in [5]. The reason for this approach, and the relation of the present paper with other work (in

particular [6]), is stated in Section 2.

Wemake the following definitions: Let F be a distribution of random vectors on Cn. Let a1, . . . , am
be a sequence of i.i.d. random vectors drawn from F . Define the sampling matrix

A := 1√
m

m∑
i=1

eia
∗
i ,

where e1, . . . , em denote the canonical basis vectors of Cm. Oncemore, let x be an s-sparse vector. We

aim to prove that with high probability the solution x< to the convex optimization problem

min
x̄∈Cn

‖x̄‖1 subject to Ax̄ = Ax, (1)

is unique and equal to x given that the number of measurements m is large enough.

It turns out that the required size of m depends only on two simple properties of the ensemble F .

These are identified below:

Completeness We require that the ensemble F is complete in the sense that the covariance matrix

� = E[aa∗]1/2 is invertible. The condition number 2 of � will be denoted by κ .

Most of the previous work has focused on the case where the covariance matrix is proportional to

the identity matrix � ∝ (however, see Section 2). We refer to this case as the isotropic one.

In order to describe the second relevant property of the ensemble, we have to fix a scale. Indeed,

note that the minimizer of the convex problem (1) is invariant under re-scaling of the ensemble (i.e.

substituting ai by νai for a number ν 
= 0). The same is true for the condition number κ . Thus, we

are free to pick an advantageous scale, without affecting the notions introduced so far. In the isotropic

case, a natural normalization convention [5] consists in requiring that E[aa∗] = . This option is not

available in the more general, anisotropic case, we are interested in here. Instead, we will implicitly

demand from now that

λmax(E[aa∗]) = λmin(E[aa∗])−1, (2)

where λmax, λmin denote the maximal and the minimal eigenvalue respectively. In the isotropic case,

this reduces to the normalization E[aa∗] = used in [5].

The fact that (2) can always be achieved (and further properties that follow from it) will be estab-

lished in Lemma 8 below. With this convention, we define:

Incoherence The incoherence parameter is the smallest number μ such that

max
1�i�n

|〈a, ei〉|2 � μ, max
1�i�n

∣∣∣〈a, E[aa∗]−1 ei

〉∣∣∣2 � μ (3)

holds almost surely.

The previously known isotropic result we aim to generalize is:

2 Recall that the condition number of a matrix is the ratio between its largest and its smallest singular value.
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Theorem 1 ([5]). Let x be an s-sparse vector inRn. If we demand isotropy (E[aa∗] = ) and if the number

of measurements fulfills

m � Cωμs log n,

then the solution x< of the convex program (1) is unique and equal to xwith probability at least 1− 5
n
−e−ω .

In the statement above, Cω may be chosen as C0 (1 + ω) for some positive numerical constant C0.

Our main theorem reads:

Theorem 2 (Main Theorem). Let x ∈ Cn be an s-sparse vector, letω � 1. If the number of measurements

fulfills

m � Cκμω2s log n,

then the solution x< of the convex program (1) is unique and equal to x with probability at least 1 − e−ω .

In the statement above, C is a constant less than 18044. For n, s sufficiently large, the value may be

improved to C � 228. We have made no attempts to optimize these constants.

Comparing these two theorems, we see that the effect of dropping the isotropy constraint on the

ensemble can essentially be captured in a single, simple quantity: the condition number κ of the

covariancematrix. All otherminor differences between Theorems 1 and 2 result from slightly different

proof techniques.

1.1. Improvements

A first way of improving the result is based on a definition borrowed from [6, Def. 1.2] 3 :

Definition 3. The largest and smallest s-sparse eigenvalue of a matrix X are given by

λmax(s, X) := max
v,‖v‖0�s

‖Xv‖2

‖v‖2

, λmin(s, X) := min
v,‖v‖0�s

‖Xv‖2

‖v‖2

,

where ‖v‖0 = |supp(v)| denotes the cardinality of the support (i.e. the sparsity) of v. The s-sparse

condition number 4 of X is

cond(s, X) := λmax(s, X)

λmin(s, X)
.

Based on this notion, one can state a strictly stronger version of the Main Theorem (which is the

form we will prove in Section 3):

Theorem 4. With

κs := max
{
cond(s, �), cond

(
s, �−1

)}
,

the conclusion of the main Theorem 2 continues to hold if the lower bound on m is weakened to

m � Cμκs ω
2s log n,

for the same constant C.

3 In fact, our definition differs very slightly from [6]: their ρmax(s, X) is the square of our λmax(s, X). We opted for this change

because the notions defined here reduce to the ordinary eigenvalues in the case of s = n.
4 Estimating cond(s, X) is equivalent to computing the RIP constants of X (c.f. e.g. [7]). There are currently no tractable methods

known for computing these numbers for any concrete set of matrices.Wewant to emphasize that while themathematical concept of

“RIP constants” appears in our sharpened result, its use here is completely different from the way it would be employed in RIP-based

approaches to compressed sensing. To wit, we apply the concept to the expected sensing matrix (and its inverse), but not to any actual

instances.
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We further suspect that the second incoherence condition in (3) can be relaxed. Two alternative

bounds not relying on that condition are stated in Proposition 5 below. (Themodifications of our proof

necessary to arrive at these improved estimates will be sketched after Lemma 9.)

Proposition 5. Let K be a constant such that

2
∥∥∥[aa∗, E[aa∗]−1]

∥∥∥∞ � K

holds almost surely, where [·, ·] denotes the commutator ([A, B] = AB − BA) and ‖ · ‖∞ is the operator

norm.

If the requirement (3) is not necessarily fulfilled, the conclusions of Theorem2 remainvalid if the sampling

rate is bounded below by either

m � Cκμω2s2 log n (4)

or

m � C(κμs + K)ω2 log n. (5)

The commutator bound (5) is particularly relevant for ensembles corresponding to non-uniform

samples from an orthogonal basis. In that case, E[aa∗] and aa∗ commute with probability one, so that

K may be chosen to be zero.

There is another degree of freedom which we have not yet systematically explored: Note that the

minimizer of the convex optimization (1) does not change if we re-scale individual vectors ai �→ νiai
for some set of non-zero numbers νi.Whilewe have chosen a global scale for the covariancematrix (c.f.

Lemma 8), the individual weights remain free parameters that may be used to optimize the sampling

rate. Pursuing this problem further seems likely to be fruitful.

We remark that the incoherence conditions can be relaxed to hold only with high probability. This

opens up our results to, for example, the case of Gaussian measurement vectors. The details can be

developed in complete analogy to Ref. [5, Appendix B].

Lastly, all statements remain true if the measurement vectors are drawn “without replacement”

instead of independently – c.f. [8] for details.

2. Relation with previous work and history

Most results on sparse vector recovery have relied on certain conditions that quantify howmuch a

given samplingmatrixAdistorts the geometry of the set of all sparse vectors. By far themost prominent

example in that regard is the restricted isometry property (RIP) [3,6]whichmeasures the extent towhich

A deviates from preserving Euclidean distances between sparse vectors. Conceputally close variations

of the RIP include the restricted eigenvalue condition introduced in [9], or the restricted correlation

assumption [10]. Another example is the width property advanced in [11]—a Banach space-theoretic

condition that seems to be weaker than the RIP.

From roughly 2008 on, the conceptually strongly related problem of recovering a low-rank matrix

from few expansion coefficients with respect to a fixed matrix basis has come more and more into

focus [12,13]. There seems to be no easyway to directly translate the geometric approachesmentioned

above to the general low-rank matrix recovery problem. Instead, the pioneering publications on the

matrix problem used fairly elaborate methods from convex duality theory [12,13]. (However, c.f. [14–

16] for interesting special caseswhereRIP-based techniques are applicable to low-rankmatrix recovery

problems; and [17] for a related “restricted strong convexity” property with consequences for matrix

recovery).

In [18,19] the second author and his collaborators introduced a simplified approach to the low-

rank matrix recovery problem.While these works still build on the convex framework of [12,13], they

incorporate several new ideas. These include the use of non-commutative large deviation theorems

originating from quantum information theory [20,21], randomized constructions based on i.i.d. sam-
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ples of themeasurement vectors, anda certain iterative “golfing scheme” for the constructionof inexact

dual certificates. These techniques were later modified and adapted to the original sparse-vector set-

ting in [5]. This showed that the conceptual closeness of thematrix and the vector theorymay be used

to devise very similar proofs.

This “RIPless” approach to compressed sensing leads arguably to simpler proofs and gives tighter

bounds at least for the noise-free recovery problem. As far as we know, RIP-based arguments still

perform superior in the important noisy regime.

The work [5] did not include a systematic study of non-isotropic ensembles (however, “small”

deviations from isotropy were discussed in Appendix B). In fact, E. Candès [5] suggested to us the

problem of finding a generalization of the golfing scheme that could cope with anisotropic ensembles.

This has been achieved by the first author of this paper during a research project under the supervision

of the second author [22]. This explains the close relation between [5] and the present work.

An analysis of anisotropic compressed sensing within the original RIP framework has been carried

out byother authors,most notably in [6]. Since their paper doesnot directly address thenoise-free case,

a direct comparison of statements is difficult. The closest result to ours seems to appear in Section 1.3,

where a bound of

m � O
(
sM2 log n log3(s log n)

)
for the sampling rate is given. The quantity M is an upper bound on the largest coefficient for the

measurement vectors ai, related to our parameterμ. The big-Ohnotation hides a constant proportional

to κ (ρ−1 in the language of [6]). Thus, the basic structure of the solutions is very similar. However,

some important differences are these:

• We do not incur the log3-term, which is a major advantage of our method. Up to a constant factor,

our required sampling rate corresponds to the theoretical lower limit.
• The result in [6] holds uniformly in the sense that with their probability of success, one obtains a

sampling matrix which works simultaneously for all sparse vectors. This is not the case for us.
• We have proved no results on noise-resilience. While, following [5], it should be straight-forward

to do so, the results may be worse than the RIP-based ones in [6].
• The proof methods are completely different.

3. Proof

The proof is conceptually close to [5], which in turn closely resembles [19]. Here we give a largely

self-contained presentation.

3.1. Notation

Throughout this paper, we will use the following conventions:

If a statements holds almost surely, we will abbreviate this by a.s. In the case of vectors, ‖ · ‖p denotes

the �p-norm, whereas in the operator case ‖ · ‖p refers to the Schatten-p norm (i.e. the �p-norm of the

singular values). The letter z will always denote a vector in Cn, supported on a set T of cardinality at

most s (i.e. z is s-sparse). Tc shall denote the complement of T , and PT (PTc ) refers to the orthogonal

projector onto the set of all vectors supported on T (Tc). Finally we will use the following technical

definitions:

X = (E[aa∗])−1 = �−2, XT = PTXPT .

3.2. Large deviation bounds

A central role in the argument is played by certain large deviation bounds for sums of matrix-

valued random variables. These have been introduced in [20] in the context of quantum information

theory. The first application to matrix completion and compressed sensing problems, as well as the
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first “Bernstein version” taking variance information into account, appeared in [18,19]. The versionwe

will be making use of derives from Theorem 1.6 in [21].

Proposition 6 (Matrix Bernstein inequality [21]). Consider a finite sequence {Mk} ∈ Cd×d of indepen-

dent, random matrices. Assume that each random matrix satisfies E [Mk] = 0 and ‖Mk‖∞ � B a.s. and

define

σ 2 := max

⎧⎨
⎩

∥∥∥∥∥∥
∑
k

E
(
MkM

∗
k

)∥∥∥∥∥∥∞
,

∥∥∥∥∥∥
∑
k

E
(
M∗

kMk

)∥∥∥∥∥∥∞

⎫⎬
⎭ .

Then for all t � 0,

Pr

⎛
⎝

∥∥∥∥∥∥
∑
k

Mk

∥∥∥∥∥∥∞
� t

⎞
⎠ � 2d exp

(
− t2/2

σ 2 + Bt/3

)
. (6)

We will also require a vector-valued deviation estimate. While one could in principle obtain such

a statement by applying Proposition 6 to diagonal matrices, a direct argument does away with the

dimension factor d on the r.h.s. of (6). This will save a logarithmic factor in the sampling rate of the

Main Theorem. The particular vector-valued Bernstein inequality below is based on the exposition in

[23] (Chapter 6.3, Eq. (6.12)), with a direct proof appearing in [19].

Proposition 7 (Vector Bernstein inequality). Let {gk} ∈ Cd be a finite sequence of independent random

vectors. Suppose that E [gk] = 0 and ‖gk‖2 � B a.s. and put σ 2 � ∑
k E

[
‖gk‖2

2

]
. Then for all 0 � t �

σ 2/B:

Pr

⎛
⎝

∥∥∥∥∥∥
∑
k

gk

∥∥∥∥∥∥
2

� t

⎞
⎠ � exp

(
− t2

8σ 2
+ 1

4

)
.

3.3. Fundamental estimates

Weadopt the structure andnomenclature of this section from [5]. The following elementary bounds

will be used repeatedly:

|〈ak, z〉|2 � sμ‖z‖2
2, |〈ak, Xz〉|2 � sμ‖z‖2

2, (7)

‖PTak‖2
2 � μs, ‖PTXak‖2

2 � μs. (8)

Also, we will always assume thatm � s.

Lemma 8 (Scaling). Let ã be a random vector such that E[ãã∗] is invertible.
There is a number ν such that, with a := νã, it holds that

κs = λmax(s, E[aa∗]) = λmin(s, E[aa∗])−1

for all 1 � s � n. This resealed ensemble fulfills:

κsμ � 1. (9)

Proof. The first assertion follows immediately for

ν = (
λmax(s, E[ãã∗])λmin(s, E[ãã∗]))− 1

4 .
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For the second claim: By definition μ � maxi |〈a, ei〉|2 holds almost surely, so that in particular

μ � E
[
max

i
|〈a, ei〉|2

]
.

For every i, the function

a �→ |〈a, ei〉|2
is convex, which implies that

a �→ max
i

|〈a, ei〉|2 = max
i

e∗i (aa∗)ei

is convex (as the pointwise maximum of convex functions). Hence, by Jensen’s inequality,

E
[
max

i
|〈a, ei〉|2

]
� max

i
e∗i E[aa∗]ei = max

i
〈ei, E[aa∗]ei〉

� λmin

(
1, E[aa∗]) � λmin

(
s, E[aa∗]) .

Therefore μ � λmin (s, E[aa∗]). Together with κs = λ−1
min (s, E[aa∗]), this implies μκs � 1. �

The estimates in this proof are tight in the sense that there are ensembles for which each inequality

above turns into an equality. A straightforward example for such an ensemble is given by picking

super-normalized Fourier basis vectors fk (with coefficients (fk)l = e2π i kl
n ) according to the uniform

probability distribution.

Lemma 9 (Local isometry). Let T and PT be as in the notation section. Then for each 0 � τ � 1
2
:

Pr
(‖PT (

XA∗A − )
PT‖∞ � τ

) � 2s exp

(
− m

sμκs

τ 2

2 (1 + 2τ/3)

)

Proof. Let us decompose the relevant expression:

PT
(
XA∗A − )

PT = 1

m

m∑
i=1

Mk,

where Mk := PT
(
Xaka

∗
k − )

PT . Note that E[Mk] = 0.

We aim to apply the Matrix Bernstein inequality. To this end, we estimate

‖Mk‖∞ � ‖PTXaka∗
kPT‖2 + 1 = ‖PTXak‖2 ‖a∗

k PT‖2 + 1 � μs + 1 � 2μsκs =: B.
Furthermore:∥∥E

[
MkM

∗
k

]∥∥∞ = ∥∥E
[(
PT

(
Xaka

∗
k − )

PT
) (

PT
(
aka

∗
kX − )

PT
)]∥∥∞

=
∥∥∥E

[
PTXaka

∗
kPTaka

∗
kXPT

] − E
[
PTXaka

∗
kPT

] − E
[
PTaka

∗
kXPT

] + PT

∥∥∥∞
= ∥∥E

[
PT

(
Xak 〈ak, PTak〉 a∗

kX − )
PT

]∥∥∞
� max

(∥∥μsE
[
PTXaka

∗
kXPT

]∥∥∞ , 1
)

� max (μs ‖XT‖∞ , 1) � max (μsκs, 1) = μsκs.

Similarly,∥∥E
[
M∗

kMk

]∥∥∞ = ∥∥E
[
PT

(
ak 〈ak, XPTXak〉 a∗

k − �
)
PT

]∥∥∞ � max
(∥∥sμE

[
PTaka

∗
kPT

]∥∥∞ , 1
)

� max
(
sμ

∥∥∥PTX−1PT

∥∥∥∞ , 1
)

� μsκs. (10)
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Thus:

max

⎧⎨
⎩‖ ∑

k

E
(
MkM

∗
k

) ‖∞, ‖ ∑
k

E
(
M∗

kMk

) ‖∞

⎫⎬
⎭ � msμκs =: σ 2.

Applying the Matrix Bernstein inequality for s-dimensional matrices (PT (XA∗A − ) PT has rank at

most s) with t = mτ yields the desired result. �

The estimate (10) is the only place in the proof where the second incoherence property in (3) is

essentially used. A careful analysis shows that in all other cases, one can do without it, possibly at the

price of replacing κs by κ (which is the reason why we have not spelled it out). In order to obtain the

results of Proposition 5, the bound (10) has to be modified. To arrive at (4), use∥∥E
[
M∗

kMk

]∥∥∞ � E
[∥∥[

M∗
kMk

]∥∥∞
]

� E[‖PTaka∗
kPT 〈ak, XPTXak〉‖∞]

� sμ E[〈ak, XPTXak〉] = sμ E
[
tr

(
aka

∗
kXPTX

)]
= sμ tr

(
X−1XPTX

)
= sμ tr (PTX) � s2μκs.

And for (5):∥∥E
[
PTaka

∗
kXPTXaka

∗
kPT

]∥∥∞ = ∥∥E
[
PTXaka

∗
kPTXaka

∗
kPT

] + E
[
PT [aka∗

k , X]PTXaka∗
kPT

] ∥∥∞
�

∥∥E
[
PTXaka

∗
kPTaka

∗
kXPT

]∥∥∞ + 2
∥∥E

[
PT [aka∗

k , X]PTXaka∗
kPT

]∥∥∞
� μsκs + K ‖E

[
PTXaka

∗
kPT

] ‖∞ = μsκs + K ‖PTXX−1PT‖∞
= μsκs + K.

Lemma 10 (Low-distortion). Let z, T, PT be as in the notation section. For each 0 � τ � 1 it holds that

Pr
( ∥∥PT ( − A∗AX

)
z
∥∥
2 � τ ‖z‖2

) � exp

(
− mτ 2

16sμκs

+ 1

4

)
.

Proof. The structure of the proof closely follows the one of Lemma 9. Set

gk := PT
( − aka

∗
kX

)
z.

We bound

‖gk‖2=∥∥PT ( − aka
∗
kX

)
z
∥∥
2 � ‖z‖2 + ‖PTak〈ak, Xz〉‖2 � ‖z‖2 + sμ‖z‖2 � 2sμκs‖z‖2 =: B

and

E
[
‖gk‖2

2

]
� E

[
‖PTak〈ak, Xz〉‖2

2

]
+ ‖z‖2

2 = E
[
‖PTak‖2

2|〈ak, Xz〉|2
]
+ ‖z‖2

2

� sμE
[〈Xz, ak〉〈ak, Xz〉] + ‖z‖2

2 = sμ〈Xz, E
[
aka

∗
k

]
Xz〉] + ‖z‖2

2

= sμ〈Xz, z〉 + ‖z‖2
2 � 2sμκs‖z‖2

2

so that

m∑
k=1

E[‖gk‖2
2] � 2msμκs‖z‖2

2 =: σ 2

and thus σ 2

B
= m‖z‖2. The advertised statement follows by applying the vector Bernstein inequality

for t = mτ . �198
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Lemma 11 (Off-support incoherence). Let z, PTc again be as in the notation section. Then for each τ � 0:

Pr
( ∥∥PTcA∗AXz

∥∥∞ � τ ‖z‖2

) � 2n exp

(
− 3mτ 2

2μκs(3 + √
sτ)

)

Proof. Fix i ∈ Tc and use the following decomposition:

〈ei, A∗AXz〉 = 1

m

m∑
i=1

Mk,

where Mk := 〈ei, aka∗
kXz〉 = 〈ei, ak〉〈ak, Xz〉. Note that we have:

E[Mk] = 〈ei, E
[
aka

∗
k

]
Xz〉 = 〈ei, z〉 = 0,

because ei ∈ Tc . Bound

|Mk| = |〈ei, ak〉〈ak, Xz〉| �
√

sμκs‖z‖2 =: B,
and

E
[
MkM

∗
k

] = E
[
M∗

kMk

] = E[|〈ak, ei〉|2|〈ak, Xz〉|2] � μE
[〈
Xz, aka

∗
kXz

〉] = μ〈Xz, z〉
� μ‖XT‖∞‖z‖2

2 � μκs‖z‖2
2.

Therefore we can set σ 2 := mμκs‖z‖2
2. Applying the Matrix Bernstein inequality for d = 1 and the

union bound over all i ∈ Tc yields the claim. �

Lemma 12 (Uniform off-support incoherence). Let Tc, PT be as in the notation section. For 0 � τ � 1

we have

Pr

(
max
i∈Tc

∥∥PTXA∗Aei
∥∥
2 � τ

)
� n exp

(
− mτ 2

8sμκs

+ 1

4

)

Proof. Fix i ∈ Tc and decompose:

PTXA
∗Aei = 1

m

m∑
k=1

gk,

where gk := 〈ak, ei〉PTXak . It holds that E[gk] = 0. Next, bound

‖gk‖2 = |〈ak, ei〉|‖PTXak‖2 � sμ =: B.
Furthermore:

E
[
‖gk‖2

2

]
�

∑
i∈T

μE
[〈
ei, Xaka

∗
kXei

〉] �
∑
i∈T

μ‖XT‖∞ � sμκs.

We can therefore set σ 2 := msμκs and apply the Vector Bernstein inequality for t = mτ . Noting that

σ 2/B = mκs � m finishes the proof. �

3.4. Convex geometry

Our aim is to prove that the solution x< to the optimization problem (1) equals the unknown vector

x. One way of assuring this is by exhibiting a dual certificate [24]. This method was first introduced by

[2] and is now standard. We will use a relaxed version first introduced in [19] and later adapted from

matrices to vectors in [5]. Our version further adapts the statement to the anisotropic setting.
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Lemma 13 (Inexact duality). Let x ∈ Cn be a s-sparse vector, let T = supp (x).
Assume that

‖ (
PTXA

∗APT
)−1 ‖∞ � 2, (11)

maxi∈Tc‖PTXA∗Aei‖2 � 1 (12)

and that there is a vector v in the row space of A obeying

‖vT − sgn (x) ‖2 � 1

4
, (13)

‖vTc‖∞ � 1

4
. (14)

Then the solution x< of the convex program (1) is unique and equal to x.

Proof. Let x̂ = x + h be a solution of the minimization procedure. We note that feasibility requires

Ah = 0. To prove the claim it suffices to show h = 0. Observe:

‖x̂‖1 = ‖x + hT‖1 + ‖hTc‖1 = 〈sgn (x + hT ) , x + hT 〉 + ‖hTc‖1

� 〈sgn (x) , x〉 + 〈sgn (x) , hT 〉 + ‖hTc‖1 � ‖x‖1 − |〈sgn (x) , hT 〉| + ‖hTc‖1.

Feasibility requires 〈v, h〉 = 0 and therefore:

|〈sgn (x) , hT 〉| = |〈sgn (x) − vT , hT 〉 + 〈vT , hT 〉| = |〈sgn (x) − vT , hT 〉 − 〈vTc , hTc 〉|
� |〈sgn (x) − vT , hT 〉| + |〈vTc , hTc 〉| � ‖sgn (x) − vT‖2‖hT‖2 + |〈vTc , hTc 〉|
� 1

4
‖hT‖2 + |〈vTc , hTc 〉|,

where we have used (13). Together with:

|〈vTc , hTc 〉| � ‖vTc‖∞‖hTc‖1 � 1

4
‖hTc‖1,

this implies:

|〈sgn (x) , hT 〉| � 1

4
(‖hT‖2 + ‖hTc‖1) .

Furthermore due to (11) and (12):

‖hT‖2 = ‖ (
PTXA

∗APT
)−1 (

PTXA
∗APT

)
hT‖2 = ‖ (

PTXA
∗APT

)−1 (
PTXA

∗A
)
(h − hTc ) ‖2

= ‖ − (
PTXA

∗APT
)−1 (

PTXA
∗A

)
hTc‖2 � 2‖PTXA∗APTc h‖2

� 2maxi∈Tc‖PTXA∗Aei‖2‖hTc‖1 � 2‖hTc‖1,

All this together implies:

‖x̂‖1 � ‖x‖1 − 1

4
‖hT‖2 + 3

4
‖hTc‖1 � ‖x‖1 + 1

4
‖hTc‖1.

Consequently ‖x̂‖1 = ‖x‖1 demands ‖hTc‖1 = 0, which in turn implies ‖hT‖2 = 0, because

‖hT‖2 � 2‖hTc‖1. Therefore h = 0 which corresponds to a unique minimizer (x̂ = x). �

3.5. Construction of the certificate

It remains to show that a dual certificate v as described in Lemma 13 can indeed be constructed.

We will prove:
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Lemma 14. Let x ∈ Cn be an s-sparse vector, let ω � 1. If the number of measurements fulfills

m � 18044κsμω2 log n,

then with probability at least 1 − e−ω , the constraints (11, 12) will hold and a vector v with the properties

required for Lemma 13 exists.

This lemma immediately implies the Main Theorem.

The proof employs a recursive procedure (dubbed the “golfing scheme”) to construct a sequence vi of

vectors converging to a dual certificate with high probability. The technique has been developed in

[18,19] in the context of low-rankmatrix recovery problems and has later been refined for compressed

sensing in [5]. Here, we further modify the construction to handle anisotropic ensembles.

Proof. The recursive scheme consists of l iterations. The i-th iteration depends on three parameters:

mi ∈ N; ci, ti ∈ R which will be chosen in the course of the later analysis. To initialize, set

v0 = 0

(the vi for 1 � i � l will be defined iteratively below). We will use the notation

qi = sgn (x) − PTvi.

The i-th step of the scheme proceeds according to the following protocol: We sample mi vectors

from the ensemble F . Let Ã be the mi × n-matrix whose rows consists of these vectors. We check

whether the following two conditions are met:

‖PT
(

− m

mi

Ã∗ÃX
)
PTqi−1‖2 � ci‖qi−1‖2, (15)

‖ m

mi

PTc Ã∗ÃXPTqi−1‖∞ � ti‖qi−1‖2. (16)

If so, set

Ai = Ã, vi = m

mi

A∗
i AiXPT (sgn (x) − vi−1) + vi−1

and proceed to step i + 1. If either of (15), (16) fails to hold, repeat the i-th step with a fresh batch of

mi vectors drawn from F . Denote the number of repetitions of the i-th step by ri.

We now analyze the properties of the above recursive construction. The following identities are

easily verified by repeating the given transformations inductively:

v := vl = m

ml

A∗
l AlXPT (sgn(x) − vl−1) + vl−1 = m

ml

A∗
l AlXPTql−1 + vl−1

= . . . =
l∑

i=1

m

mi

A∗
i AiXPTqi−1, (17)

qi = sgn(x) − PTvi = sgn(x) − PT

(
m

mi

A∗
i AiXPT (sgn(x) − vi−1) + vi+1

)

= (sgn(x) − PTvi−1) − m

mi

A∗
i AiXPT (sgn(x) − vi−1) = PT

(
− m

mi

A∗
i AiX

)
qi−1

= . . . =
i∏

j=1

PT

(
− m

mi

A∗
j AjX

)
PT sgn (x) . (18)201
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Together with (15) and (16), one obtains

‖ql‖2 � cl‖ql−1‖2 �
l∏

i=1

ci‖q0‖2 =
l∏

i−1

ci‖sgn(x)‖2 = √
s

l∏
i=1

ci,

‖vTc‖∞ =
∥∥∥∥∥∥PTc

⎛
⎝ l∑

i=1

m

mi

A∗
i AiXPTqi−1

⎞
⎠

∥∥∥∥∥∥∞
�

l∑
i=1

∥∥∥∥ m

mi

PTcA∗
i AiXPTqi−1

∥∥∥∥
2

�
l∑

i=1

ti‖qi−1‖2 �
√

s

⎛
⎝t1 +

l∑
i=2

ti

i−1∏
j=1

cj

⎞
⎠ .

Following [19], we choose the parameters l, ci, ti as

l =
⌈
1

2
log2 s

⌉
+ 2, c1 = c2 = 1

2
√

log n
, t1 = t2 = 1

8
√

s
,

and for i � 3

ti = log n

8
√

s
, ci = 1

2
.

A short calculation then yields

‖vTc‖∞ � 1

4
, ‖v − sgn(x)‖2 = ‖ql‖2 � 1

4
,

which are conditions (13) and (14).

Next, we need to establish that the total number

l∑
i=1

miri

of sampled vectors remains small with high probability. More precisely, we will bound the probability

p3 := Pr

⎛
⎝(r1 > 1) or (r2 > 1) or

⎛
⎝ l∑

i=1

ri � l′
⎞
⎠

⎞
⎠

for some l′ to be chosen later.

To that end, denote by p1(i) the probability that (15) fails to hold in any given batch of the i-th step.

Analogously, let p2(i) be the probability of failure for (16). Lemmas 10 and 11 give the estimates

p1 (i) � exp

(
− mic

2
i

16sμκs

+ 1

4

)
, p2 (i) � 2n exp

⎛
⎝− 3mit

2
i

2μκs

(
3 + √

sti

)
⎞
⎠ .

We choose

l′ = 4

(
ω + log 12 + 2

3
l

)
, m1 = m2 = 694κsμωs log n,

and for i � 3

mi = 694κsμωs.

Such a choice can be guaranteed by a total sampling ratem � 18044κsμω2s log n and ensures

p1(i) + p2(i) � 1

6
e−ω � 1

12202
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for all i. (It is easily seen that for forn � 1, a boundofm � 228κsμω2s log n is sufficient. The constants

appearing here are highly unlikely to be optimal.) Note that

l∑
i=1

ri � l′

only if fewer than l of the first l′ batches of vectors satisfied both (15) and (16). This implies that

Pr

⎛
⎝ l∑

i=1

ri � l′
⎞
⎠ � Pr(N � l − 1)

Bin
(
l′, 11

12

),

where the r.h.s. is the probability of obtaining fewer than l outcomes in a binomial process with l′
repetitions and individual success probability 11/12. We bound this quantity using a standard con-

centration bound from [25] (C. McDiarmid’s section "Concentration"):

Pr (|Bin (n, p) − np| > τ) � 2 exp

(
− τ 2

3np

)
.

This yields Pr
(∑l

i=1 ri � l′
)

� 1
6
e−ω for our choice of l

′
. Putting things together, we have

p3 � 3
1

6
e−ω = 1

2
e−ω.

In addition, we have to take into account that properties (11) and (12) can fail as well. We denote these

probabilities of failure by p4 and p5. Lemmas 9 and 12 give:

p4 � 2sexp

(
− 6m

7sμκs

)
, p5 � nexp

(
− m

8sμκs

+ 1

4

)
.

Our sampling rate m guarantees p4 � 1
4
e−ω as well as p5 � 1

4
e−ω . Applying the union bound now

yields our desired overall error bound (p3 + p4 + p5 � e−ω). �

4. Conclusion and outlook

In this paper, we have shown that proof techniques based on duality theory and the “golfing

scheme” are versatile enough to handle the situation where the ensemble of measurement vectors

is not isotropic.

Anobvious future lineof researchwouldbe to translate these results to the low-rankmatrix recovery

problem. Given the high degree of similarity between [19] and [5], this should be a conceptually

straight-forward task. This would further generalize the scope of this proof method, beyond ortho-

normal operator bases [19] and tight frames [26].

Also, Proposition 5 suggests that the second incoherence property (3) can be relaxed ormaybe even

disposed of. We leave this as an open problem.
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Abstract

We investigate recovery of nonnegative vectors from non–adaptive compressive measurements in the presence

of noise of unknown power. It is known in literature that under additional assumptions on the measurement design

recovery is possible in the noiseless setting with nonnegative least squares without any regularization. We show that

such known uniquenes results carry over to the noisy setting. We present guarantees which hold instantaneously by

establishing the relation to the robust nullspace property. As an important example, we establish that an m×n random

iid. 0/1–valued Bernoulli matrix has with overwhelming probability the robust nullspace property for m = O(s log(n))
and is applicable in the nonnegative case. Our analysis is motivated by applications in wireless network activity

detection.

I. INTRODUCTION

Recovery of lower complexity objects by observations far below the Nyquist rate has applications in physics,

applied math, and many engineering disciplines. Moreover,it is one of the key tools for facing challenges in data

processing (like big data and the Internet of Things), wireless communications (the 5th generation of the mobile

cellular network) and large scale network control. Compressed Sensing (CS), with its origin in the recovery of

sparse or compressible vectors has, in particular, stimulated the research community to investigate further directions

of compressibility and low-dimensional structures which allow the recovery from low-rate samples and with efficient

algorithms. In many applications, the objects of interest exhibit further structural constraints which should by exploited

in reconstuction algorithms. Take, for instance, the following setting which appears naturally in communication

protocols: the components of sparse information carrying vectors are taken from a finite alphabet or the data vectors

are lying in specific subspaces. Similarly, in network traffic estimation and anomaly detection from end-to-end

measurements, the parameters are restricted to particular lower-dimensional domains. Finally, the signals occurring

in imaging problems are typically constrained to non-negative intensities.

Our work is partially inspired by the task of identifiying sparse network activation patterns in a large-scale

asynchronous wireless network: suppose that, in order to indicate its presence, each active device node transmits an

individual sequence into a noisy wireless channel. All such sequences are multiplied with individual, but unknown,
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channel amplitudes1 and finally superimposed at the receiver. The receiver’s task then is to detect all active devices and

the corresponding channel amplitudes from this global superposition (note that each device is uniquely characterized

by the sequene it transmits). This problem can be re-cast as the task of estimating non-negative sparse vectors from

noisy linear observations.

Such non-negative and sparse structures also arise naturally in certain empirical inference problems, like network

tomography [1], [2], statistical tracking (see e.g. [3]) and compressed imaging of intensity patterns [4]. The underlying

mathematical problem has received considerable attention in its own right [5], [6], [7], [8], [9]. It has been shown

that measurement matrices A ∈ Rm×n coming from outwardly s–neighborly polytopes [10] and matrices A ∈M+

whose row span intersects the positive orthant2 [11] maintain an intrinsic uniqueness property for non-negative,

s-sparse vectors even in the underdetermined setting (m < n). Such uniqueness properties in turn allow for entirely

avoiding CS algorithms in the reconstruction step. From an algorithmic point of view, this is highly beneficial.

However, all the statements mentioned above are manifestly focussed on idealized scenarios, where no noise is

present in the sampling procedure.

Motivated by device detection, we shall overcome this idealization and devise recovery protocols that are robust

towards any form of additive noise. Our results have the added benefit that no a-priori bound on the noise step is

required in the reconstruction algorithm.

A. Main Results

Let us introduce some notation and then state our main findings. Throughout our work we endow Rn with the

partial ordering induced by the nonnegative orthant, i.e. x ≤ z if and only if xi ≤ zi for all 1 ≤ i ≤ n. Here,

xi = 〈ei,x〉 are the components of x with respect to the standard basis {ei}ni=1. Similarly, we write x < z if strict

inequality holds in each component. Consequently, we write x ≥ 0 to indicate that x is (entry-wise) nonnegative.

For 1 ≤ p ≤ ∞, we denote the `p–norms of vectors by ‖ · ‖`p and ‖ · ‖ is the usual operator/matrix norm. The

sparsity of a vector x is denoted by ‖x‖`0 := |supp(x)| ≤ s where supp(x) := {i : xi 6= 0} is its support in the

standard basis.

Mathematically, we are interested in recovering sparse, nonnegative vectors x ∈ Rn from m� n erronous linear

measurements of the form yi = aTi x+ei. Here, the vectors ai ∈ Rn model the different measurement operations and

ei is additive noise of arbitrary size and nature. By encompassing all ai’s as rows of a sampling matrix A ∈ Rm×n

and defining y = (y1, . . . , ym)T , as well as e = (e1, . . . , em)T , such a sampling procedure can succingtly be written

as

y = Ax + e. (1)

Several conditions on A are known which are sufficient to ensure that a sparse vector x can be robustly estimated

from measurements y. A famous condition is the restricted isometry property (RIP). A matrix Ã is said to

1This can be justified under certain assumptions like pre-multiplications using channel reciprocity in time–division multiplexing.
2See (7) below for a precise definition.
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be s–RIP, if it acts almost isometrically on s–sparse vectors, meaning that there exists a δs ∈ [0, 1) such that

|‖Ãx‖2`2 −‖x‖2`2 | ≤ δs‖x‖2`2 for all s–sparse x. When dealing with random matrices A, one has also to distinguish

between uniform and non–uniform guarentees3. It is a well-known fact that RIP is only sufficient but not necessary

for uniform recovery. Overcoming this asymmetry, the notion of a nullspace property assures that no s-sparse vectors

lie in the kernel of A. Hence, the NSP is both a sufficient and necessary condition for recovery. Proving that (1)

indeed allows for robustly recovering any s-sparse x in the presence of noise therefore is equivalent to establishing

that A obeys a robust nullspace property of order s (NSP) [12, Chapter 4]. Our first main technical contribution is

a substantial strengthening of the implications of such an NSP for reconstructing nonnegative sparse vectors:

Theorem 1. Suppose that A obeys the NSP of order s ≤ n from Def. 3 and moreover admits a strictly–positive

linear combination of its rows (A ∈M+, i.e., ∃t ∈ Rm such that w = AT t > 0). Then, the following bound holds

for any s-sparse x ≥ 0 and any z ≥ 0:

‖x− z‖`2 ≤
D′√
m
‖A(z− x)‖`2 . (2)

The constant D′ only4 depends on the quality of NSP and the conditioning of the strictly positive vector w.

We are interested in retrieving x from the measurements y in (1). Inserting this equation into the r.h.s of (2) and

applying the triangle inequality reveals

‖x− z‖`2 ≤
D′√
m

(‖Az− y‖`2 + ‖e‖`2) ∀z ≥ 0.

This data-dependent bound suggests to minimize its right hand side over the “free parameter” z ≥ 0 in order to get

an estimator x] of x, i.e.

x] = arg min
0≤z∈Rn

‖Az− y‖`2 . (3)

This is a simple nonnegative least squares regression (NNLS) that does not require any assumptions on the noise e.

Since the target vector x is itself nonnegative and therefore a feasible point of (3), we can furthermore conclude

‖x− x]‖`2 ≤
D′√
m

(arg min
z≥0

‖Az− y‖`2 + ‖e‖`2)

≤ D′√
m

(‖Ax− y‖`2 + ‖e‖`2) =
2D′√
m
‖e‖`2 ,

(4)

where we have once more resorted to (1). Consequently, Theorem 1 assures that solving (3) yields an estimator of

any s-sparse vector x ≥ 0. Moreover, this estimator is robust towards additive noise in the sampling process. Such a

recovery guarantee is (up to multiplicative constants) as strong as existing ones for different reconstruction algorithms,

including the LASSO and Dantzig selectors, as well as basis pursuit denoising (BPDN) (see [12] and references

therein). However, on the contrary to them, algorithms for solving (3) require neither an explicit a-priori bound

3Non-uniform guarantees hold w.h.p. for priorly fixed vectors x, while uniform guarantees assure recovery of all s-sparse vectors simultaneously.

RIP is an example for the latter.
4See Theorem 4 below for explicit dependencies.
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η ≥ ‖e‖`2 on the noise, nor an ‖ · ‖`1 regression term. This remarkable simplicity is caused by the non-negativity

constraint z ≥ 0 and the geometric restrictions it imposes. Also, these assertions stably remain true, if we consider

approximately sparse target vectors instead of perfectly sparse ones (see Theorem 4 below).

In order to underline the applicability of Theorem 1, we consider nonnegative 0/1–Bernoulli sampling matrices

and prove that they meet the requirements of said statemnt with high probability (w.h.p).

Theorem 2. Let A be a sampling matrix whose entries are independently chosen from a 0/1–Bernoulli distribution

with parameter p ∈ [0, 1], i.e. Pr[1] = p and Pr[0] = 1− p. Fixing s ≤ n and setting

m ≥ C

(p(1− p))2
s

(
log(n) +

p

1− p

)
(5)

assures that A obeys the NSP from Definition 3 and the vector w := AT
(

1
pm1

)
obeys max1≤i≤n |wi − 1| < 1/2

(and is thus strictly positive) with probability at least 1− (n+ 1)e−C
′p2(1−p)2m.

Combining this statement with (4) implies that w.h.p. such Bernoulli matrices allow for uniformly and stably

reconstructing sparse, nonnegative vectors x via Alg. (3). We demonstrate this numerically in Figure 1. Up to

our knowledge, this is the first rigorous proof that 0/1–matrices tend to obey a strong version of the nullspace

property. The challenging difference to existing NSP and RIP results is the fact that the individual random entries

of A are not centered, (E [Ak,j ] = p 6= 0). Thus, the covariance matrix of A admits a condition number of

κ(E[ATA]) = 1 + pn
1−p , which underlines the ensemble’s anisotropy. Traditional proof techniques, like establishing

an RIP, are either not applicable in such a setting, or yield sub-optimal results [13], [14]. This is not true for

Mendelson’s small ball method [15], [16] (see also [17]), which we employ in our proof. This method is a strong

general purpose tool whose applicability only requires row-wise independence, not centeredness. In the conceptually

similar problem of reconstructing low rank matrices from rank-one projective measurements (which arises e.g. from

the PhaseLift approach for phase retrieval [18]), applying this technique allowed for establishing strong null space

properties, despite a similar degree of anisotropy in the sampling model [19]. A detailed survey of the applicability

of Mendelson’s small ball method for compressed sensing was recently presented in [20].

Organization of the Paper: In Section II we explain our motivating application in more detail and rephrase activity

detection as a nonnegative sparse recovery problem. Then, we provide an overview on prior work and known results

regarding this topic. In Section III we show that recovery guarentees in the presence of noise are governed here by

the robust nullspace property (see here [12]) under nonnegative constraints which hasn’t been fully analyzed so far

in literature. It turns out that this property assures that any nonnegative s–sparse vector can be robustly recovered

using conventional nonnegative least–squares. We stress out that such an algorithm requires no apriori–knowledge

on the norm of the noise vector. Finally, in Section IV we analyze binary measurements matrices having iid. random

0/1–valued entries and we show that with overwhelming probability such matrices admit the robust nullspace

property on nonnegative vectors. We obtain this result make use of a recent tool, known as “Mendelson’s small ball

method” which has already used by one of the authors in a related matrix recovery problem [19].
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Fig. 1: Phase transition for NNLS in (3) – for iid. 0/1–Bernoulli measurement matrices in the noiseless case. More

details are given in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Activity Detection in Wireless Networks

Let A = (sj)
n
j=1 ∈ Rm×n be a matrix with n real columns sj ∈ Rm. In our network application [21], the columns

sj are the individual sequences of length m transmitted by the active devices. These sequences are transmitted

simultaneously and each of them is multiplied by an individual amplitude that depends on transmit power and

other channel conditions. In practice this can be achieved for example using the channel reciprocity principle in

time-division multiplexing so that the devices have knowledge about the complex channel coefficients and perform a

corresponding pre-multiplication to correct for the phase. At a single receiver, all these modulated sequences are

superimposed, because a single wireless medium is shared by all devices. We model such a situation by an unknown

non-negative vector 0 ≤ x ∈ Rn, where xi > 0 indicates that a device with sequence i is active with amplitude xi

(xi = 0 implies that a device is inactive). We point out that, due to path loss in the channel, the individual received

amplitudes xi of each active device are unknown to the receiver as well. Here, we focus on networks that contain a

large number n of registered devices, but, at any time, only a small unknown fraction, say s� n, of these devices

are active.

Communicating activity patterns, that is supp(x) = {i : xi 6= 0}, and the corresponding list of received

amplitudes/powers (x ≥ 0 itself) in a traditional way would require an O(n) resources to perform this task. We aim

therefore for a reduction of the signaling time m by exploiting the facts that (i) x ≥ 0 is non-negative and (ii) the

vector x is s-sparse, i.e. ‖x‖`0 ≤ s. Hence, we assume that s ≤ m� n. Obviously, in such a scenario the resulting

system of linear equations cannot be directly inverted. A reasonable approach towards recovery is to consider the
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program:

arg min‖x‖`0 s.t. Ax = y & x ≥ 0

Combinatorial problems of this type are infamous for being NP-hard in general. A common approach to circumvent

this obstacle is to consider convex relaxations. A prominent relaxation is to replace ‖·‖`0 with the `1-norm. The

resulting algorithm can then be re-cast as an efficiently solvable linear program. However, such approaches become

more challenging when robustness towards additive noise is required, in particular if the type and the strength of the

noise is itself unknown. In our application, noisy contributions inevitable arises due to quantization, thermal noise

and other interferences. If the noisy measurements are of the form (1) (i.e. y = Ax + e where the vector e is an

additive distortion) a well–known modification is then to consider

arg min‖x‖`1 s.t. ‖Ax− y‖`2 ≤ η & x ≥ 0. (6)

While this is not a linear problem anymore, it is still convex and is computationally tractable. In practice further

modifications are necessary to solve such problems also sufficiently fast and efficiently, see [21]. However, having

access to an apriori bound η on ‖e‖`2 is essential for (i) posing this problem and (ii) solving it using certain

algorithms (stopping conditions etc.). Suppose, for instance, that e is iid normal distributed. Then ‖e‖2`2 admits a

χ2-distribution of order m and feasibility is assured w.h.p., when taking η in terms of second moments. However,

much less is known for different noise distributions or for situations, where second moment information about the

noise is challenging to acquire.

One option to tackle problems of this kind is to establish a quotient property for the measurement matrix A [12].

However, this property is geared towards Gaussian measurements and it is challenging to establish it, if A follows a

different random model. We shall show below that, interestingly, requiring A ∈M+ instead allows for drawing

similar conclusions.

B. Prior Work on Recovery of Nonnegative Sparse Vectors

One of the first works in the noiseless setting is due to Donoho et al.n [4] on the “nearly black object”. It

furthers understanding of the “maximum entropy inversion” method to recover sparse (nearly–black) images in radio

astronomy. In [10], Donoho and Tanner investigated this subject more directly. The question is, when A intrinsically

ensures that for each s–sparse x(0) only one solution is feasible:

{y |Ax = Ax(0) &x ≥ 0} = {x(0)}

At the center of their work is the notion of outwardly s–neighborly polytopes. Assume w.l.o.g. that all columns sj

of A are non-zero and define their convex hull

PA := conv(s1, . . . , sn).

This polytope is called s-neighborly, if every set of s vertices spans a face of PA. If this is the case, the polytope

P 0
A := conv(PA ∪ {0}) is called then outwardly s-neighborly. They then move on to prove that the solution to

arg min‖x‖`0 s.t. Ax = y
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is unique if and only if P 0
A is outwardly s–neighborly (see [10]). Another notion is the set of full-rank m×n-matrices

having intersection of its row space with the positive orthant as introduced in [11]:

M+ = {A : ∃t ∈ Rm A∗t > 0}. (7)

Note that both structures are related in the sense that A ∈ M+, if and only if 0 /∈ PA [22]. In [11] Bruckstein

et al. investigated the recovery of nonnegative vectors by (6) and modifications of OMP using a coherence-based

approach. They obtained numerical evidence for unique recovery in the regime s = O(
√
n). Later, Wang and

coauthors [22] have analyzed non-negativity priors for vector and matrix recovery using an RIP-based analysis.

Concretely, they translated the well–known RIP–result of random iid. ±1–Bernoulli matrices (see for example [23])

to 0/1-measurements in the following way. Let

1n := (1, . . . , 1)T

denote the “all-ones” vector in Rn. Perform measurements using an (m+ 1)× n matrix A1 =
(
1Tn |AT

)T
which

consists of an all-ones row 1n appended by a random iid. 0/1–valued m× n matrix A. By construction, the first

noiseless measurement on a nonnegative vector x returns its `1–norm ‖x‖`1 = 〈1n,x〉. Rescaling and substracting

this value from the m remaining measurements then results in ±1–measurements. This insight allows for an indirect

nullspace characterization of A in terms of the RIP–constant δ2s (see above, paragraph below (1)) of iid ±1–Bernoulli

random matrices Ã. More precisely [24]: For each v ∈ N (Ã) in the nullspace N (Ã) of Ã, an (`1, `1)–nullspace

property is valid. Mathematically this means

‖vS‖`1 ≤
√

2δ2s
1− δ2s

‖vS̄‖`1 (8)

for all v ∈ N (Ã) and |S| ≤ s. Combining this with N (A1) ⊂ N (Ã) then allows for proving unique recovery in

regime s = O(n) with overwhelming probability.

However, so far, all these results manifestly focus on noiseless measurements. Thus, the robustness of these

approaches towards noise corruption needs to be examined. Foucart, for instance, considered the `1–squared

nonnegative regularization [9]:

min
x≥0
‖x‖2`1 + λ2‖Ax− y‖2`2 (9)

which can be re-cast as nonnegative least-squares problem. He then showed that for stochastic matrices5 the solution

of (9) converges to the solution of (6) for λ→∞.

Contrary to this, we aim at establishing even stronger recovery guarantees that, among other things, do not require

an a priori noise bound. We have already mentioned that the quotient property would assure such bounds for

Gaussian matrices in the optimal regime. But m×n Gaussian matrices fail to be inM+ with probability approaching

one as long as limn→m/n < 1
2 [22]. On the algorithmic side, there exists variations of certain regression methods

where the regularization parameter can be choosen independent of the noise power – see the overview article [25]

5Recall that a matrix is stochastic, if all entries are non-negative and all columns sum up to one.
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for more details. For the LASSO selector, in particular, such modifications are known as the “scaled LASSO” and

“square root LASSO” [26], [27].

Non-negativity as a further structural constraint has also been investigated in the statistics community. But these

works focus on the averaged case with respect to (sub–)Gaussian additive noise, whereby we consider instantaneous

guarantees. Slawski and Hein [8], as well as Meinshausen [7] have recently investigated this averaged setting.

III. NULLSPACE PROPERTY WITH NONNEGATIVE CONSTRAINTS

We use the following notation. For a given vector x ∈ Rn and a set S ⊂ [n] := [1 . . . n] we denote by xS the

vector containing only the coefficients of x in S. Let S̄ the complement of S in [1 . . . n] such that x = xS + xS̄ .

The `q–error of the best s–term approximation of a vector x will be denoted by σk(x)`q . The well–known convex

relaxation of the `0-minimization with respect to an apriori `2–bound η on the residual Ax− y is basis pursuit

denoising (BPDN):

∆η(y) = arg min‖x‖`1 s.t. ‖Ax− y‖`2 ≤ η (10)

A. The robust nullspace property

Let us recall the definition of the `2–robust nullspace property with respect to the `2–norm [12, Def. 4.21].

Definition 3 (`2–robust nullspace property). A m× n matrix A satisfies the `2-robust null space property of order

s with parameters ρ ∈ (0, 1) and τ > 0, if:

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ ‖Av‖`2 for all v ∈ Rn (11)

holds for all S ⊂ [n] with |S| ≤ s.

The `2-robust nullspace property order s (s–NSP) allows for drawing the following conclusion [12, Theorem

4.25]: for any x, z ∈ Rn

‖x− z‖`2 ≤
C√
s

(‖z‖`1 − ‖x‖`1 + 2σs(x)`1) +D ‖A(x− z)‖`2 (12)

is true, where C = (1+ρ)2

1−ρ and D = 3+ρ
1−ρτ . Replacing z with the BPDN minimizer xη = ∆η(y) from (10) for the

sampling model y = Ax + e then implies

‖x− xη‖`2 ≤
2C√
s
σs(x)`1 +D ‖y − e−Axη‖`2 ≤

2C√
s
σs(x)`1 +D ‖y −Axη)‖`2 + ‖e‖`2

≤ 2C√
s
σs(x)`1 + (D + 1)η, (13)

provided that ‖e‖`2 ≤ η is true. This estimate follows from combining ‖xη‖`1 ≤ ‖x‖`1 and with ‖y −Axη)‖`2 ≤ η.

Once more, we point out that this estimate is only valid if an appropriate η is known.
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B. Nonnegative Constraints

Here we will prove now a variation of (12) (Theorem 4.25 in [12]) which holds for nonnegative vectors and

matrices in M+. For such matrices we define a condition number by

κ(A) = min{‖W‖‖W−1‖ |∃t withW = diag(AT t) > 0} (14)

Note that for diagonal matrices W with non-negative entries κ(W) = ‖W‖‖W−1‖.

Theorem 4. Let A ∈M+ obeying the s-NSP with parameters ρ and τ , and let κ = κ(A) be its condition number.

If κρ < 1, then

‖x− z‖`2 ≤
2C√
s
σs(x) +D (‖t‖`2 + τ) ‖A(x− z)‖`2

is true for all nonnegative vectors x, z ∈ Rn. The constants amount to

C = κ
(1 + κρ)2

1− κρ and D = κ
3 + κρ

1− κρ. (15)

Comparing this to (12) reveals, that the `1–term (‖z‖`1−‖x‖`1) has disappeared. Let us exploit this by reproducing

the steps in (13). If we once more use y = Ax + e, and apply the triangle inequality, we obtain

‖x− z‖`2 ≤
c1√
s
σs(x)`1 + c2 ‖y −Az‖`2 + ‖e‖`2 (16)

This simple observation already highlights that CS–oriented algorithms, which essentially minimize the `1–norm, are

not required anymore in the non–negative case. Instead, in order to get good estimates it makes sense to minimize

the r.h.s. of the bound over the “free” parameter z ≥ 0. Doing so, results in s nonnegative least–squares estimate

for x by minimizing ‖y −Az‖`2 subject to z ≥ 0. To prove this theorem, we will need two auxiliar statements.

Lemma 5. Suppose that A obeys the s–NSP with parameters ρ and τ , and set W = diag(w), where w > 0 is

strictly positive. Then, AW−1 also obeys the s–NSP with parameters ρ̃ = κ(W)ρ and τ̃ = ‖W‖τ .

Proof: First, since W is diagonal we can conclude for any vector v ∈ Rn and any set S ⊂ [n] that

W−1vS = (W−1v)S (same for S̄). Also, A obeys the s-NSP which in turn implies for any |S| ≤ s:

‖vS‖`2 = ‖WW−1vS‖`2 ≤ ‖W‖‖(W−1v)S‖`2 ≤ ‖W‖
(
ρ√
s
‖(W−1v)S̄‖`2 + τ‖AW−1v‖`2

)

= ρ̃σs (v) + τ̃‖AW−1v‖`2 .

Lemma 6. Suppose that W := diag
(
AT t

)
> 0 for some t ∈ Rm. Then any pair x, z ≥ 0 obeys

‖Wz‖`1 − ‖Wx‖`1 ≤ ‖t‖`2‖A (x− z) ‖`2 (17)

Proof: Note that, by construction, W is symmetric and preserves positivity of vectors. These features together

with positivity of z imply

‖Wz‖`1 =〈1,Wz〉 = 〈W1, z〉 = 〈diag(AT t)1, z〉 = 〈AT t, z〉 = 〈t,Az〉.
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An analogous reformulation is true for ‖Wx‖`1 and combining these two reveals

‖Wz‖`1 − ‖Wx‖`1 = 〈t,A (z− x)〉 ≤ ‖t‖`2‖A(z− x)‖`2

due to Cauchy-Schwarz.

Proof of Theorem 4: The assumption A ∈ M+ assures that there exists t ∈ Rm such that w = AT t > 0

and we define W := diag(w). By construction, W is invertible and admits a condition number κ = ‖W‖‖W−1‖.
Thus, we can write

‖x− z‖`2 = ‖W−1W (x− z) ‖`2 ≤ ‖W−1‖‖W(x− z)‖`2

for any pair x, z > 0. Now, since A obeys the s–NSP, Lemma 5 assures that AW−1 has s–NSP as well, with

parameters ρ̃ = κρ and τ̃ = ‖W‖τ . Thus, from (12) we conclude that for vectors Wx and Wz we have

‖W(x− z)‖`2 ≤
C ′√
s

(‖Wz‖`1 − ‖Wx‖`1 + 2σs(Wx)`1) +D′‖A(x− z)‖`2
(17)
≤ 2C ′‖W‖√

s
σs(x)`1 + (

C ′‖t‖`2√
s

+D′)‖A(x− z‖`2 .

Here, we invoked Lemma 6 in the last step, as well as the relation σs(Wx)`1 ≤ ‖W‖σs(x)`1 . The constants above

amount to C ′ = (1+ρ̃)2

1−ρ = (1+κρ)2

1−κρ and D′ = 3+ρ̃
1−ρ̃ τ̃ = 3+κρ

1−κρ‖W‖τ. So, in summary we obtain

‖x− z‖`2 ≤
2C ′κ√
s
σs(x)`1 + ‖W−1‖(C

′‖t‖`2√
s

+D′)‖A(x− z‖`2 .

We shall simplify the second term further by using the fact that (1 + x)2 ≤ 3 + x for any x ∈ [0, 1], i.e., C ′ and

D′/τ are both upper bounded by 3+κρ
1−κρ‖W‖. Consequently,

‖x− z‖`2 ≤ 2
κC ′√
s
σs(x) +

3 + κρ

1− κρκ (‖t‖`2 + τ) ‖A (x− z) ‖`2 ,

and setting C := κC ′ and D = 3+κρ
1−κρκ proves the claim.

IV. ROBUST NSP FOR 0/1-BERNOULLI MATRICES

In this section, we prove our second main result, namely Theorem 2. Said statements summarizes two results,

namely (i) 0/1-Bernoulli matrices A with m = Cs log(n) rows obey the robust null space property of order s

and (ii) the row space of AT allows for constructing a strictly positive vector w = AT t > 0 (that is sufficiently

well-conditioned). We will first state the main ideas and prove both statements in subsequent subsections.

A. Sampling model and overview of main proof ideas

Let us start by formally defining the concept of a 0/1-Bernoulli matrix.

Definition 7. We call A ∈ Rm×n a 0/1-Bernoulli matrix with parameter p ∈ [0, 1], if every matrix element [A]i,j

is an independent realization of a Bernoulli random variable b with parameter p, i.e.

Pr [b = 1] = p and Pr [b = 0] = 1− p.
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Recall that such a Bernoulli variable obeys E [b] = p and Var(b) = E
[
(b− E[b])

2
]

= p(1− p). By construction,

the m rows a1, . . . ,am of such a Bernoulli matrix are independent and obey

E [ak] =

n∑

j=1

E [Ak,j ] ej = p

n∑

j=1

ej = p1.

This expected behavior of the individual rows will be crucial for addressing the second point in Theorem 2: setting

w :=
1

pm

m∑

k=1

ak = AT

(
1

pm
1

)

results in a random vector w ∈ Rn that obeys E [w] = 1 > 0. Applying a large deviation bound will in turn imply

that a realization of w will w.h.p. not deviate too much from its expectation 1 and thus remains strictly positive.

We will do this in Subsection IV-C.

However, when turning our focus to establishing null space properties for A, working with 0/1-Bernoulli entries

renders such a task more challenging. The simple reason for such a complication is that the individual random

entries of A are not centered, i.e. E [Ak,j ] = p 6= 0. Combining this with independence of the individual entries

yields

E
[
aka

T
k

]
= p211T + p(1− p)I.

This matrix admits a condition number of κ
(
E
[
aka

T
k

])
= 1 + pn

1−p which underlines the ensemble’s anisotropy.

Traditional proof techniques, e.g. establishing an RIP, are either not applicable in such a setting, or yield sub-optimal

results [13], [14]. This is not true for Mendelson’s small ball method [15], [16] (see also [17]) – a strong general

purpose tool whose applicability only requires row-wise independence. In the conceptually similar problem of

reconstructing low rank matrix from rank-one projective measurements (which arises e.g. from the PhaseLift approach

for phase retrieval [28], [18]) applying this technique allowed for establishing strong null space properties, despite a

similar degree of anisotropy in the sampling model [19]. In the next subsection, we adapt the ideas from said paper

to our Bernoulli model and succeed in establishing the NSP presented in Theorem 2.

Finally, we point out that a detailed survey of the applicability of Mendelson’s small ball method for compressed

sensing was recently presented in [20]. However, there centeredness of the individual matrix entries is a key

assumption which is not met in our 0/1-Bernoulli model.

B. Null Space Properties for 0/1-Bernoulli matrices

Recall that Definiton 3 states that a m × n matrix A obeys the robust null space property with parameters

ρ ∈ (0, 1) and τ > 0, if

‖vS‖`2 ≤
ρ√
s
‖vS̄‖`1 + τ‖Av‖`2 (18)

is true for all vectors v ∈ Rn and support sets S ∈ [n] with support size |S| ≤ s. Demanding such generality in

the choice of the support set is in fact not necessary, see e.g. [12, Remark 4.2]. For a fixed vector v, the above

condition holds for any index set S, if it holds for an index set Smax containing the s largest (in modulus) entries
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of v. Introducing the notation vs := vSmax
and vc := vS̄max

, the robust null space property (18) holds, provided

that every vector v ∈ Rn obeys

‖vs‖`2 ≤
ρ√
s
‖vc‖`1 + τ‖Av‖`2 . (19)

Note that this requirement is invariant under re-scaling and we may w.l.o.g. assume ‖v‖`2 = 1. Moreover, for fixed

parameters s and ρ, any vector v obeying ‖vs‖`2 ≤ ρ√
s
‖vc‖`1 is guaranteed to fulfill (19) by default. Consequently,

when aiming to establish null space properties, it suffices to establish condition (19) for the set of unit-norm vectors

that do not obey this criterion:

Tρ,s :=

{
v ∈ Rn : ‖v‖`2 = 1, ‖vs‖`2 >

ρ√
s
‖vc‖`1

}
.

As a result, a matrix A obeys the NSP (18), if

inf {‖Av‖`2 : v ∈ Tρ,s} >
1

τ
, (20)

holds, where τ > 0 is the second parameter appearing in (18). The task of establishing this is somewhat simplified

by the observation that the set Tρ,s exclusively contains vectors that are effectively sparse:

Lemma 8. For fixed s and ρ, every vector v ∈ Tρ,s obeys

‖v‖`1 ≤
√
s

1 + ρ

ρ
‖v‖`2 .

Proof: Note that any vs is s-sparse by construction and thus obeys ‖vs‖`1 ≤
√
s‖vs‖`2 . Combining this with

the triangle inequality and the defining feature of the set Tρ,s yields

‖v‖`1 = ‖vs + vc‖`1 ≤ ‖vs‖`1 + ‖vc‖`1 ≤
√
s‖vs‖`2 +

√
s

ρ
‖vs‖`2

and the claim readily follows from ‖vs‖`2 ≤ ‖v‖`2 .

Despite such a geometric insight, proving (20) for a given A is still a daunting task. This situation greatly changes,

if we assume that our sampling matrix A consists of m rows a1, . . . ,am that are independent instances of a random

vector a ∈ Rn. Assuming this, (20) is equivalent to showing

inf
v∈Tρ,r

(
m∑

k=1

|〈ak,v〉|2
)1/2

>
1

τ
. (21)

Independence of the ak’s then allows for establishing this (w.h.p.) by resorting to Mendelson’s small ball method

[15], [16], [17]:

Theorem 9 (Koltchinskii, Mendelson; Tropp’s version [17]). Fix E ⊂ Rn and let a1, . . . ,am be independent copies

of a random vector a ∈ Rn. Set h = 1√
m

∑m
k=1 εkak, where ε1, . . . , εm is a Rademacher sequence, and for ξ > 0

define

Qξ (E,a) = inf
u∈E

Pr [|〈a,u〉| ≥ ξ] , as well as Wm (E,a) = E
[

sup
u∈E
〈h,u〉

]
.

March 28, 2016 DRAFT216



13

Then, for any ξ > 0 and t ≥ 0 the following is true with probability at least 1− e−2t2 :

inf
u∈E

(
m∑

k=1

|〈ak,u〉|2
)1/2

≥ ξ√mQ2ξ(E,a)− ξt− 2Wm(E,a). (22)

In order to establish (21), we can set E = Tρ,s, choose ξ and t appropriately and establish suitable bounds for

Qξ(Tρ,s,a) and Wm(Tρ,r,a). Note that the geometric insight provided in Lemma 8 considerably simplifies this last

task. It assures

Wm(Tρ,s,a) = E

[
sup

u∈Tρ,s
〈h,u〉

]
≤ sup

u∈Tρ,s
‖u‖`1E [‖h‖`∞ ] ≤ √s1 + ρ

ρ
E [‖h‖`∞ ]

and it suffices bound E [‖h‖`∞ ] from above. We do this by adapting the techniques from [29, Proposition 13] to the

vector case. The calculations are detailed in the appendix and yield

E [‖h‖`∞ ] ≤
√

4p(1− p)
(

3 log(2n) +
p

1− p

)
(23)

under the assumption that the sampling rate m exceeds log(n)
p2(1−p)2 . Such a bound allows us to deduce

Wm (Tρ,s,a) ≤ 1 + ρ

ρ

√
4sp(1− p)

(
3 log(2n) +

p

1− p

)
(24)

without having to pay too much attention to the complicated geometry of the set Tρ,s. Likewise, said set is strictly

contained in the unit sphere Sn−1 ∈ Rn. For fixed ξ > 0, this allows us to bound Q2ξ(Tρ,s,a) from below by

establishing a global lower bound on Pr [|〈a,u〉| ≥ 2ξ] that is valid for any u ∈ Sn−1. We do this in the appendix

and obtain

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 ∀z ∈ Sn−1 and θ ∈ [0, 1].

The structure of such a global bound suggests choosing ξ = 1
4

√
p(1− p) for which we can conclude

Q2ξ(Tρ,s,a) ≥ 4p(1− p)( 3
4 )2

13
>
p(1− p)

6
. (25)

Such a choice of ξ, setting t = p(1−p)
12

√
m and envoking the bounds (24) and (25) into (22) implies

inf
v∈Tρ,s

‖Av‖`2 ≥
√
p(1− p)3

24

√
m−

√
p(1− p)3

48

√
m− 2

1 + ρ

ρ

√
4sp(1− p)

(
3 log(2n) +

p

1− p

)

=
√
p(1− p)

(
p(1− p)

48

√
m−

√
16

(1 + ρ)2

ρ2
s

(
3 log(2n) +

p

1− p

))

with probability at least 1− e−
p2(1−p)2

72 m. This prompts us to demand

m ≥ C1(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
, (26)

where C2 is a sufficiently large constant (note that this justifies the assumption m ≥ log(n)
p2(1−p)2 made before). Then

the above inequality implies that there is another constant C2 > 0 (whose size depends on the choice of C) such that

inf
v∈Tρ,s

‖Av‖`2 ≥
√
p(1− p)3

C2

√
m. (27)
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with probability of failure bounded by e−
p2(1−p)2

72 m. Comparing this bound to (21) allows us to set τ = C2√
p(1−p)3√m

and we arrive at the main result of this section:

Theorem 10. Let A : Rn → Rm be a 0/1-Bernoulli matrix with parameter p ∈ [0, 1] and fix s ≤ n and ρ ∈ [0, 1].

Then, there are constants C1 and C2 such that choosing the number of rows to be

m = C1
(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
(28)

assures that A obeys the robust NSP of order s with parameters ρ and τ = C2√
p(1−p)3√m

. Hereby, the probability

of failure is bounded by e−
p2(1−p)2

72 m.

This is a more detailed version of the first claim presented in Theorem 2. We see that sampling rate, size of

the NSP-parameter τ and the probability bound all depend on the Bernoulli parameter p ∈ [0, 1]. Factoring out the

p-dependence of m by writing m = m̃
p2(1−p)2 we obtain a probability bound of e−

m̃
72 which is independent of p. On

the other hand τ = C2√
p(1−p)m̃

still exhibits a p-dependence.

Finally, we point out that when opting for a standard Bernoulli process, i.e. p = 1
2 , the assertions of Theorem 10

considerably simplify, because p(1− p) = 1
4 . Inserting this, we obtain:

Corollary 11. Fix s ≤ n, ρ ∈ [0, 1] and let A be a standard (m× n) 0/1-Bernoulli matrix (i.e. p = 1
2 ) with

m ≥ 17C1
(1 + ρ)2

ρ2
s log(n).

Then with probability at least 1− e−
m

1152 this matrix obeys the NSP of order s with parameters ρ and τ = C2

2
√
m

.

Herce, C1 and C2 are the constants from Theorem 10.

C. 0/1-Bernoulli matrices lie in M+

We now move on to showing that 0/1-Bernoulli matrices are very likely to admit the second requirement of

Theorem 4. Namely, that there exists a vector w = AT t that is strictly positive which is equivalent to demanding

A ∈ M+. Concretely, we show that setting t = 1
pm1 ∈ Rm results in a strictly positive vector w ∈ Rn whose

conditioning obeys

κ(w) =
maxk |〈ek,w〉|
mink |〈ek,w〉|

≤ 3. (29)

To do so, we note that w = 1
pm

∑m
k=1 ak has expectation E [w] = 1, which is – up to re-scaling – the unique

non-negative vector admitting κ(1) = 1. After having realized this, it suffices to use a concentration inequality to

prove that w.h.p. w does not deviate too much from its expectation 1. We do this by invoking a Bernstein inequality

which implies:

Theorem 12. Suppose that A : Rn → Rm is a 0/1-Bernoulli matrix with parameter p ∈ [0, 1] and set

w = AT t ∈ Rn with t =
1

pm
1 ∈ Rm. (30)
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Then with probability at least 1− ne−
3
8p(1−p)m maxi |〈ei,w〉| ≤ 3

2 and mini |〈ei,w〉| ≤ 1
2 which in turn implies

(29).

Proof: Instead of showing the claim directly, we prove that a stronger statement, namely

|〈ei,w〉 − 1| ≤ 1

2
1 ≤ i ≤ n, (31)

is true with probability of failure bounded by ne−
3
8p(1−p)m. If such a bound is true for all i, it is also valid for

maximal and minimal components and we obtain

max
i
|〈ei,w〉| ≤ max

k
|〈ei,w〉 − 1|+ 1 ≤ 3

2
and min

k
|〈ei,w〉| ≥ 1−min

i
|〈ei,w〉 − 1| ≥ 1

2
,

as claimed. In order to prove (31), we fix 1 ≤ i ≤ n and focus on

|〈ei,w〉 − 1| =
∣∣∣∣∣

1

pm

m∑

k=1

〈ei,ak〉 − 1

∣∣∣∣∣ =
1

pm

∣∣∣∣∣
m∑

k=1

(bk,i − E [bk,i])

∣∣∣∣∣ .

Here, we have used 〈ei,ak〉 = 〈ek,Aei〉 = bk,i, which is an indepenent instance of a Bernoulli random variable

with parameter p. Thus we are faced with bounding the deviation of a sum of m centered, independent random

variables ck := bk,i − E [bk,i] from its mean. Each such variable obeys

|ck| ≤ max {p, 1− p} ≤ 1 and E
[
c2k
]

= Var(bk,i) = p(1− p).

Applying a Bernstein inequality [12, Theorem 7.30] reveals

Pr

[
|〈ei,w〉 − 1| ≥ 1

2

]
≤ Pr

[
|〈ei,w〉 − 1| ≥ 1− p

2

]
= Pr

[∣∣∣∣∣
m∑

k=1

ck

∣∣∣∣∣ ≥
mp(1− p)

2

]
≤ exp

(
−3

8
p(1− p)m

)
.

Combining this with a union bound assures that |〈ei,w〉 − 1| < 1
2 is simultaneously true for all 1 ≤ i ≤ n with

probability at least 1− ne−
3
8p(1−p)m.

D. Proof of Theorem 2

Finally, these two results can be combined to yield Theorem 2. It readily follows from taking a union bound over

the individual probabilities of failure. Theorem 10 requires a sampling rate of

m ≥ C1
(1 + ρ)2

p2(1− p)2ρ2
s

(
log(n) +

p

1− p

)
(32)

to assure that a corresponding 0/1-Bernoulli matrix obeys a strong version of the NSP with probability at least

1− e−
p2(1−p)2

72 m. On the other hand, Theorem 12 asserts that choosing w = AT 1
pm1 for 0/1-Bernoulli matrices A

results in a well-conditioned and strictly positive vector w with probability at least 1−ne−
3
8p(1−p)m. The probability

that either of these assertions fails to hold can be controlled by the union bound over both probabilities of failure:

Pr [Thm. 10 fails to hold ∪ Thm. 12 fails to hold] ≤Pr [Thm. 10 fails to hold] + Pr [Thm. 12 fails to hold]

≤e−
p2(1−p)2

72 m + ne−
3p(1−p)

8 m ≤ (n+ 1)e−
p2(1−p)2

72 m.

Finally, we focus on 0/1-Bernoulli matrices A for which both statements are true and whose sampling rate

exceeds (32). Theorem 10 then implies that A obeys the s-NSP with a pre-selected parameter ρ ∈ [0, 1] and
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τ = C2√
p(1−p)3√m

. Moreover, the vector selection t = 1
pm1 in Theorem 12 obeys ‖t‖`2 = 1

p
√
m

. As a result, the

implication of Theorem 4 reads for any x, z ≥ 0:

‖x− z‖`2 ≤
2C√
s
σs(x) +D (‖t‖`2 + τ) ‖A(x− z)‖`2

=
2C√
s
σs(x) +D

(
1

p
√
m

+
C2√

p(1− p)3√
m

)
‖A(x− z)‖`2

≤2C√
s
σs(x) +

D(1 + C2)
√
p(1− p)3

‖A(x− z)‖`2√
m

.

The constant D(1+C2)√
p(1−p)3

is the explicit value of D′ in Theorem 1 for the case of 0/1-Bernoulli matrices with parameter

p ∈ [0, 1].

V. NUMERICAL EXPERIMENTS

In the following we evaluate the nonnegative least squares (NNLS) in (3) and we compare this to the results

obtained with basis pursuit denoising (BPDN) in (10). The NNLS has been computed using the lsqnonneg

function in MATLAB which implements the “active-set” Lawson–Hanson algorithm [30]. For the BPDN the SPGL1

toolbox has been used [31].

In a first test we have evaluated numerically the phase transition of NNLS in the 0/1–Bernoulli setting for

the noiseless case. The dimension and sparsity parameters are generated uniformely (in this order) in the ranges

n ∈ [10 . . . 500], m ∈ [10 . . . n] and s ∈ [1 . . .m]. Thus, the sparsity/density variable is ρ = s/m and the subsampling

ratio is δ = m/n. The m× n measurement matrix A is generated using the iid. 0/1–Bernoulli model with p = 1/2.

The nonnegative s–sparse signal 0 ≤ x ∈ Rn to recover is created as follows: the random support supp(x) is

obtained from taking the first s elements of a random (uniformely–distributed) permutation of the indices (1 . . . n).

On this support each value is the absolute value of an iid. standard (zero mean, unit variance) Gaussian, i.e., xi = |gi|
with gi ∼ N(0, 1) for all i ∈ supp(x). An event counts as successful once ‖x− x̂‖`2 ≤ 10−3‖x‖`2 . The resulting

phase transition diagram, shown in Figure 1 above, demonstrates that NNLS indeed reliable recovers nonnegative

sparse vectors without any `1–regularization.

In the second experiment we consider the noisy case. Beside its simplicity, the important feature of NNLS is that

no a-priori norm assumptions on the noise are necessary as it is required for the BPDN. As illustrated in (4), a

result of Theorem 1 is that the NNLS estimate x] fullfils:

‖x− x]‖`2 ≤
2C√
m
‖e‖`2 (33)

A similar bound is valid for the BPDN (see (13)) estimate xη when ‖e‖`2 ≤ η, i.e., once ‖e‖`2 is known. Interestingly,

even under this prerequisites the performance of NNLS is considerable better then BPDN in our setting. This is

visualized in Figure 2 where each component ej of e is iid. Gaussian distributed with zero mean and variance

σ2
e = 1/100. There recovery has been identified as “successful” if (33) is fulfilled for 2C =

√
10.
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(a) (b)

Fig. 2: Comparison of NNLS in (3) with BPDN in (10) for iid. 0/1–Bernoulli matrices in the noisy setting.

VI. CONCLUSIONS

In this work we have shown that nonnegativity is a tremendeous important additional property when recoving

sparse vectors. This situation is relevant in many applications and we are motivated here by activity detection

in wireless networks using individual sequences. Designing measurement matrices such that convex hull of its

columns (the sequences) is sufficiently well-separated from the origin recovery allow for remarkable simple recovery

algorithms which are prone to noise and blind in a sense that no regularization and a priori information on the noise

is required. We have demonstrated this feature by strengthen the implications of the robust nullspace property for

the nonnegative setting. Furthermore, we have shown that iid. binary measurements fullfill w.h.p. this property and

are simultaneously well-conditioned and can be used therefore for recovering nonnegative and sparse vectors in the

optimal regime.
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APPENDIX: PROOFS OF EQUATIONS (23) AND (25)

Here we provide proofs of the two bounds (23) and (25) on which we built our argument that 0/1-Bernoulli

matrices obey the robust NSP. Since both are rather technical and not essential for understanding the main ideas, we

decided to present them in this appendix.
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Preliminaries

In order to prove the remaining estimates we rely on a couple of probabilistic standard tools which we shall

summarize here. Recall that a Rademacher sequence (ε1, . . . , εm) is a sequence of m independent dichotomic

random variables obeying Pr [εk = 1] = Pr [εk = −1] = 1
2 .

Theorem 13 (Khintchine Inequality, Corollary 8.7 in [12]). Let c ∈ Cm and ε1, . . . , εm be a Rademacher sequence.

Then for all q > 0 (
E

[∣∣∣∣∣
m∑

k=1

εkck

∣∣∣∣∣

q])1/q

≤ 23/(4q)e−1/2‖c‖`2 .

Theorem 14 (Non-commutative Khintchine inequality: Exercise 8.6 (d) in [29]). Let M1, . . . ,Mm be hermitian

n× n matrices and suppose that (ε1, . . . , εm) is a Rademacher sequence. Then

E

[∥∥∥∥∥
m∑

k=1

εkMk

∥∥∥∥∥

]
≤
√

2 log(2n)

∥∥∥∥∥
m∑

k=1

M2
k

∥∥∥∥∥

1/2

.

Theorem 15 (Matrix Chernoff for expectation values: Theorem 5.1.1 in [32] (see also [33]). Let {Mk}mk=1 be a

sequence of independent, random, non-negative n× n matrices obeying ‖Mk‖ ≤ R almost surely. Then, for any

t > 0 their sum obeys

E

[∥∥∥∥∥
m∑

k=1

Mk

∥∥∥∥∥

]
≤ et − 1

t

∥∥∥∥∥
m∑

k=1

E [Mk]

∥∥∥∥∥
∞

+
R

t
log(n).

Theorem 16 (Paley-Zygmund Inequality). Let X be a non-negative random variable with bounded second moment.

Then

Pr [X ≥ θE [X]] ≥ (1− θ)2E[X]

Var(X) + E [X]
2 ,

where Var(X) = E
[
(X − E[X])2

]
is the variance of X .

Bounding E [‖h‖`∞ ] for 0/1-Bernoulli matrices

In this section, we prove that the bound presented in (23) holds in the Bernoulli setting. Let A be a 0/1-Bernoulli

matrix with parameter p and m rows a1, . . . ,am ∈ Rn. The vector h := 1√
m

∑m
k=1 εkak was introduced in

Theorem 9 and in (23) we claimed that this vector obeys

E
[
‖h‖`∞

]
≤
√

4p(1− p)
(

3 log(2n) +
p

1− p

)
, (34)

provided that m ≥ log(n)
p2(1−p)2 . When aiming to prove this, we first minimize the anisotropic impact of A’s rows.

Recalling E [ak] = p1, we introduce ãk := ak − p1, and likewise h̃ := 1√
m

∑m
k=1 εkãk, which obey

h = h̃ +
p√
m

(
m∑

k=1

εk

)
1 (35)

by construction. Applying the triangle inequality reveals

E
[
‖h‖`∞

]
≤ E

[∥∥∥h̃
∥∥∥
`∞

]
+

p√
m
E

[∣∣∣∣∣
m∑

k=1

εk

∣∣∣∣∣

]
‖1‖`∞ (36)

March 28, 2016 DRAFT222



19

and we may bound the two terms individually. For the second term, we resort to the classical Khintchine inequality

(with q = 1 and c = 1) and obtain

p√
m

(
m∑

k=1

εk

)
1 ≤ p23/4e−1/2

√
m

‖1‖`2‖1‖`∞ ≤
√

2p, (37)

because ‖1‖`2 =
√
m‖1‖`∞ =

√
m and 23/4e−1/2 ' 1.02.006 <

√
2. For the remaining estimate of E

[∥∥∥h̃
∥∥∥
`∞

]
,

we find it advantageous to work with an equivalent matrix problem

E
[∥∥∥h̃

∥∥∥
`∞

]
= E

[∥∥∥diag
(
h̃
)∥∥∥
∞

]
=

1√
m
E

[∥∥∥∥∥
m∑

k=1

εkdiag (ãk)

∥∥∥∥∥
∞

]

that can be tackled by consecutively applying matrix Khintchine and Chernoff inequalities. Exploiting the randomness

in (ε1, . . . , εm), by applying Theorem 14 assures

E
[∥∥∥h̃

∥∥∥
`∞

]
=

1√
m
EaEε

[∥∥∥∥∥
m∑

k=1

εkdiag (ã)k

∥∥∥∥∥
∞

]
≤
√

2 log(2n)

m
Ea



∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥

1/2

∞




≤
√

2 log(2n)

m

(
Ea

[∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥
∞

])1/2

, (38)

where we have also employed Jensen’s inequality. Now, note thate the matrices diag (ãk)
2 are all positive semidefinite

and obey
∥∥∥diag (ãk)

2
∥∥∥ =

∥∥∥diag (ak − p1)
2
∥∥∥ ≤ max

{
p2, (1− p)2

}
,

E
[
diag (ãk)

2
]

=
n∑

i=1

E
[
(〈ei,ak〉 − p)2

]
eie

T
i = p(1− p)I.

This is true, because each 〈ei,ak〉 is an independent instance of a Bernoulli variable with parameter p. Thus,

Theorem 15 is applicable and setting t = 1 implies for

Ea

[∥∥∥∥∥
m∑

k=1

diag (ãk)
2

∥∥∥∥∥
∞

]
≤(e− 1)

∥∥∥∥∥
m∑

k=1

p(1− p)I
∥∥∥∥∥
∞

+ max
{
p2, (1− p)2

}
log(n)

≤ep(1− p)m+ max
{
p2, (1− p)2

}
log(n).

Inserting this into (38) yields

E
[∥∥∥h̃

∥∥∥
`∞

]
≤
√

2 log(2n)

(
ep(1− p) +

log(n)

m

)
(39)

and turning back to (36), we see that

E
[
‖h‖`∞

]
≤
√

2 log(2n)

(
ep(1− p) +

log(n)

m

)
+
√

2p

holds. In order to simplify this further, we now use the prior assumption m ≥ log(n)
p2(1−p)2 which assures

log(n)

m
≤ p2(1− p)2 ≤ 1

4
p(1− p),
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because p(1− p) ≤ 1
4 for all p ∈ [0, 1]. Combining this with e + 1

4 < 3 allows us to deduce

E
[
‖h‖`∞

]
≤
√

6p(1− p) log(2n) +
√

2p.

Finally, we use the elementary inequality
√
a+
√
b ≤

√
2(a+ b) ∀a, b ≥ 0 to obtain

E
[
‖h‖`∞

]
≤
√

2 (6p(1− p) log(2n) + 2p2) =

√
4p(1− p)

(
3 log(2n) +

p

1− p

)
,

which is the estimate presented in (34).

A. Bounding Pr [|〈a, z〉| ≥ θ‖z‖`2 ] for 0/1-Bernoulli vectors

In this final section we prove that for any unit vector z = (z1, . . . , zn)T ∈ Sn−1 and any θ ∈ [0, 1/2], the bound

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ 4

13
p(1− p)(1− θ2)2 (40)

holds in the Bernoulli setting. Here, the probability is taken over instances a ∈ Rn of the i.i.d. row distribution in

a 0/1-Bernoulli matrix. Hence, a =
∑n
i=1 biei, where each bi is an independent Bernoulli random variable with

parameter p. This estimate is going to rely on the Paley-Zygmund inequality and a few standard, but rather tedious,

moment calculations for Bernoulli processes. We start by exploiting

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
= Pr

[
〈a, z〉2 ≥ θ2p(1− p)

]
, (41)

because the latter expression is easier to handle. Introducing the nonnegative random variable S := 〈a, z〉2 =
∑n
i,j=1 bibjzizj ,, we see

E [S] =
∑

i 6=j
E [bi]E [bj ] zizj +

n∑

i=1

E
[
b2i
]
z2
i = p2〈1, z〉+ p(1− p)‖z‖2`2 ≥ p(1− p) (42)

(recall that each bi is an independent Bernoulli variable with parameter p). This calculation together with (41)

implies

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ Pr

[
S ≥ θ2E [S]

]
. (43)

Since S ≥ 0 by definition, the requirements for Paley-Zygmund – Theorem 16 – are met and said Theorem implies

Pr
[
S ≥ θ2E [S]

]2 ≥ (1− θ2)2E [S]

Var(S) + E [S]
2 . (44)

We have already computed E [S] in (42), but we still have to compute its variance. We defer this calculation to the

very end of this section and for now simply state its result:

Var(S) = 2E [S]
2 − 2p4〈1, z〉+ 4p2(1− p)(1− 2p)〈1, z〉

n∑

i=1

z3
i + p(1− p)(1− 6p(1− p))‖z‖4`4 . (45)

We now move on to bound these contributions individually by a multiple of E [S]
2. We can omit the second term

and obtain

4p2(1− p)(1− 2p)〈1, z〉
n∑

i=1

z3
i ≤4p2(1− p)2〈1, z〉‖z‖3`2 = 4p2(1− p)2〈1, z〉 ≤ 4p2(1− p)2 max

{
〈1, z〉2, 1

}

≤2

p

(
p2〈1, z〉2 + p(1− p)

)2
=

2

p
E [S]

2
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for the third term. The fourth term can be bounded cia

p(1− p)(1− 6p(1− p))‖z‖4`4 ≤ p(1− p)‖z‖4`2 ≤
1

p(1− p)E [S]
2
.

and combining all these bounds implies

Var(S) ≤
(

2 +
2

p
+

1

p(1− p)

)
E [S]

2
=

3− 2p2

p(1− p)E [S]
2 ≤ 3

p(1− p)E [S]
2
.

Inserting this upper bound into the Paley-Zygmund estimate (44) yields

Pr
[
|〈a, z〉| ≥ θ

√
p(1− p)

]
≥ (1− θ2)2E [S]

2

Var(S) + E [S]
2 ≥

(1− θ2)2E [S]
2

( 3
p(1−p) + 1)E [S]

2 ≥
4

13
p(1− p)(1− θ2)2,

as claimed in (25) and (40), respectively. In the last line, we have used p(1− p) ≤ 1
4 for any p ∈ [0, 1].

Finally, we provide the derivation of Equation (45). We use our knowledge of E[S] = p2〈1, z〉+ p(1− p)‖z‖2`2
together with the elementary formula

(bi − p)(bj − p) = (bibj − p2)− pbi − pbj + 2p2

to rewrite S − E[S] as

S − E [S] =
n∑

i,j=1

bibjzizj − p2
∑

i 6=j
zizj − p

n∑

i=1

z2
i =

∑

i 6=j

(
bibj − p2

)
zizj +

n∑

i=1

(
b2i − p

)
z2
i

=
∑

i 6=j

(
(bi − p)(bj − p) + pbi + pbj − 2p2

)
zizj +

n∑

i=1

(
b2i − p

)
z2
i

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + p

∑

i 6=j
bizizj + p

∑

j 6=i
bjzjzi − 2p2

∑

i 6=j
zizj

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + 2p

n∑

i,j=1

bizizj − 2p

n∑

i=1

biz
2
i − 2p2

n∑

i,j=1

zizj + 2p2
n∑

i=1

z2
i

=
∑

i 6=j
(bi − p) (bj − p) zizj +

n∑

i=1

(
b2i − p

)
z2
i + 2p

n∑

i,j=1

(bi − p) zizj − 2p
n∑

i=1

(bi − p) z2
i

=2
∑

i<j

(bi − p) (bj − p) zizj + 2p〈1, z〉
n∑

i=1

(bi − p) zi + (1− 2p)

n∑

i=1

(bi − p) z2
i .

Here we have exploited symmetry in the first term and b2i = bi to further simplify that expression. For notational

simplicity, it makes sense to define the random variable b̃i := bi−p which obeys E
[
b̃i

]
= 0 and E

[
b̃2i

]
= Var(bi) =

p(1− p). Introducing such a notation simplifies the above expression to

S − E [S] = 2
∑

i<j

b̃ib̃jzizj + 2p〈1, z〉
n∑

i=1

b̃izi + (1− 2p)
n∑

i=1

b̃iz
2
i .
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Employing the binomial formula (a+ b+ c)2 = a2 + 2ab+ 2ac+ b2 + 2bc+ c2, we obtain

Var(S) =E
[
(S − E [S])

2
]

= 4
∑

i<j

∑

k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl + 8p〈1, z〉

∑

i<j

n∑

k=1

E
[
b̃ib̃j b̃k

]
zizjzk

+4(1− 2p)
∑

i<j

n∑

k=1

E
[
b̃ib̃j b̃k

]
zizjz

2
k + 4p2〈1, z〉2

n∑

i,j=1

E
[
b̃ib̃j

]
zizj

+4p(1− 2p)〈1, z〉
n∑

i,j=1

E
[
b̃ib̃j

]
ziz

2
j + (1− 2p)2

n∑

i,j=1

E
[
b̃ib̃j

]
z2
i z

2
j .

Centeredness of b̃ together with the summation constraints (i < j) and (k < l) implies that summands in the first

term vanish, unless i = k andj = l. This in turn implies

4
∑

i<j

∑

k<l

E
[
b̃ib̃j b̃k b̃l

]
zizjzkzl =4

∑

i<j

E
[
b̃2i

]
E
[
b̃2j

]
z2
i z

2
j = 2p2(1− p)2

∑

i6=j
z2
i z

2
j

=2p2(1− p)2




n∑

i,j=1

z2
i z

2
j −

n∑

i=1

z4
i


 = 2p2(1− p)2

(
‖z‖4`2 − ‖z‖4`4

)
.

Using a similar argument allows us to conclude that the second and third term must identically vanish (because the

index constraints i < j prevents i = j = k and, consequently, at least one index must always remain unpaired). We

can exploit E
[
b̃ib̃j

]
= p(1− p)δi,j in the remaining terms to conclude

Var(S) =2p2(1− p)2
(
‖z‖4`2 − ‖z‖4`4

)
+ 4p3(1− p)〈1, z〉2‖z‖2`2

+4p2(1− p)(1− 2p)〈1, z〉
n∑

i=1

z3
i + p(1− p)(1− 2p)2‖z‖4`4 .

Slightly rewriting this expression then yields the result presented in (45)
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Abstract

In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of
linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by
minimizing the nuclear norm as a convex surrogate for rank.

In this work, we identify an improved regularizer based on the so-called diamond norm, a concept imported
from quantum information theory. We show that –for a class of matrices saturating a certain norm inequality–
the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior
reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we
demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant
applications: These include signal analysis tasks such as blind matrix deconvolution or the retrieval of certain
unitary basis changes, as well as the quantum information problem of process tomography with random
measurements.

The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that
the above condition depends crucially on that tensorial structure. In this sense, this work touches on an aspect
of the notoriously difficult tensor completion problem.

I. INTRODUCTION

The task of recovering an unknown low-rank matrix from a small number of measurements appears in
a variety of contexts. Examples of this task are provided by collaborative filtering in machine learning [1],
quantum state tomography in quantum information [2, 3], the estimation of covariance matrices [4, 5], or face
recognition [6]. If the measurements are linear, the technical problem reduces to identifying the lowest-rank
element in an affine space of matrices. In general, this problem is NP-hard and it is thus unclear how to
approach it algorithmically [7].

In the wider field of compressed sensing [8], the strategy for treating such problems is to replace the
complexity measure – here the rank – with a tight convex relaxation. Often, it can be rigorously proved that
the resulting convex optimization problem has the same solution as the original problem for many relevant
problems, while at the same time allowing for an efficient algorithm. The tightest (in some sense [9]) convex
relaxation of rank is the nuclear norm, i.e. the sum of singular values. Minimizing the nuclear norm subject
to linear constraints is a semi-definite program and great number of rigorous performance guarantees have
been provided for low-rank reconstruction using nuclear norm minimization [2, 10–17].

The geometry of convex reconstruction schemes is now well-understood (c.f. Figure 2). Starting with a
convex regularizer f (e.g. the nuclear norm), geometric proof techniques like Tropp’s Bowling scheme [18]
or Mendelson’s small ball method [19, 20] bound the reconstruction error in terms of the descent cone of
f at the matrix that is to be recovered. Moreover, these arguments suggest that the error would decrease
if another convex regularizer with smaller descent cone would be used. This motivates the search for new
convex regularizers that (i) are efficiently computable and (ii) have a smaller descent cone at particular points
of interest.

In this work, we introduce such an improved regularizer based on the diamond norm [21]. This norm
plays a fundamental role in the context of quantum information and operator theory [22]. For this work, it

This paper was presented in part at conference on Quantum Information Processing and Communication (QIPC) in Leeds, UK,
2015; on the workshop on Applied Harmonic Analysis and Sparse Approximation in Oberwolfach, Germany, 2015; and at the Matheon
Conference on Compressed Sensing and its Applications in Berlin, Germany, 2015.
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is convenient to also use a variant of the diamond norm that we call the square norm. While not obvious
from its definition, it has been found that the diamond norm can be efficiently computed by means of a
semidefinite program (SDP) [23–25]. Starting from one such SDP characterization [25], we identify the set
of matrices for which the square norm’s descent cone is contained in the corresponding one of the nuclear
norm. As a result, low-rank matrix recovery guarantees that have been established via analyzing the nuclear
norm’s descent cone [16, 18] are also valid for square norm regularization, provided that the matrix of interest
belongs to said set. What is more, bearing in mind the reduced size of the square norm’s descent cone, we
actually expect an improved recovery. Indeed, with numerical studies we show an improved performance.

Going beyond low-rank matrix recovery, we identify several applications. In physics, we present numerical
experiments that show that the diamond norm offers improved performance for quantum process tomography
[26]. The goal of this important task is to reconstruct a quantum process from suitable preparations of inputs
and measurements on outputs extending quantum state tomography, for which low-rank methods have been
studied extensively [2, 3, 27, 28]. We then identify applications to problems from the context of signal
processing. These include matrix versions of the phase retrieval problem [29–36], as well as a matrix version
of the blind deconvolution problem [15]. Recently, a number of bi-linear problems combined with sparsity
or low-rank structures have been investigated in the context of compressed sensing, with first progress on
recovery guarantees being reported [15, 37]. The present work can be seen as a contribution to this recent
development.

We conclude the introduction on a more speculative note. The diamond norm is defined for linear maps
taking operators to operators – i.e., for objects that can also be viewed as order-4 tensors. We derive a
characterization of those maps for which the diamond norm offers improved recovery, and find that it depends
on the order-4 tensorial structure. In this sense, the present work touches on an aspect of the notoriously
difficult tensor recovery problem (no canonic approach or reference seems to have emerged yet, but see Ref.
[38] for an up-to-date list of partial results). In fact, the “tensorial nature” of the diamond norm was the
original motivation for the authors to consider it in more detail as a regularizer – even though the eventual
concrete applications we found do not seem to have a connection to tensor recovery. It would be interesting
to explore this aspect in more detail.

II. PRELIMINARIES

In this section, we introduce notation and mathematical preliminaries used to state our main results. We
start by clarifying some notational conventions. In particular, we introduce certain matrix norms and the
partial trace for operators acting on a tensor product space. Moreover, we summarize a general geometric
setting for the convex recovery of structured signals.

A. Vectors and operators

For a positive integer n we use the notation [n] := {1, 2, . . . , n}. Throughout this work we focus exclusively
on finite dimensional mostly complex vector spaces V,W whose elements we mostly denote by lower case
latin letters, e.g. x ∈ V . One can also set V = Cn and W = CN throughout the paper. However, as low-rank
matrix completion is basis independent and in order to avoid ambiguity, we will still refer to them as V and
W .

We assume that each vector space V is equipped with an inner product 〈·, ·〉V – or simply 〈·, ·〉 for short
– that is linear in the second argument. Such an inner product induces the Euclidean norm

‖x‖F :=
√
〈x, x〉V ∀x ∈ V (1)

and moreover defines a conjugate linear bijection from V to its dual space V∗: to any x ∈ V we associate
a dual vector x∗ ∈ V∗ which is uniquely defined via x∗y = 〈x, y〉V ∀y ∈ V . The vector space of linear
maps from V to W is denoted by L(V → W). Its elements being operators are denoted by capital latin
letters (e.g. X,Y, U, V ) and often we also refer to them as matrices. Indeed, for V = Cn and W = CN an
operator X ∈ L(V → W) is given by a complex N × n matrix. We also write L(V) = L(V → V) for the
sake of notational brevity. The adjoint X∗ ∈ L(W → V) of an operator X ∈ L(V → W) is determined by
〈X∗x, y〉V = 〈x,Xy〉W for all x ∈ V and y ∈ W If X is given by a matrix, then X∗ is given by the complex
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X

V∗

V

W∗

W
TrW7→ X

V∗

V

Figure 1. Tensor network diagrams: tensors are denoted by boxes with one line for each index. Contraction of two indices corresponds
to connection of the corresponding lines.
Left: A bipartite operator X ∈ L(W ⊗V) viewed as a tensor in W ⊗V ⊗W∗ ⊗ V∗, i.e., as a tensor with four indices.
Right: Its partial trace TrW (X) as an operator on V .

conjugated and transposed matrix. We call an operator X ∈ L(V ) self-adjoint, or Hermitian, if X∗ = X .
A self-adjoint operator X is positive semidefinite, if it has a non-negative spectrum. A particularly simple
example for such an operator is the identity operator 1V ∈ L(V). The set of positive semidefinite operators
in L(V) forms a convex cone which we denote by Pos(V) [39]. This cone induces a partial ordering on L(V)
and we write X � Y if X − Y ∈ Pos(V). On L(V) we define the Frobenius (or Hilbert-Schmidt) inner
product to be

〈X,Y 〉L(V) := Tr(X∗Y ) ∀X,Y ∈ L(V), (2)

where Tr(Z) denotes the trace of an operator Z ∈ L(V). By rank(X) we denote the rank, i.e., the number
of non-zero singular values of X ∈ L(V). In addition to that, we are going to require three different matrix
norms

‖X‖∗ := Tr
(√
X∗X

)
(nuclear norm/trace norm), (3)

‖X‖F :=
√
〈X,X〉 (Frobenius norm), (4)

‖X‖ := sup
x∈V

‖Xx‖F
‖x‖F

(spectral norm). (5)

The Frobenius norm is induced by the inner product (2), while the nuclear norm requires the operator square
root: for X ∈ Pos(V) we let

√
X ∈ Pos(V) be the unique positive semi-definite operator obeying

√
X

2
= X .

Note that these norms correspond to the Schatten 1-, Schatten 2- and Schatten ∞-norms, respectively. All
Schatten norms are multiplicative under taking tensor products. The Frobenius norm is preserved under any
regrouping of indices, the prime example of such an operation being the vectorization of matrices. This fact
justifies our convention to extend the notation ‖ · ‖F to the 2-norms of vectors and (later on) tensors.

A crucial role is played by the space of bipartite operators L(W ⊗ V), by which we refer operators that
act on a tensor product space. For such operators we define the partial trace TrW : L(W ⊗ V) → L(V) as
the linear extensions of the map given by

TrW(B ⊗A) := Tr(B)A , (6)

where A ∈ L(V) and B ∈ L(W), see also Figure 1. When the underlying vector spaces are again written as
V = Cn and W = CN , a bipartite operator X ∈ L(W⊗V) is given by an array X = (xi,j,k,l)j,l∈[n], i,k∈[N ].
Then TrW(X) is given by an n× n matrix with components

∑N
i=1 xi,j,i,l.

Finally, we define our improved regularizer on L(W ⊗V) to be

‖X‖� := max{‖(1W ⊗A)X(1W ⊗B)‖∗ : A,B ∈ L(V), ‖A‖F = ‖B‖F =
√

dim(V)} . (7)

It is easy to see that ‖ · ‖� is a norm and we call it the square norm. It will become clear later on that
the square norm is closely related to the diamond norm ‖ · ‖� from quantum information theory [23]. More
explicitly, as we will discuss in Section V-A, ‖X‖� = dim(V)

∥∥J−1(X)
∥∥
�, where J denotes the so-called

Choi-Jamiołkowski isomorphism. Both square and diamond norm can be calculated by a semidefinite program
(SDP) satisfying strong duality [25]. Also, note that the pair A = B = 1V is admissible in the maximization
(7). Inserting it recovers ‖X‖∗ and establishes the bound ‖X‖∗ ≤ ‖X‖�. This bound plays a crucial role for
our results.
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B. Convex recovery of structured signals

In this section, we summarize a recent but already widely used geometric proof technique for low-rank
matrix recovery. Mainly following the exposition of Ref. [18], we devote this section to explaining the general
reconstruction idea.

In the setting of convex recovery of structured signals, one obtains a measurement vector y ∈ Cm of a
signal x0 ∈ V in some vector space V via a measurement map A : V → Cm,

y = A(x0) + ε , (8)

where ε ∈ Cm represents additive noise in the sampling process. Throughout, we assume linear data
acquisition, i.e., that A is linear.

The goal is to efficiently obtain a good approximation to x0 given A and y for the case where one only
has knowledge about some structure of x0. Of course, it is desirable that the number m of measurements yi
required for a successful reconstruction is as small as possible. For several different structures of the signal
x0 a general approach of the following form has proven to be very successful [40]. One chooses a convex
function f : V → R that reflects the structure of x0 and performs the following convex minimization

xfη = arg min{f(x) : ‖A(x)− y‖F ≤ η} , (9)

where η ≥ 0 is some anticipated error bound.
Next, we give two definitions and a general error bound that has proven to be helpful to find such recovery

guarantees. The descent cone of a convex function is the set of non-increasing directions u. From the convexity
of the function, it follows that the descent cone is a convex cone. The following definitions can also be found,
e.g., in Ref. [18].

Definition 1 (Descent cone). The descent cone D(f, x) of a proper convex function f : V → R at the point
x ∈ V is

D(f, x) :=
⋃

τ>0

{u ∈ V : f(x+ τu) ≤ f(x)} . (10)

The minimum singular value of a linear map A is the minimal value of ‖A(x)‖F taken over all x with
‖x‖F = 1. Restricting this minimization to a cone yields the minimum conic singular value.

Definition 2 (Minimum conic singular value). Let A : V → Cm be a linear map and K ⊂ V be a cone.
The minimum singular value of A with respect to the cone K is defined as

λmin (A;K) := inf
x∈K
‖A(x)‖F
‖x‖F

. (11)

The following proposition is the basis for many recovery guarantees. In terms of the tangent cone of the
unit ball of f it has been proved in Ref. [40] and was later restated in terms of the descent cone by Tropp.

Proposition 3 (Error bound for convex recovery, Tropp’s version [18]). Let x0 ∈ V be a signal, A ∈ L(V →
Cm) be a measurement map, y = A(x0) + ε a vector of m measurements with additive error ε ∈ Cm, and
xfη be the solution of the optimization (9). If ‖ε‖F ≤ η then

∥∥xfη − x0
∥∥
F
≤ 2η

λmin (A; D(f, x0))
. (12)

Note that the statement in Ref. [18] shows this result for real vector spaces only. However, taking a closer
look at the proof reveals that it also holds for complex vector spaces as well. We make the following simple
but important observation:

Observation 4 (Improved recovery). The smaller the descent cone the better the recovery guarantee.

An important example is low-rank matrix recovery. Here, x0 = X0 is some n×N matrix with rank(X0) =
r. A low-rank r provides the structure that allows for a reconstruction from significantly fewer measurements
than the dimension n ·N of the ambient space. For this case, choosing f = ‖ · ‖∗ to be the nuclear norm has
proven very successful, as the nuclear norm is the convex envelope of the matrix rank [9]. In order to give a
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0

ker(A)

‖A(u)‖F ≤ 2η

D(f∗;x0)

7→
0

D(f�;x0)

Figure 2. Extension of the geometric arguments [18] used to establish Proposition 3. The descent cone D(f�;x0) of the optimized
regularizer f� is contained in an intersection of descent cones.

concrete bound, consider a real matrix X0 of rank r and m measurements yj = Tr
(
A†jX0

)
+ εj with each

Aj being a real random matrix with entries drawn independently from a normalized Gaussian distribution.
Then one can show that (see, e.g., Ref. [18])

λmin (A; D(‖ · ‖∗ , X0)) ≥
√
m− 1−

√
3r(n1 + n2 − r)− t (13)

with probability 1−e−t
2/2 (over the random measurements). As a consequence, a number of& 3 rank(X0)(n1+

n2− rank(X0)) measurements are enough for a successful reconstruction of the real-valued matrix X0 with
high probability.

III. RESULTS

We show that for certain structured recovery problems, replacing the regularizer f in a convex recovery (9)
by an optimized regularizer f� can potentially improve performance; see also Figure 2. For the case where
f is the nuclear norm and f� the square norm, we show such an improvement with numerical simulations
in Section V.

Proposition 5 (Optimizing descent cones). Let C ⊂ V be a convex set and I be a compact index set.
Moreover, let {fi}i∈I be a family of upper semi-continuous convex functions fi : C → R. Define another
convex function f� as the point-wise supremum f�(x) := supi∈I fi(x). Then

D(f�;x) ⊂
⋂

i∈I(x)
D(fi;x) (14)

for any x ∈ C, where I(x) := {i ∈ I : fi(x) = f�(x)} is the active index set at x with the convention⋂
i∈∅D(fi;x) := V .

Proof of Proposition 5. By cone(S) :=
⋃
τ>0{τs : s ∈ S} we will denote the cone generated by a set S.

According to Definition 1 of the descent cone, we have

D(f�;x) =
⋃

τ>0

{u | sup
i∈I

fi(x+ τu) ≤ f�(x)} . (15)

Writing the supremum as an intersection yields

D(f�;x) =
⋃

τ>0

⋂

i∈I
{τu | fi(x+ u) ≤ f�(x)} (16)

⊂
⋂

i∈I
cone{u | fi(x+ u) ≤ f�(x)} . (17)

By Bε ⊂ V we denote the ball around the origin of radius ε. Now, consider a non-active index i ∈ I \ I(x).
As fi is upper semi-continuous, there exists ε > 0 such that for all u ∈ Bε we have fi(x + u) < f�(x).
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Hence, the set Bε ⊂ {u | fi(x + u) ≤ f�(x)} and hence the corresponding cone in Eq. (17) is the entire
space. Therefore, every non-active index i can be omitted in the intersection,

D(f�;x) ⊂
⋂

i∈I(x)
cone{u | fi(x+ u) ≤ fi(x)} . (18)

The definition of the descent cone of fi finishes the proof.

The square norm (7) is a particular instance of such a supremum over nuclear norms. Thanks to the
following nuclear norm bound (20), Proposition 5 can lead to an improved recovery for any bipartite operator
X ∈ L(W ⊗V) satisfying

‖X‖∗ = ‖X‖� . (19)

Here, we will only need the lower bound on the square norm but, in order to fully relate it to the usual
matrix norms, we also provide two upper bounds.

Proposition 6 (Bounds to the square norm). For any X ∈ L(W ⊗V)

‖X‖∗ ≤ ‖X‖� , (20)
‖X‖� ≤ dim(V) ‖X‖∗ , (21)
‖X‖� ≤ dim(W ⊗V) ‖X‖ . (22)

A proof of this proposition is given in Section VI-B.
Our second main result fully characterizes the set of operators satisfying Eq. (19), i.e., saturating inequal-

ity (20). As we will see below, for these operators recovery guarantees for square norm reconstructions can
be inherited from those of the nuclear norm.

Theorem 7 (Extremal operators). Let X ∈ L(W ⊗ V) be a bipartite operator. Then Eq. (19) holds if and
only if

TrW
(√
XX∗

)
= TrW

(√
X∗X

)
=
‖X‖∗

dim(V)
1V . (23)

For now, we content ourselves with sketching the proof idea and present the full proof later.

Proof idea. For the case where Eq. (19) is satisfied, we exploit it to single out a primal feasible optimal point.
Exact knowledge of this point together with complementary slackness then allows us to severely restrict the
range of possible dual optimal points. Relation (23) is an immediate consequence of these restrictions.

To show the converse, we insert a particular feasible point into the dual SDP of the square norm. Eq. (23)
enables us to explicitly evaluate the objective function at this point. Doing so yields ‖X‖∗ which in
turn implies ‖X‖� ≤ ‖X‖∗ by weak duality. Combining this implication with the converse bound from
Proposition 6 establishes ‖X‖ = ‖X‖�, as claimed.

As an implication of Theorem 7 and Proposition 5 we obtain the following.

Corollary 8 (Intersection of descent cones). Let X ∈ L(W ⊗V) satisfy Eq. (19). Then

D(‖ · ‖� ;X) ⊂
⋂

(A,B)∈I(X)

D(‖(1W ⊗A)( · )(1W ⊗B)‖∗ ;X) , (24)

where I(X) contains all A,B ∈ L(V ) with ‖A‖F = ‖B‖F = 1 and being active in the sense that ‖X‖� =
‖(1W ⊗A)X(1W ⊗B)‖∗.

Setting A = B = 1V gives an element of I(X) and yields the inclusion

D(‖ · ‖� ;X) ⊂ D(‖ · ‖∗ ;X) (25)

for any X satisfying Eq. (19). As an immediate application, we will see in the next section that the square
norm inherits recovery guarantees from the nuclear norm for signals X satisfying ‖X‖� = ‖X‖∗. In the
case where ‖X‖� 6= ‖X‖∗, the inclusion of descent cones (25) does, in general, not hold. Indeed, we have
observed in numerical experiments that the usual nuclear norm reconstruction performs better in that case.
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IV. APPLICATIONS TO LOW-RANK MATRIX RECOVERY

In this section we focus on low-rank matrix recovery of Hermitian bipartite operators X0 ∈ L(W ⊗
V) satisfying the condition (19) that are either real-valued or complex-valued. As already mentioned in
Section II-B, there the task is to efficiently recover an unknown matrix X0 of low-rank r from m noisy
linear measurements of the form

yi = Tr (AiX0) + εi, i = 1, . . . ,m , (26)

where A1, . . . , Am ∈ L(W ⊗ V) are the measurement matrices and ε1, . . . , εm ∈ Rm denotes additive
noise in the sampling process. By introducing a measurement map A : L(W ⊗ V) → Rm of the form
A(X0) =

∑m
i=1 Tr (AiX0) ei, where e1, . . . , em denotes the standard basis in Rm, the entire measurement

process can be summarized as
y = A(X0) + ε . (27)

Here, y = (y1, . . . , ym)
T ∈ Rm contains all measurement outcomes and ε ∈ Rm denotes the noise vector.

If a bound ‖ε‖F ≤ η on the noise is available, many measurement scenarios have been identified where
estimating X0 by

X∗η := arg min{‖X‖∗ : ‖A(X)− y‖F ≤ η} (28)

from noisy data of the form (27) stably recovers X0. Note that by employing the well-known SDP formulation
of the nuclear norm [41] this optimization can be recast as

X∗η = arg min
X,Y,Z

1
2

(
Tr(Y ) + Tr(Z)

)

subject to

(
Y −X
−X∗ Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(X)− y‖F ≤ η .

(29)

What is more, several of these recovery guarantees can be established using the geometric proof techniques
presented in Section II-B. For results established that way, combining Observation 4 with Corollary 8 allows
us to draw the following conclusion.

Implication 9 (Inheriting recovery guarantees). For bipartite operators X0 ∈ L(W⊗V) that satisfy ‖X0‖∗ =
‖X0‖�, any recovery guarantee for nuclear norm minimization, which is based on the nuclear norm’s descent
cone also holds for square norm minimization.

This implication indicates that replacing nuclear norm regularization (28) by

X�
η := arg min{‖X‖� : ‖A(X)− y‖F ≤ η} (30)

results in an estimation procedure that performs at least as well whenever ‖X0‖� = ‖X0‖∗. In fact,
Observation 4 suggests that it may actually outperform traditional recovery procedures. Also, the SDP
formulation for the square norm [25] allows one to recast the optimization (30) as

X�
η = arg min

X,Y,Z

dim(V)
2

(
‖TrW(Y )‖+ ‖TrW(Z)‖

)

subject to

(
Y −X
−X∗ Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(X)− y‖F ≤ η ,

(31)

which, just like the optimization (29), is a convex optimization problem that can be solved computationally
efficiently and also practically using standard software such as CVX [42, 43]. In the remainder of this section,
we present three measurement scenarios for which Implication 9 holds. The first one is a version of Ref. [18,
Example 4.4] which is valid for reconstructing real-valued matrices. In its original formulation with nuclear
norm minimization, it follows from combining Proposition 3 and Eq. (13).

234



8

Proposition 10 (Stable recovery of real matrices via Gaussian measurements). Let X0 ∈ L(W ⊗ V) be a
real valued, bipartite matrix of rank r that obeys ‖X0‖� = ‖X0‖∗. Also, suppose that each measurement
matrix Ai is a real-valued standard Gaussian matrix and the overall noise is bounded as ‖ε‖F ≤ η. Then,
m ≥ Cr dim(W ⊗V) noisy measurements of the form (27) suffice to guarantee

∥∥X�
η −X0

∥∥
F
≤ C ′η√

m
(32)

with probability at least 1− e−C
′′m. Here, C, C ′ and C ′′ denote absolute constants.

With high probability (w.h.p.), this statement assures stable recovery, meaning that the reconstruction error
(32) scales linearly in the noise bound η and inversely proportional to

√
m.

For the sake of clarity, we have refrained from providing explicit values for the constants C,C ′ and C ′′ in
Proposition 10. However, resorting to Tropp’s bound (13) on the minimal conical eigenvalue of a Gaussian
sampling matrix reveals that stably recovering any rank-r matrix obeying Eq. (19) requires roughly

m & 6r(dim(V) dim(W)− r) (33)

independently selected Gaussian measurements.
Proposition 10 is a prime example for a non-uniform recovery guarantee: For any fixed rank-r matrix X0

obeying Eq. (19), m randomly chosen measurements of the form (8) suffice to stably reconstruct X0 w.h.p.
For some measurement scenarios, stronger recovery guarantees can be established. Called uniform recovery
guarantees, these results assure that one choice of sufficiently many random measurements w.h.p. suffices to
reconstruct all possible matrices of a given rank.

A uniform recovery statement can be established for the following real-valued measurement scenario [17]:
suppose that with respect to an arbitrary orthonormal basis of W ⊗ V , each matrix element of Ai is an
independent instance of a real-valued random variable a obeying

E [a] = 0, E
[
a2
]

= 1 and E
[
a4
]
≤ F, (34)

where F ≥ 1 is an arbitrary constant. Measurement matrices of this form can be considered as a generalization
of Gaussian measurement matrices, where each matrix element corresponds to a standard Gaussian random
variable. In Ref. [17] – see also Refs. [44, 45] – a uniform recovery guarantee for such measurement matrices
has been established by means of the Frobenius robust rank null space property [17, Definition 10]. Such a
proof technique is different from the geometric one introduced in Section II-B. However, as laid out in the
appendix, some auxiliary statements allow for reassembling technical statements from these works to yield a
slightly weaker, but still uniform, statement by means of analyzing descent cones. Implication 9 is applicable
for such a result and yields the following.

Proposition 11 (Stable, uniform recovery of real matrices via measurement matrices with finite fourth
moments). Consider the measurement process described in Eq. (27), where each Ai ∈ L(W ⊗ V) is an
independent random matrix of the form (34). Fix r ≥ 1 and suppose that m ≥ CF r dim(W ⊗ V). Then,
w.h.p., every real-valued matrix X0 ∈ L(V ⊗ W) of rank at most r and obeying ‖X‖∗ = ‖X‖ can be
stably reconstructed from the measurements (27) by means of square norm minimization (30). Here, CF is
a constant that only depends on the fourth-moment bound F .

This is a uniform recovery guarantee that assures stability towards additive noise corruption ε in the
measurement process (27). However, it does not establish robustness towards the model assumption of low
rank. For nuclear norm minimization, the main results in [17] employ a null space property argument that
does cover this additional stability aspect.

We conclude this section with two uniform recovery guarantees for Hermitian low-rank matrices from
measurement matrices Ai that are proportional to rank-one projectors, i.e., Ai = aia

∗
i for some ai ∈ W⊗V .

Originally established for nuclear norm minimization in Ref. [16], by using an extension of the geometric
proof techniques presented in Section II-B, Implication 9 is directly applicable to such measurements.

Proposition 12 (Stable, uniform recovery of Hermitian matrices from rank-one measurements). Consider
recovery of Hermitian rank-r matrices X ∈ L(W⊗V) that obey ‖X‖� = ‖X‖∗ from rank-one measurements
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of the form Ai = aia
∗
i . Let n = dim(W⊗V). Then stable and uniform recovery guarantees for square norm

minimization (30) analogous to Proposition 11 hold if either
1) the measurements ai are m ≥ CGrn random Gaussian vectors in W ⊗V or
2) the measurements ai are m ≥ C4Drn log(n) vectors drawn uniformly from a complex projective 4-design

(see Eq. (35) below).
Once more, CG and C4D denote absolute constants of sufficient size.

In the statement above, a complex projective t-design is a configuration of vectors {wj}j∈[k] which is
“evenly distributed” on a sphere in the sense that sampling uniformly from it reproduces the moments of
Haar measure up to order 2t [46–48]. More precisely,

1

k

k∑

j=1

(wjw
†
j)
⊗t =

∫

‖w‖F=1

(ww†)⊗tdw. (35)

The second statement in Proposition 12 can be seen as “partial derandomization” of the first one [35]

V. APPLICATION TO THE RECOVERY OF LINEAR MAPS ON OPERATORS

Now we come to three concrete applications concerning linear maps that take operators in L(V) to operators
in L(W). Our reconstruction based on the square norm can be applied to such maps by identifying them with
operators in L(W ⊗V). We start with introducing some relevant notation and explain such an identification,
the Choi-Jamiołkowski isomorphism, in more detail. Then we present numerical results on retrieval of certain
unitary basis changes, quantum process tomography, and blind matrix deconvolution.

A. Notation concerning linear maps on operators

Our square norm is closely related to the diamond norm, which is defined for linear operators M :
L(V) → L(W) that map operators to operators. We call such objects maps and denote their space by
L(V,W) := L (L(V)→ L(W)), or simply by L (V) := L (V,V). We also denote maps by capital latin
letters. Concretely, for M ∈ L(V,W) and X ∈ L(V) we write M(X) ∈ L(W). A particularly simple
example is the identity map 1L(V) ∈ L(V) which obeys 1L(V)(X) = X for all X ∈ L(V).

We would like to identify maps in L(V,W) with operators in L(W ⊗ V), for which we have discussed
certain reconstruction schemes. For this purpose, we employ a very useful isomorphism, called the Choi-
Jamiołkowski isomorphism [49, 50]. In order to explicitly define this isomorphism, we fix an orthogonal basis
(ei) of V . This also gives rise to an operator basis

Ei,j := eie
T
j ∈ L(V) (36)

and we define vectorization vec : L(V)→ V ⊗ V by the linear extension of

vec(Ei,j) := ei ⊗ ej . (37)

Then the Choi-Jamiołkowski isomorphism J is defined by

J : L(V,W)→ L(W ⊗V)

M 7→
dim(V)∑

i,j=1

M(Ei,j)⊗ Ei,j .
(38)

The resulting operator J(M) is called the Choi matrix of M . It can be straightforwardly checked that Eq. (38)
is equivalent to setting

J(M) =
(
M ⊗ 1L(V)

)(
vec(1V) vec(1V)T

)
. (39)

Although not evident from Eq. (38), this isomorphism is actually basis independent. Indeed, it is just an
instance of the natural isomorphism W⊗W∗⊗V∗⊗V ∼=W⊗V∗⊗W∗⊗V . This identification is illustrated
in Figure 3, and discussed in more detail in the appendix.
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M
V∗

V

W

W∗
J7→ M

V∗

V

W

W∗

Figure 3. Tensor network diagrams: tensors are denoted by boxes with one line for each index. Contraction of two indices corresponds
to connection of the corresponding lines.
Left: Order-4 tensor M as a map from L(V) ∼= V ⊗ V∗ to L(W) ∼=W ⊗W∗.
Right: Its Choi-matrix J(M) as an operator on W∗ ⊗ V ∼=W ⊗V .

Let us also explicitly mention the case where the underlying vector spaces are again written as V = Cn
and W = CN . Then M(X) is given by an N × N matrix with elements M(X)i,j =

∑n
k,l=1Mi,j,k,lXk,l.

Here, the map M is represented as an array (Mi,j,k,l)i,j∈[N ], k,l∈[n]. The Choi matrix is obtained by swapping
the second and third index and then taking the each the joint first two and joint last two indices as first and
second index of the Choi matrix, i.e., J(M)(i,k),(j,l) = Mi,j,k,l with i, j ∈ [N ] and k, l ∈ [n].

Similarly to the definition of the spectral norm (5), the nuclear norms on L(V) and L(W) induce a norm
on L(V,W),

‖M‖∗→∗ := sup
X∈L(V)

‖M(X)‖∗
‖X‖∗

. (40)

Perhaps surprisingly, the induced nuclear norm of maps of the form M ⊗ 1L(V) can be computed efficiently
[23–25], as explained in detail below. This motivates studying the diamond norm [21]

‖M‖� :=
∥∥M ⊗ 1L(V)

∥∥
∗→∗ . (41)

It plays an important role in quantum mechanics [21] and is also the core concept of this work. Using the
Choi-Jamiołkowski isomorphism, the diamond norm (41) can indeed be written [25] as

‖M‖� =
‖J(M)‖�
dim(V)

, (42)

where the square norm was defined variationally in Eq. (7). Hence, for the case of a measurement map
A : L(V,W)→ Cm, the reconstruction based on the square norm (31) can also be written as

M�η = arg min 1
2 ‖TrW(Y )‖+ 1

2 ‖TrW(Z)‖

subject to

(
Y −J(M)

−J(M)∗ Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) ,
‖A(M)− y‖F ≤ η .

(43)

In our numerical experiments we solve this minimization problem using CVX [42, 43].

B. Retrieval of certain unitary basis changes

Our problem of retrieval of unitary basis changes is motivated by the phase retrieval problem. Retrieving
phases from measurements that are ignorant towards them has a long-standing history in various scientific
disciplines [29]. A discretized version of this problem can be phrased as the task of inferring a complex
vector x ∈ Cn from measurements of the form

yi = |〈ai, xi〉|2 , (44)

where a1, . . . , am ∈ Cn. Recently, the mathematical structure of this problem has received considerable
attention [29–36]. One way of approaching this problem is to recast it as a matrix problem which has the
benefit that the measurements (44) become linear. Indeed, setting X := xx∗ and Ai = aia

∗
i reveals that

yi = |〈ai, x〉|2 = Tr
(
aia
∗
i xx

∗) = Tr (AiX) . (45)
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Figure 4. Retrieval of M(X) = UXV for the case of real numbers and ε = 0. U, V ∈ O(n) are orthogonal matrices drawn from
the Haar measure in each trial. The plots show the number of trails out of 100 with small errors, ‖M�eps − M0‖F ≤ 10−5 and
‖M∗eps −M0‖F ≤ 10−5, respectively, and with η chosen as machine precision eps.
Left: Diamond norm minimization with Gaussian measurements for different local dimensions n.
Right: Comparison of diamond norm and nuclear norm with Gaussian and structured measurements. Note that the structured
measurements improve the reconstruction based on the diamond norm while for the reconstruction based on the nuclear norm Gaussian
measurements turn out to work better. The computation time needed for the recovery is approximately the same for both methods.

This “lifting” trick allows for re-casting the phase retrieval problem as the task of recovering a Hermitian
rank-one matrix X = xx∗ from linear measurements of the form Ai = aia

∗
i .

Recently, Ling and Strohmer [51] used similar techniques to recast the important problem of self-calibration
in hardware devices as the task to recover a non-Hermitian rank-one matrix X = xy∗ from similar linear
measurements.

In this section, we consider the matrix-analogue of such a task and set V = Cn =W but keep V and W
as labels. Concretely, we consider maps M ∈ L(V,W) of the form

M(X) = UXV , (46)

where U and V are fixed unitaries. Note that any such map has a Choi matrix of the form

J(M) =M ⊗ 1L(V) vec(1L(V)) vec(1L(V))
∗

=
(
U ⊗ 1L(V) vec(1L(V))

) (
V ⊗ 1L(V) vec(1L(V))

)∗
,

(47)

which corresponds to an outer product of the form xy∗. Moreover, unitarity of both U and V assures that
all such maps meet the requirements of Theorem 7.

We aim to numerically recover such maps from two different types of measurements: (i) Gaussian mea-
surements and (ii) structured measurements. The Gaussian measurements are given by a measurement map
AG : L(V,W)→ Cm with real and imaginary parts of all of its components drawn from a normal distribution
with zero mean and unit variance. In the case of structured measurements, M receives rank-1 inputs and
then inner products with regular measurement matrices are measured. More precisely, the measurement map
Astr : L(V,W)→ Cm is given by

Astr(M)j := Tr
(
AjM(xjy

∗
j )
)
, j ∈ [m] , (48)

where xj , yj are chosen uniformly from the complex unit sphere {z ∈ V : ‖z‖F = 1} ⊂ V . The random
matrices Aj are independently distributed as the random matrix UADVA, where D ∈ L(V) is fixed as a
real-valued diagonal matrix and both UA and VA are chosen independently from the Haar measure over
U(dim(V)). For our numerical studies, we restrict ourselves to even dimensions n = dim(V) and set
D = 2

n (1,−1, 2,−2, . . . , n/2,−n/2). This in particular assures ‖D‖ = 1. As we will see, similar types
of measurements can be used in quantum process tomography and blind matrix deconvolution.
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Figure 5. Retrieval of random quantum channels M0 acting on two qubits (n = 4) with ε = 0. The plots show the number of trails
out of 100 with small errors,

∥∥M�eps −M0

∥∥
F
≤ 10−5 and

∥∥M∗eps −M0

∥∥
F
≤ 10−5, respectively, and with η chosen as machine

precision eps. In each trial, M0 is constructed from the Haar measure on U ∈ U(r dim(V)) by tracing out an r dimensional space.
Left: Diamond norm recovery for different Kraus ranks.
Right: Comparison of diamond norm and trace norm of the Choi matrix for Kraus rank r = 2. The diamond norm recovery works
with fewer measurements than the conventional nuclear norm recovery, while the computation time is approximately the same.

For both measurement setups, we find that diamond norm reconstruction outperforms nuclear norm recon-
struction; see Figure 4. Interestingly, the structured measurements are better than the Gaussian measurements
for the diamond norm reconstruction, while for the nuclear norm reconstruction we find the converse.

Finally, we would like to to point out that Ling and Strohmer introduced a new algorithm – dubbed
“SparseLift” – to efficiently reconstruct the signals they consider and simultaneously promote sparsity [51].
It is an intriguing open problem to compare the performance of SparseLift to the constrained diamond norm
minimization advocated here for different types of practically relevant measurement ensembles. We leave this
idea to future work.

C. Quantum process tomography

The problem of reconstructing quantum mechanical processes from measurements is referred to as quantum
process tomography. As explained in the next paragraph, quantum processes are described by maps that
saturate the norm inequality (19) and thus are natural candidates for diamond norm-based methods.

In the following paragraph we briefly outline the mathematical essentials of (finite dimensional) quantum
mechanics in general, and quantum process tomography in particular. We content ourselves with introducing
the key concepts and defer the interested reader to the book [52] for a thorough introduction to quantum
mechanics from a computer scientist’s perspective.

Preliminaries.: A positive semidefinite operator ρ ∈ Pos(V) with unit trace Tr(ρ) = ‖ρ‖∗ = 1 is called
a density operator and a matrix representation is a density matrix. The convex space of density operators is
denoted by D(V) ⊂ Pos(V) and its elements are referred to as quantum states. The extreme elements of D(V)
are called pure states and are given by rank-one operators of the form ψψ∗ with 2-norm normalized state
vectors ψ ∈ V . An observable is a self-adjoint operator A ∈ Herm(V) and the expectation value of A in state
ρ ∈ D(V) is Tr(ρA). Note that in the case where ρ and A are diagonal, ρ corresponds to a classical probability
vector and A to a random variable also with expectation value Tr(ρA). For the following definitions it is
helpful to know that quantum systems are composed to larger quantum systems by taking tensor products of
operators. A map M ∈ L(V,W) is called completely positive if J(M) ∈ Pos(W⊗V) with J from Eq. (39).
This is the case if and only if for every vector space V the map M ⊗1L(V) preserves the cone Pos(V ⊗W)
of positive semidefinite operators. M ∈ L(V,W) is called trace preserving if Tr(M(X)) = Tr(X) for all
X ∈ L(V). The convex space of maps that are both, completely positive and trace preserving is denoted by
CPT(V,W) ⊂ L(V,W) and its elements are quantum operations as they map density operators to density
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operators and they are also called quantum channels. Importantly, any M ∈ CPT(V,W) satisfies ‖M‖� = 1
and ‖J(M)‖∗ = dim(V). Due to the relation (42) between the diamond and square norm J(M) automatically
fulfils the extremality condition (19).

The Kraus rank of a quantum channel M ∈ CPT(V,W) is the rank of its Choi matrix J(M). A channel
M ∈ CPT(V,W) of Kraus rank r can be written as

M(ρ) =
r∑

j=1

KjρK
∗
j , (49)

where Kj ∈ L(V → W) are so-called Kraus operators satisfying
∑r
j=1K

∗
jKj = 1V , and no other such

decomposition has fewer terms. A special role is played by unitary channels, which are channels of unit Kraus
rank. In this case, the single Kraus operator in the Kraus representation (49) has to be unitary. Unitary quantum
channels describe coherent operations in the sense that for isolated quantum systems (i.e., systems that are
decoupled from anything else) one can only have unitary quantum channels. Quantum channels describing
situations where the system is affected by noise have Kraus ranks larger than one. In many experimental
situations, one aims at the implementation of a unitary channel, but actually implements a channel whose
Kraus rank is larger than one, but is still approximately low. Therefore, process tomography of quantum
channels with low Kraus rank is an important task in quantum experiments. Also, in the context of quantum
error corretion, low-rank deviations turn out to have a particularly adverse impact [53]. This underscores the
need to design efficient estimation protocols for this case.

In the next paragraph, we present numerical results showing that, indeed, replacing the nuclear norm with
the diamond norm in a straightforward “compressive process tomography” improves the results. We expect
that using the diamond norm as a “drop in replacement” for the nuclear norm will also lead to improvements in
other, more involved process tomography schemes. For example, Kimmel and Liu [54] combine compressed
process tomography with ideas from randomized benchmarking [55, 56]. This combination allows recovery
using only Clifford measurements that are robust to state preparation and measurement (SPAM) errors.
Their recovery guarantees are based on the geometric arguments presented in Section II-B and allow for
measurements drawn from unitary 2-designs. It thus seems fruitful to also investigate the diamond norm in
their setting.

Numerical results for quantum process tomography.: The task is to reconstruct M0 ∈ CPT(V,W) from
measurements of the form

y = A(M0) + ε, (50)

where A : L(V,W)→ Rm encodes linear data acquisition, y ∈ Rm summarizes the measurement outcomes,
and ε ∈ Rm represents additive noise. The most general measurements conceivable in this context are so-
called process POVMs [57]. However, here we consider the case where A is given by the preparation of pure
states given by state vectors ψj ∈ V and measurements of observables Aj ∈ Herm(W), where j ∈ [m]. This
yields similar measurements as in Section V-B,

yj = A(M0)j := Tr
(
AjM0(ψjψ

∗
j )
)

+ εj , j ∈ [m] , (51)

where each ψj ∈ V is chosen uniformly and independently from the complex unit sphere in V . Each observable
Aj ∈ Herm(W) is of the form Aj = UjDU

∗
j , where each Uj ∈ U(dim(W)) is drawn independently from the

Haar measure over all unitaries. Once more, D ∈ Herm(W) is a fixed Hermitian operator with non-degenerate
spectrum. With this measurement setup, quantum channels can be recovered from few measurements. Once
more, diamond reconstruction outperforms the conventional nuclear norm reconstruction, see Figure 5.

D. Blind matrix deconvolution

The blind deconvolution scheme as considered in Ref. [15] aims to reconstruct unknown vectors h ∈ Rk
and m ∈ Rn. From this, length L signals are being generated as

w = Bh and x = Cm, (52)
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Figure 6. Blind matrix deconvolution with N = 6 and ε = 0. The plots show the number of trials out of 100 with small errors,∥∥M�eps −M0

∥∥
F
≤ 10−5 and

∥∥M∗eps −M0

∥∥
F
≤ 10−5, respectively, and with η chosen as machine precision eps. In each trial, M0

is constructed from Haar-random unitaries U and V .
Left: Recovery via diamond norm. Right: Recovery via nuclear norm.
The diamond norm recovery works with fewer measurements than the nuclear norm recovery, while the computation time is approximately
the same.
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Figure 7. Blind matrix deconvolution: Measurement vectors in green, fixed operations in blue, and unknown signal in red.

for known B ∈ L
(
Rk → RL

)
and C ∈ L

(
Rn → RL

)
. The observed quantity is the circular convolution of

w and x,

y = w ∗ x =
L∑

i=1




L∑

j=1

wj xi−j+1 mod L


 ei , (53)

where (e1, . . . , eL) denotes the standard basis of RL. This gives rise to a bi-linear problem, which can still
be solved using a lifting technique to a variant of the matrix completion problem.

The type of problem considered in this work allows for the blind matrix deconvolution, in which not
vectors h,w, but orthogonal or unitary matrices U, V reflecting unknown rotations are reconstructed.

In this new problem, for known B,C ∈ L
(
CN → CL

)
and real vectors h(q),m(q) ∈ RN with q ∈ [Q],

that are an input to the problem, we seek to reconstruct U, V ∈ U(n) from the circular convolutions y(q) =
w(q) ∗ x(q) of w(q) and x(q), where now

w(q) = BUh(q),

x(q) = CVm(q),
(54)

see also Figure 7. The observations are given by the Q vectors y(q) = w(q) ∗ x(q) or, equivalently, by

ŷ(q) = ŵ(q) ◦ x̂(q)

= (FBUh(q)) ◦ (FCVm(q)) ,
(55)

where Fj,k := e2πi (j−1)(k−1)/N/
√
N defines the Fourier transform F and (a ◦ b)j := ajbj the Hadamard

product of vector a and b. Let us denote the j-th rows of FB and FC by b̂l and ĉl, respectively. Then

y
(q)
l = b̂Tl Uh

(q) ĉlV m
(q) = Tr(El Uρ

(q)V T ) (56)
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with the unit rank matrices El := ĉTl b̂l and ρ(q) := h(q)m(q)T .
Indeed, this is precisely a problem of the form discussed here,

y
(q)
l = 〈E∗l ,M(ρ(q))〉 (57)

with V =W = Cn and
M(X) = UXV . (58)

Up to a complex phase factor, U and V can be trivially reconstructed from M . That is to say, a matrix version
of blind deconvolution can readily be cast into the form of problems considered in this work. Numerically,
we find a recovery from few samples and that the diamond norm reconstruction outperforms the nuclear
norm based reconstruction from Ref. [15] adapted to our setting; see Figure 6. Many practical applications
of this problem are conceivable: The reconstruction of an unknown drift of a polarization degree of freedom
in a channel problem is only one of the many natural ramifications of this setup.

VI. PROOFS

In this section, we prove Proposition 6 and an extension of Theorem 7. In order to do so, we first define
a generalization of the sign matrix to matrices that are not necessarily Hermitian. This will give rise to the
left and right absolute values of arbitrary matrices. Then we introduce SDPs, complementary slackness, and
state the SDP for the square norm in standard form. Combining all these concepts, this section cumulates in
the proofs of Proposition 6 and Theorem 7.

A. Auxiliary statements

The singular value decomposition of a matrix X ∈ L (Cn) is

X = UΣV ∗, (59)

where U, V ∈ U(n) are unitaries and Σ ∈ Pos(Cn) is positive-semidefinite and diagonal. This decomposition
allows one to define a “sign matrix” of X:

Definition 13 (Sign matrix). For any matrix X ∈ L (Cn) with singular value decomposition (59) we define
its sign matrix to be SX := V U∗.

Note that the sign matrix is in general not unique, but always unitary and it obeys

XSX = UΣU∗ =
√
XX∗, (60)

X∗S∗X = V ΣV ∗ =
√
X∗X. (61)

Therefore, SX indeed generalizes the sign-matrix sign(X) (which is defined exclusively for Hermitian
matrices) upon right multiplication.

The following auxiliary statement will be required later on and follows from a Schur complement rule.

Lemma 14. For every A ∈ L(V → W), one has
(
‖A‖1W ±A
±A∗ ‖A‖1V

)
� 0 . (62)

B. Semidefinite programming

Semidefinite programs (SDPs) are a class of optimization problems that can be evaluated efficiently with
standard software, e.g. by using CVX [42, 43].
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Definition 15 (Semidefinite program). A semidefinite program is specified by a triple (Ξ, C,D), where
C ∈ Herm(V) and D ∈ Herm(W) are self-adjoint operators and Ξ : L(V) → L(W) is a Hermiticity
preserving linear map. With such a triple, one associates a pair of optimization problems:

Primal: maximize Tr(CZ) (63)
subject to Ξ(Z) = D , (64)

Z � 0 , (65)
Dual: minimize Tr(DY ) (66)

subject to Ξ∗(Y ) � C , (67)
Y ∈ Herm(W) . (68)

Z] ∈ Herm(V) is called primal feasible if it satisfies Eq. (64) and Eq. (65). It is called optimal primal
feasible if, additionally, for Z = Z] in Eq. (63) the maximum is attained. Similarly, Y ] ∈ Herm(W) is
called dual feasible if it satisfies Eq. (67) and optimal dual feasible, if for Y = Y ] the minimum in Eq. (66)
is attained.

SDPs that exactly reproduce the problem structure outlined in this definition are said to be in standard
form. But for specific SDPs, equivalent formulations might often be more handy.

Weak duality refers to the fact that the value of the primal SDP cannot be larger than the value of the dual
SDP, i.e., that Tr(CZ) ≤ Tr(DY ) for any primal feasible point Z and dual feasible point Y . An SDP is
said to satisfy strong duality if the optimal values coincide, i.e., if for some optimal primal feasible and dual
feasible points Z] and Y ] it holds that Tr(CZ]) = Tr(DY ]). In fact, from a weak condition, called Slater’s
condition, strong duality follows.

Lemma 16 (Complementary slackness, see, e.g., Ref. [39]). Suppose that (Ξ, C,D) characterizes an SDP
that obeys strong duality and let Z] ∈ Herm(V) and Y ] ∈ Herm(W) denote optimal primal and dual
feasible points, respectively (i.e. Tr

(
CZ]

)
= Tr

(
DY ]

)
). Then

Ξ∗(Y ])Z] = CZ] and Ξ(Z])Y ] = DY ]. (69)

The following, somewhat exhaustive, classification of the square norm’s SDP will be instrumental later on.

Lemma 17 (Watrous’ SDP for the diamond norm in standard [25]). Let X ∈ L(W ⊗V)) be a bipartite
operator. Then its square norm ‖X‖� can be evaluated by means of an SDP (Ξ, C,D) that satisfies strong
duality. In standard form, it is given by the block-wise defined matrices

C =
dim(V)

2




0V 0V 0∗ 0∗

0V 0V 0∗ 0∗

0 0 0W⊗V X
0 0 X∗ 0W⊗V


 ∈ Herm (V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V)) , (70)

D =




1 0 0∗W⊗V 0∗W⊗V
0 1 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V


 ∈ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊗V)) , (71)

where 0W⊗V ∈ W ⊗ V denotes the zero-vector, and 0 ∈ L(V → W ⊗ V), as well as 0V ∈ L(V) represent
zero matrices of appropriate dimension. Finally, the map

Ξ : Herm ((V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V))→ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊕V)) (72)

acts as

Ξ




W0 · · ·
· W1 · ·
· · Z0 ·
· · · Z1


 =




Tr(W0) 0 0∗W⊗V 0∗W⊗V
0 Tr(W1) 0∗W⊗V 0∗W⊗V

0W⊗V 0W⊗V Z0 − 1W ⊗W0 0W⊗V
0W⊗V 0W⊗V 0W⊗V Z1 − 1W ⊗W1


 (73)
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and has an adjoint map given by

Ξ∗




λ0 · · ·
· λ1 · ·
· · Y0 ·
· · · Y1


 =




λ01V − TrW (Y0) 0V 0∗ 0∗

0V λ11V − TrW (Y1) 0∗ 0∗

0 0 Y0 0W⊗V
0 0 0W⊗V Y1


 , (74)

where 0W⊗V ∈ L(W ⊗V), once more, represents a zero-matrix.

Lemma 17 presents an SDP for the square norm in standard form. Although this standard form is going
to be important for our proofs, it is somewhat unwieldy. Fortunately, elementary modifications allow [25] to
reduce the SDP to the following pair.

Primal: ‖X‖� = max 1
2 Tr(XZ) + 1

2 Tr(X∗Z∗)

subject to

(
1W ⊗ ρ Z
Z∗ 1W ⊗ σ

)
� 0 ,

Tr(ρ) = Tr(σ) = dim(V) ,

ρ, σ ∈ Pos(V) ,

Z ∈ L(W ⊗V)

(75)

Dual: ‖X‖� = min dim(V)
2

(
‖TrW(Y )‖+ ‖TrW(Z)‖

)

subject to

(
Y −X
−X∗ Z

)
� 0 ,

Y, Z ∈ Pos(W ⊗V) .

(76)

This simplified SDP pair for the square norm comes in handy for establishing the final claim in Proposition 6.
For Hermitian matrices, the first two bounds presented there were already established in Ref. [58, Lemma
7]. Here, we show that an analogous strategy remains valid for matrices that need not be Hermitian.

Proof of Proposition 6. Let us start with recalling the variational definition (7) of the square norm:

‖X‖� := max{‖(1W ⊗A)X(1W ⊗B)‖∗ : A,B ∈ L(V), ‖A‖F = ‖B‖F =
√

dim(V)}. (77)

As already mentioned, inserting A = B = 1 into Eq. (77) establishes the lower bound (20) (‖X‖∗ ≤ ‖X‖�).
A generalized version of Hölder’s inequality and ‖1W ⊗A‖ = ‖1W‖ ‖A‖ ≤ ‖A‖F assures

‖(1W ⊗A)X(1W ⊗B)‖∗ ≤‖1W ⊗A‖ ‖X‖∗ ‖1W ⊗B‖ (78)
≤‖A‖F ‖B‖F ‖X‖∗ (79)

for any A,B ∈ L(V) and X ∈ L(W⊗V). Inserting this bound into Eq. (77) results in ‖X‖� ≤ dim(V) ‖X‖∗,
which is the second bound (21).

The final bound (‖X‖� ≤ dim(W ⊗ V) ‖X‖) can be proved similarly using a generalized version of
Hölder’s inequality. However, in order to demonstrate the usefulness of SDPs in this context, we provide a
different proof. For this purpose, we consider the simplified version of the square norm’s dual SDP (76).
Lemma 14 assures that setting Y = Z = ‖X‖1W⊗V results in a feasible point of this program. Inserting
this point into the objective function yields a value of dim(W) dim(V) ‖X‖, because ‖TrW (1W⊗V)‖ =
‖dim(W)1V‖ = dim(W). The bound follows from this value and the structure of the optimization problem
(76).

C. Proof of Theorem 7

In this section, we prove an extension of Theorem 7. In particular, this more general result relates Theorem 7
to optimal feasible points in Watrous’ SDP from Lemma 17. These will contain the generalizations of the
sign matrix from Definition 13.

244



18

Theorem 18 (Extremal operators as optimal feasible points). Let X ∈ L(W ⊗ V) be a bipartite operator
and set n := dim(V). Then the points i)–v) are equivalent:

i) X satisfies
‖X‖� = ‖X‖∗ , (80)

ii) Some Z] ∈ Herm((V ⊕ V ⊕ (W ⊗V)⊕ (W ⊗V)) of the form

Z] :=
1

n




1V 0V 0∗ 0∗

0V 1V 0∗ 0∗

0 0 1W⊗V S∗X
0 0 SX 1W⊗V


 (81)

is a primal optimal feasible point for Watrous’ SDP (Ξ, C,D) from Lemma 17.
iii) Some Y ] ∈ Herm (C⊕ C⊕ (W ⊗V)⊕ (W ⊕V)) of the form

Y ] =
1

2




‖X‖∗ · · ·
· ‖X‖∗ · ·
· · n

√
XX∗ ·

· · · n
√
X∗X


 . (82)

is a dual optimal feasible point for Watrous’ SDP (Ξ, C,D) from Lemma 17.
iv) X satisfies

TrW
(√

XX∗
)
∝ TrW

(√
X∗X

)
∝ 1V . (83)

v) X satisfies

TrW
(√

XX∗
)

= TrW
(√

X∗X
)

=
‖X‖∗
n

1V . (84)

Similar to the actual SDP, the optimal feasible points presented in Theorem 18 have simplified counterparts
that correspond to optimal feasible points of the simplified SDPs (75) and (76). For the sake of completeness,
we present them in the following corollary.

Corollary 19. For any X ∈ L(W ⊗ V), optimal feasible points of the primal (75) and the dual SDP (76)
for the square norm are given by the following.

Primal optimal feasible point: Z = SX , ρ = σ = 1V (85)

Dual optimal feasible point: Y =
√
XX∗, Z =

√
X∗X (86)

This statement follows straightforwardly from Theorem 18 by considering the reduced formulations (75)
and (76) of the SDP from Lemma 17.

Proof of Theorem 18. For X = 0 all statements are evident. From now on, we assume that X 6= 0.

Proof of (i)) ⇒ (ii)). Note that Z] � 0 by Lemma 14. Straightforward evaluation of Ξ(Z]) from Lemma 17
reveals that Z] is indeed a primal feasible point:

Ξ
(
Z]
)

=




1
n Tr(1V) 0 0∗W⊗V 0∗W⊗V

0 1
n Tr(1V) 0∗W⊗V 0∗W⊗V

0W⊗V 0W⊗V 1
n1W⊗V − 1W ⊗ 1

n1V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 1

n1W⊗V − 1W ⊗ 1
n1V




=




1 0 0∗W⊗W 0∗W⊗W
0 1 0∗W⊗V 0∗W⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V


 = D .

(87)
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In order to show optimality, we evaluate the primal SDP’s objective function given by C in Eq. (70).
Employing formulas (60) and (61) to express the absolute values of X , we obtain

Tr
(
CZ]

)
=
n

2
Tr
(



0V 0V 0∗ 0∗

0V 0V 0∗ 0∗

0 0 0W⊗V X
0 0 X∗ 0W⊗V


 ·

1

n




1V 0V 0∗ 0∗

0V 1V 0∗ 0∗

0 0 1W⊗V S∗X
0 0 SX 1W⊗V



)

=
1

2
(Tr (XSX) + Tr (X∗S∗X))

=
1

2

(
Tr
(√

XX∗
)

+ Tr
(√

X∗X
))

=
1

2
(‖X‖∗ + ‖X‖∗) = ‖X‖∗ .

(88)

By assumption (80), this is indeed optimal.

Proof of (ii)) ⇒ (iii)) and (iv)). Strong duality of Watrous’ SDP from Lemma 17 assures that an optimal
dual solution Y ] exists and that complementary slackness holds. Since Ξ∗ from Eq. (74) does not depend
on block off-diagonal terms, optimal feasibility only depends on the block diagonal parts. Hence, we write
Y ] as

Y ] =




λ0 · · ·
· λ1 · ·
· · Y0 ·
· · · Y1


 . (89)

Complementary slackness (Lemma 16) implies that

Ξ∗
(
Y ]
)
Z] =

1

n




λ01V − TrW (Y0) 0V 0∗ 0∗

0V λ11V − TrW (Y1) 0∗ 0∗

0 0 Y0 0W⊗V
0 0 0W⊗V Y1




×




1V 0V 0∗ 0∗

0V 1V 0∗ 0∗

0 0 1W⊗V S∗X
0 0 SX 1W⊗V




=
1

n




λ01V − TrW (Y0) 0V 0∗ 0∗

0V λ11V − TrW (Y1) 0∗ 0∗

0 0 Y0 Y0 S
∗
X

0 0 Y1 SX Y1




(90)

and

CZ] =
1

2




0V 0V 0∗ 0∗

0V 0V 0∗ 0∗

0 0 XSX X
0 0 X∗ X∗S∗X


 (91)

must equal each other. This in turn demands

Y0 =
n

2
XSX =

n

2

√
XX∗ as well as (92)

Y1 =
n

2
X∗S∗X =

n

2

√
X∗X, (93)

where we have once more employed identities (60) and (61) for SX to obtain the absolute values of X .
Equality of (90) and (91) in the first two diagonal entries (also guaranteed by complementary slackness)
furthermore assures

λ01V − TrW (Y0) = λ01V −
n

2
TrW

(√
XX∗

)

= 0V (94)
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and

λ11V − TrW (Y1) = λ01V −
n

2
TrW

(√
X∗X

)

= 0V . (95)

Hence,

λ0 n =
n

2
‖TrW(Y0)‖∗ =

n

2
‖X‖∗ and (96)

λ1 n =
n

2
‖TrW(Y1)‖∗ =

n

2
‖X‖∗ (97)

and both, (iii)) and (iv)) follow.

Proof of (iv)) ⇒ (v)). Let c1, c2 > 0 be constants such that

TrW
(√

XX∗
)

= c11V and (98)

TrW
(√

X∗X
)

= c21V . (99)

Taking the trace of both equations and recognizing the nuclear norm reveals that

‖X‖∗ = Tr
(√

XX∗
)

= Tr
(

TrW
(√

XX∗
))
‖X‖∗

= c1 Tr (1V)

= c1 n

(100)

and, similarly,
‖X‖∗ = c2 n , (101)

which proves the claimed implication.

Proof of (v)) ⇒ (i)). The crucial observation for this implication is that Assumption (v)) alone assures that
Y ] defined in Eq. (82) with all off-diagonal blocks set to zero is a feasible point of Watrous’ dual SDP,
albeit not necessarily an optimal one. This claim is easily verified by direct computation. Inserting this dual
feasible point into the SDP’s objective function results in

Tr
(
DY ]

)
= Tr

(



1 0 0∗W⊗V 0∗W⊗V
0 1 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V 0W⊗V 0W⊗V
0W⊗V 0W⊗V 0W⊗V 0W⊗V


 ·

1

2




‖X‖∗ 0 0∗W⊗V 0∗W⊗V
0 ‖X‖∗ 0TW⊗V 0TW⊗V

0W⊗V 0W⊗V n
√
XX† 0W⊗V

0W⊗V 0W⊗V 0W⊗V n
√
X†X



)

=
1

2
(‖X‖∗ + ‖X‖∗) = ‖X‖∗ .

(102)
Since every dual SDP corresponds to a constrained minimization, evaluating the dual objective function at
any feasible point results in an upper bound on the optimal value. In our case, obtain the upper bound
‖X‖� ≤ ‖X‖∗, which together with the converse bound from Proposition 10, implies equality between the
two.

VII. DISCUSSION AND OUTLOOK

We conclude by mentioning several observations and research directions that may merit further attention.
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Recovery guarantees: In this work, we have shown that for matrices saturating the norm inequality (20),
recovery guarantees for square norm regularization are inherited from certain recovery guarantees for nuclear
norm regularization. We give a geometric argument which makes it plausible that even a better performance
can be expected and we identify it numerically. A promising route of future research is to develop methods
allowing to prove recovery guarantees for the square norm directly. The tensorial character of the square
norm is a challenge in such an endeavour that needs to be overcome and might also lead to new insights in
other tensorial reconstruction problems.

Measurement errors: In our analysis we considered reconstructed matrices X�
η and X∗η from Eqs. (30)

and (28) that are required to be η-close to the ideal operator X0. Such a reconstruction stably tolerates additive
errors ε as in Eq. (8) as long as they obey ‖ε‖F ≤ η. For operators X0 satisfying the extremality (19) we
prove that recovery guarantees for X∗η are inherited by X�

η . A similar situation is true for the reconstruction
of maps M0 by means of diamond norm minimization. For the idealized setting of noiseless measurements
(ε = 0), we demonstrate numerically that often

∥∥M�η −M0

∥∥
F

vanishes while
∥∥M∗η −M0

∥∥
F

is large. A
numerical analysis for the noisy case ε > 0 yields similar results as for ε = 0. For the noisy case the phase
transition from having no recovery to almost always recovering the signal up to η & ‖ε‖F broadens equally
for both diamond and nuclear norm regularization.

Partial derandomizations: While initial theoretical results often rely on measurements that follow a
Gaussian distribution, later on significant effort has been put into derandomizing the measurement process.
On the one hand, recovery guarantees for structured measurements were proven [32]. On the other, also
the distributions from which the measurements are drawn were partially derandomized [16, 17, 35] (see
also Section IV), relying on above mentioned t-designs. The later methods rely on an analysis of the
measurement map’s descent cone. Hence, such recovery guarantees for partially derandomized measurements
are also inherited by our reconstruction via diamond norm minimization. In a similar setting, a partial
derandomization of the random unitaries used as part of the measurements for the retrieval of unitary basis
changes (Section V-B) and for quantum process tomography (Section V-C) seems very promising. Here,
structural insights [59–62] on unitary designs could be used in future work.

Improvement from structured measurements: We numerically performed the reconstruction of unitary
basis changes in Section V-B for two different measurement settings: Gaussian measurements and certain
structured measurements. For the nuclear norm, the reconstruction from Gaussian measurements performed
slightly better than the one from structured measurements, just as expected. Perhaps surprisingly, we observed
the converse for the diamond norm reconstructions. Here, the structure of the measurements seems to be
favourable for the reconstruction process. This observation motivates the search for recovery guarantees for
diamond norm reconstruction with structured measurements. Such structured measurements are also crucial
for the quantum process tomography in Section V-C and blind matrix convolution in Section V-D.

CPT as a constraint in the quantum channel reconstructions: A map M ∈ L(V,W) is a quantum
channel if and only if

M∗(1W) = 1V and J(M) � 0 . (103)

When aiming at reconstructing quantum channels, these additional constraints can, in principle, be included
in the SDPs (30) and (28) for the diamond norm and nuclear norm reconstructions. Doing so leads to a
significant overhead in the numerical reconstruction process. Numerically, one can observe that the recovery
success of the diamond norm reconstruction (30) is unchanged, while the nuclear norm reconstruction (28)
performs significantly better. In fact, it seems to perform roughly as well as the diamond norm reconstruction
when these constraints are included in the SDP (28). In this sense, the CPT structure can be used in
the nuclear norm reconstruction at the expense of a longer computation time to reduce the number of
measurements, while in the diamond norm reconstruction the CPT structure is already inbuilt. The run-time
of the diamond norm reconstruction and the nuclear norm reconstruction are practically the same for a given
number of measurements and scales polynomially with the number of constraints. Therefore, the diamond
norm reconstruction can help to render larger quantum systems accessible to quantum process tomography.

The robust rank null space property (NSP): This property is a certain norm inequality giving rise to yet
a stronger version of uniform recovery guarantees [17]. The bound (20) implies that if the NSP is fulfilled
for the nuclear norm then it is also fulfilled with the diamond norm. As a consequence, recovery guarantees
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relying on the NSP are also inherited by the square norm for operators satisfying Eq. (19) and our results
also hold for that case.

The noise parameter η in the reconstruction and other conceivable optimization methods: Our recon-
struction schemes are versions of the one in Eq. (9). Here, an upper bound η on the noise level needs to
be given as an input to the reconstruction procedure. In applications one can, however, not always expect to
have a good upper bound. Here, one can potentially resolve to other optimization methods. Instead of the
optimization (9), the two following types of reconstructions are commonly used in compressed sensing.

The first one is given by
xf = arg min

x
{‖A(x)− y‖F : f(x) ≤ τ} , (104)

where τ > 0 is some parameter, which needs to be chosen. Denoting the original signal by x0, one knows
f(x0) in many applications such as in those presented in this work. Hence, in this case, one can choose
τ = f(x0).

The second common optimization method is given by

xf,λ = arg min
x
{λ f(x) + ‖A(x)− y‖F} (105)

for some fixed value λ > 0.
Solutions of the three optimization methods can be related to each other, which is made precise by [8,

Proposition 3.2]. This proposition is formulated for a more specialized situation but it is clear that it also
holds in greater generality.

We leave a detailed comparison of different optimization methods with the square or diamond norm for
future work.
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APPENDIX

In this appendix we provide known material to make this work more self contained. We provide SDPs
for the nuclear norm and the spectral norm, and introduction to tensor products and a basis independent
definition of the Choi-Jamiołkowski isomorphism. Also, we devote a subsection to low-rank matrix recovery.
There we show how the statements presented in Section IV can be derived using geometric proof techniques.
On the contrary to the other supplementary chapters, this section does include technical novelties.

A. Basic concepts of multilinear algebra and the Choi-Jamiołkowski isomorphism

The core objects of this work are tensors of order four and naturally fall into the realm of multilinear
algebra. Here we give a brief introduction on core concepts of multilinear algebra that can be found in any
textbook on that topic. Our presentation here is influenced by [63]. Let V1, . . . ,Vk be (finite dimensional,
complex) vector spaces with associated dual spaces V∗1 , . . . ,V∗k . A function

f : V1 × · · · × Vk → C (106)

is multilinear, if it is linear in each Vi. The space of such functions constitutes the tensor product of V∗1 , . . . ,V∗k
and we denote it by V∗1 ⊗ · · · ⊗ V∗k . By reflexivity V ∼= V∗∗, the tensor product V1 ⊗ · · · ⊗ Vk is the space
of all multilinear functions

f : V∗1 × · · · × V∗k → C. (107)
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Its elementary elements z1 ⊗ · · · ⊗ zk are the tensor product of vectors x1 ∈ V1, . . . , xk ∈ Vk which
alternatively can be constructed by means of the Kronecker product – however, such an explicit construction
requires explicit choices of bases in V1, . . . ,Vk.

With such a notation, the space of linear maps V → W (matrices) corresponds to the tensor product
W ⊗ V∗ which is spanned by rank-one operators {y ⊗ x∗ : x ∈ V, y ∈ W}. With this identification, it is
straightforward to define the tensor product of L (W1 →W2) and L (V1 → V2) to be

L (W1 →W2)⊗ L (V1 → V2) ∼= (W2 ⊗W∗1 )⊗ (V2 ⊗ V∗1 )
∼= L (V1 ⊗W1 → V2 ⊗W2) .

(108)

Analogously to before, the elementary Y ⊗X of this space are the tensor product of maps Y ∈ L (W1 →W2)
and X ∈ L (V1 → V2). Restricting to tensor products of endomorphisms, i.e. W2

∼= W1 and V2 ∼= V1, the
partial trace (over the first tensor factor) for elementary elements to be

TrW : L(W)⊗ L(V)→ L (W)

Y ⊗X 7→ Tr(X)Y
(109)

and extend it linearly to L(W)⊗L(V). Note that with the identification L(W) ∼=W⊗W∗, TrW corresponds
to the natural contraction between W and W∗. This is illustrated in Figure 3.

Similarly to L (V1 → V2), the maps L(L(V1 → V2)→ L(W1 →W2)) introduced in Section V-A can be
viewed as elements of the tensor product space

(W2 ⊗W∗1 )⊗ (V2 ⊗ V∗1 )
∗ ∼=W2 ⊗W∗1 ⊗ V∗2 ⊗ V1 , (110)

which can be seen as a four-linear vector space. There are several equivalent ways to interpret its elements.
For the given applications of our work, we have made heavy use of the Choi-Jamiołkowski isomorphism
which acts on four-linear tensors by permuting tensor factors:

J : V1 ⊗ V2 ⊗ V3 ⊗ V4 → V1 ⊗ V3 ⊗ V2 ⊗ V4
v1 ⊗ v2 ⊗ v3 ⊗ v4 7→ v1 ⊗ v3 ⊗ v2 ⊗ v4 .

(111)

Applied to the four-linear space of maps (110) we obtain

L(L(V1 → V2)→ L(W1 →W2)) ∼= L(V2 ⊗ V∗1 →W2 ⊗W∗1 )
∼=W2 ⊗W∗1 ⊗ V∗2 ⊗ V1 ,

(112)

and
L(W1 ⊗ V∗1 →W2 ⊗ V∗2 ) ∼=W2 ⊗ V∗2 ⊗W∗1 ⊗ V1 (113)

which are basis independent. Consequently the Choi-Jamiołkowski isomorphism is linear bijection from maps
to operators

J : L(L(V1 → V2)→ L(W1 →W2)) → L(V∗1 ⊗W1 → V∗2 ⊗W2) . (114)

Its explicit definitions (38) and (39) in the main text are just basis-dependent realization of this more general
identification. We illustrated this fact pictorially in Figure 3 by resorting to tensor network [64] or wiring
diagrams [65].

B. Uniform recovery guarantees and partial derandomizations

Our main geometric insight – Corollary 8 – asserts that any square norm descent cone is always contained
in the corresponding one of the nuclear norm, provided that the operators in question obey ‖X‖� = ‖X‖∗.
When applying this idea to low-rank matrix recovery, we started with mentioning Proposition 10. This
is a non-uniform recovery guarantee that is stable towards additive noise. However, with some additional
work, Corollary 8 allows for stronger conclusions. Some of them are summarized in Proposition 11 and
Proposition 12, respectively. Here, we outline how these results are obtained. In Section II-B we introduced
widely used geometric proof techniques for low-rank matrix recovery mainly following Ref. [18]. These aim
at recovery of a fixed object X0 of interest and thus it suffices to focus on precisely one descent cone, namely
D(X0, ‖ · ‖∗), or D(X0, ‖ · ‖�), respectively. By taking a closer look at the actual proof techniques – most
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notably Mendelson’s small ball method [19], or Tropp’s bowling scheme [18] – one can see that such a
restriction to a single object of interest is not necessary. Up to our knowledge, this was first pointed out in
Ref. [16] and at the heart of this observation is the following technical statement.

Lemma 20. Fix 1 ≤ r ≤ n and let Kr =
⋃

rank(X)=r D(‖ · ‖∗ , X) ⊂ L(V) be the union of all descent cones
anchored in nonzero matrices 0 6= X ∈ L(V) of rank at most r. Then, every element Y ∈ Kr obeys

‖Y ‖∗ ≤ (1 +
√

2)
√
r ‖Y ‖F . (115)

For Hermitian matrices, a slightly stronger statement of this type was presented in [16, Lemma 10]. Here,
we provide a different proof that does not require Hermiticity and exploits a variant of pinching.

Lemma 21 (Pinching inequality). Let P,Q ∈ L(V) be orthogonal projectors with complements P⊥ = 1V−P
and Q⊥ = 1V −Q. Also, let ‖ · ‖p be any Schatten-p norm. Then, every Z ∈ L(V) obeys

‖PZQ‖pp + ‖P⊥ZQ⊥‖pp ≤ ‖Z‖pp . (116)

Proof. Note that for any Z ∈ L(V ) it follows from the definition of the Schatten-p norms that the left hand
side of Eq. (116) coincides with ‖PZQ+ P⊥ZQ⊥‖pp. Using this identity and the decomposition

PZQ+ P⊥ZQ⊥ =
1

2
Z +

1

2

(
P − P⊥

)
Z
(
Q−Q⊥

)
(117)

allows us to conclude

‖PZQ+ P⊥ZQ⊥‖pp =
∥∥1

2
Z +

1

2

(
P − P⊥

)
Z
(
Q−Q⊥

)∥∥p
p

≤ 1

2
‖Z‖pp +

1

2

∥∥(P − P⊥
)
Z
(
Q−Q⊥

)∥∥p
p

=
1

2
‖Z‖pp +

1

2
‖Z‖pp = ‖Z‖pp ,

(118)

where we have exploited unitary invariance of Schatten-p norms and the fact that both P −P⊥ and Q−Q⊥
are unitary matrices.

Proof of Lemma 20. It suffices to prove this statement for any fixed descent cone D(‖ · ‖∗ , X), where X ∈
L(V) has rank at most r. Let C := ran(X) and R := ran(X∗) be the column and row ranges of X (these need
not coincide, since X need not necessarily be Hermitian) and let PC , PR ∈ L(V) be orthogonal projections
onto these subspaces. Note that if X has a singular value decomposition X = UΣV ∗, then PC = UΣ0U∗

and PR = V Σ0V ∗, where Σ0 is defined component-wise by Σ0
i,j := 1 if Σi,j 6= 0 and Σ0

i,j := 0 otherwise.
Introducing orthogonal complements P⊥C = 1V(L) − PC and P⊥R = 1L(V) − PR allows us to define

P⊥T : L(V)→ L(V), Z 7→ P⊥C ZP
⊥
R . (119)

This is an orthogonal projection with respect to the Frobenius inner product (2) and obeys P⊥T (X) = 0 by
construction. Its complement amounts to

PT (Z) = Z − P⊥C ZP⊥R = PCZ + ZPR − PCZPR (120)

which obeys PT (X) = X . Note that this is a straightforward generalization of the T -space introduced in
[13, Equation (2)] to non-Hermitian matrices. Analogously to there, a decomposition Z = ZT + Z⊥T :=
PT (Z) +P⊥T (Z) is valid for every Z ∈ L(Z) and every ZT := PT (Z) has rank at most 2r by construction.

Now choose Y ∈ D(‖ · ‖∗ , X) and note that by definition ‖X‖∗ ≥ ‖X + τY ‖∗ must be valid for some
τ > 0. Combining this with Lemma 21 (Pinching) assures

‖X‖∗ ≥ ‖X + τY ‖∗
≥ ‖PC(X + τY )PR‖∗ +

∥∥P⊥C (X + τY )P⊥R
∥∥
∗

= ‖X + τPCY PR‖∗ +
∥∥P⊥T (X + τY )

∥∥
∗

= ‖X + τPCY PR‖∗ + τ
∥∥Y ⊥T

∥∥
∗ ,

(121)
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where we have employed PCXPR = X and P⊥T (X) = 0. Also, note that Hölder’s inequality assures
|Tr (UZ) | ≤ ‖Z‖∗ for any Z ∈ L(V) and unitary U . Employing this for U = SX , where the sign matrix
SX of X was defined in Definition 13, reveals

‖X + τPCY PR‖∗ ≥ Tr (SXX) + τ |Tr (SXPCY PR)|
≥ ‖X‖∗ − τ ‖SX‖ ‖PCY PR‖∗
≥ ‖X‖∗ − τ

√
r ‖PCY PR‖F

≥ ‖X‖∗ − τ
√
r ‖Y ‖F ,

(122)

where we have in addition used that PCY PR has rank at most r and Frobenius norm smaller than or equal
to ‖Y ‖F. Combining the bounds (121) and (122) implies

‖X‖∗ ≥ ‖X‖∗ + τ
(∥∥Y ⊥T

∥∥
∗ −
√
r ‖Y ‖F

)
. (123)

Since τ > 0, this bound implies
∥∥Y ⊥T

∥∥
∗ ≤
√
r ‖Y ‖F. Finally, this relation allows us to infer the result,

‖Y ‖∗ =
∥∥YT + Y ⊥T

∥∥
∗

≤ ‖YT ‖∗ +
∥∥Y ⊥T

∥∥
∗

≤
√

2r ‖YT ‖F +
√
r ‖Y ‖F

= (1 +
√

2)
√
r ‖Y ‖F ,

(124)

where we also exploited the fact that YT has rank at most 2r.

Lemma 20 asserts that any matrix that lies in the nuclear norm’s descent cone of any low-rank matrix, is
“effectively” a low-rank matrix as well. This structural property together with Mendelson’s small ball method
is enough to bound the minimal conic singular value of a measurement map A with respect to the union of
all possible descent cones. Here we provide a particular realization of Mendelson’s small ball method that is
directly applicable to low-rank matrix recovery (see e.g. Ref. [16, Section 4]).

Theorem 22 (A variant of Mendelson’s small ball method). Let L ⊂ L(V) be real subspace of linear
maps and let A : L → Rm be a measurement map A(X) =

∑m
i=1 Tr (AiX) ei, where each Ai is an

independent copy of a random matrix A ∈ L(V) and e1, . . . , em denotes the standard basis in Rm. Also, let
Er = {Y ∈ Kr : ‖Y ‖F = 1}, where Kr was defined in Lemma 20. Then for any ξ, t > 0, the bound

λmin (A,Kr) ≥ ξ
√
mQ2ξ (Er;A)− 2Wm (Er,A)− ξt (125)

holds with probability at least 1− e−2t
2

. Here,

Qξ (Er, A) = inf
Y ∈Er

Pr
[∣∣Tr(A∗Y )

∣∣ ≥ ξ
]
,

Wm (Er,A) = E
[

sup
Y ∈Er

Tr(H∗Y )

]
,

(126)

where

H =
1√
m

m∑

j=1

εjAj (127)

and ε1, . . . , εm being a Rademacher sequence1.

Important examples for the space of considered operators are L = Herm(V) and real matrices.

1 A Rademacher sequence is a sequence of independent random variables that take the values ±1 with equal probability.
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Thanks to Lemma 20 and Hölder’s inequality we can bound Wm (Er,A) in Theorem 22 by

Wm (Er,A) = E
[

sup
Y ∈Er

Tr (H∗Y )

]

≤ E
[

sup
Y ∈Er

‖Y ‖∗
∥∥H∗

∥∥
]

≤ E
[

sup
Y ∈Er

(1 +
√

2)
√
r ‖Y ‖F ‖H‖

]

= (1 +
√

2)
√
rE [‖H‖] ,

(128)

which is much easier to handle. This simplification together with Mendelson’s small ball method – Theorem 22
– and the geometric error bound for convex recovery – Proposition 3 – provide a convenient sufficient means
to assure that a given measurement process A allows for uniform and stable low-rank matrix recovery via
nuclear norm minimization:

Proposition 23 (Sufficient criteria for uniform recovery). Let A : L(V) → Cm be a measurement map as
defined in Theorem 22 and fix 1 ≤ r ≤ n. Suppose that this measurement map obeys Q2ξ(Er;A) ≥ C1

for some ξ > 0 and also E [‖H‖] ≤ C2

√
m/r, where C1 and C2 are positive constants obeying ξC1 >

2(1 +
√

2)C2.
Then, with probability at least 1− e−C

∗
4m, this measurement map is capable of stably reconstructing any

matrix X0 of rank at most r from noisy measurements of the form y = A(X0) + ε obeying ‖ε‖F ≤ η by
means of nuclear norm minimization. Concretely, the solution X∗η of the optimization (28) obeys

∥∥X∗η −X0

∥∥
F
≤ η

C∗3
√
m
. (129)

Here C∗3 , C
∗
4 > 0 denote sufficiently small absolute constants.

Note that unlike Proposition 10, such a recovery statement is uniform, in the sense that with high probability
a single measurement map suffices to recover any low-rank matrix. However, it still relies on the geometric
proof technique of bounding the widths of nuclear norm descent cones. This is because the set Kr is just
the union over all possible nuclear norm descent cones anchored at matrices of rank at most r. As a result,
Observation 4 (“the smaller the descent cone, the better the recovery”) is also valid in this setting and
Corollary 8 allows us to draw the following conclusion.

Corollary 24 (Uniform recovery from square norm regularization). The assertions of Proposition 23 remain
true for recovery via square norm regularization (30), for the case of uniform recovery of rank-r maps
X0 ∈ L (V ⊗W) satisfying ‖X0‖� = ‖X0‖∗. Moreover, the corresponding constants obey C�3 ≥ C∗3 and
C�4 ≥ C∗3 , meaning that the recovery statement cannot be worse.

Proof of Proposition 23. Theorem 22 together with Eq. (128) and the assumptions on A assure for any t > 0

λmin (A,Kr) ≥ ξ
√
mQ2ξ(Er;A)− 2Wm(Er,A)− ξt

≥ ξ√mQ2ξ(Er;A)− 2(1 +
√

2)
√
rE [‖H‖]− ξt

≥ ξC1

√
m− 2(1 +

√
2)C2

√
m− ξt

(130)

with probability at least 1− e−2t
2

. Introducing C3 = (ξC1− 2(1 +
√

2)C2)/2 – which is strictly positive by
assumption – and setting t = C3

√
m/ξ then implies

λmin (A,Kr) ≥ C3

√
m (131)

with probability at least 1 − e−C4m, where C4 = C2
3/ξ

2 > 0. With such an estimate at hand, the claim
follows from applying Proposition 3.

We conclude this section with presenting a selection of measurement ensembles that meet the criteria of
Proposition 23 and as a consequence also the ones of Corollary 24. We start with measurement ensembles
that allow for recovering real-valued matrices X ∈ L(V).
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Corollary 25. Suppose that V is a real-valued vector spaces and let A : L(V) → Rm be the measurement
map A(X) =

∑m
i=1 Tr (AiX) ei, where each Ai is a random matrix with independent entries obeying

E [ai,j ] = 0, E
[
a2i,j
]

= 1, E
[
a4i,j
]
≤ F, (132)

where F is a constant. Then a sampling rate of m ≥ Crn suffices to meet the requirements of Proposition 23.

The result quoted in Corollary 25 was not established as a subroutine of a geometric proof technique
for nuclear norm recovery, but consists of auxiliary statements that help to establish the Frobenius stable
null space property [17, Definition 10] – a powerful alternative to geometric proof techniques relying on
Proposition 3. However, if embedded properly into the framework of geometric recovery proof techniques,
the auxiliary statements in Ref. [17] – see also Ref. [44, 45] – can still be used to establish recovery guarantees
that rely on bounding the widths of descent cones. For our purposes, such a geometric proof environment is
crucial, and this entire section is devoted to develop it. However, we point out that introducing and analyzing
the square norm analogue of the Frobenius stable null space property – which is geared towards nuclear
norm minimization – does constitute an intriguing follow-up problem. We leave this to future work.

Proof of Corollary 25. For a proof of this statement, we utilize auxiliary statements from Ref. [44]. Lemma
11 in loc. cit. asserts that such random matrices with bounded fourth moments obey Q1/

√
2 ≥ 1/4 max {3, F},

where F is the fourth-moment bound. Also, Ref. [44, Lemma 12] assures E [‖H‖] ≤ CF
√
n, where CF is

a constant that only depends on F . This in particular assures

E [‖H‖] ≤ CF
√
n ≤ CF√

C

√
m

r
(133)

and we can set ξ = 2−3/2, C2 = CF /
√
C and C1 = 1/4 max {3, F}. Choosing the constant C in the

sampling rate large enough assures that these constants obey ξC1 > 2(1 +
√

2)C2 for ξ = 2−3/2 and all the
requirements of Proposition 23 are met. The claim then follows from applying this statement.

We conclude this section with embedding the main results of Ref. [16] into this framework. In fact, the
entire apparatus presented in this section is a condensed version of the proofs in loc. cit. However, the reader’s
convenience, we include the corresponding statement here as well.

Corollary 26. Consider measurement maps A : Herm(V) → Rm of the form A(X) =
∑m
i=1 Tr (AiX) ei.

Then the following measurement ensembles meet the requirements of Proposition 23, if restricted to the
recovery of Hermitian matrices:

1) m ≥ CGrn and each Ai = aia
∗
i corresponds to the outer product of a complex standard Gaussian

vector ai ∈ V with itself,
2) m ≥ C4Drn log(2n) and each Ai = aia

∗
i is the outer product of a randomly selected element ai of a

complex projective 4-design.
Once more, CG and C4D denote sufficiently large constants.

Proof. Let us start with the Gaussian case. In Ref. [16, Section 4.1.] the bounds Q1/
√
2 ≥ 1/96 and

E [‖H‖] ≤ c1
√
n are derived under the assumption m ≥ c2n, where c1 is sufficiently large. Thus, similarly

to the proof of Corollary 25, setting ξ = 2−3/2 and choosing the constant CG in m sufficiently large indeed
meets the requirements of Proposition 23.

For the 4-design case, [16, Proposition 12] assures that the bound Qξ (Er,A) ≥
(
1− ξ2

)2
/24 is valid for

any ξ ∈ [0, 1]. Also, Ref. [16, Proposition 13] implies

E [‖H‖] ≤ 3.1049
√
n log(2n) ≤ 3.1049√

C4D

√
m

r
, (134)

where we have inserted m ≥ C4Drn log(2n). Thus, choosing ξ appropriately and the constant C4D in the
sampling rate m large enough again assures that the requirements of Proposition 23 are met.
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Bell’s theorem shows that quantum mechanical correlations can violate the constraints that the causal
structure of certain experiments impose on any classical explanation. It is thus natural to ask to which
degree the causal assumptions—e.g., locality or measurement independence—have to be relaxed in order
to allow for a classical description of such experiments. Here we develop a conceptual and computational
framework for treating this problem. We employ the language of Bayesian networks to systematically
construct alternative causal structures and bound the degree of relaxation using quantitative measures that
originate from the mathematical theory of causality. The main technical insight is that the resulting
problems can often be expressed as computationally tractable linear programs. We demonstrate the
versatility of the framework by applying it to a variety of scenarios, ranging from relaxations of the
measurement independence, locality, and bilocality assumptions, to a novel causal interpretation of
Clauser-Horne-Shimony-Holt inequality violations.

DOI: 10.1103/PhysRevLett.114.140403 PACS numbers: 03.65.Ud, 03.67.-a

The paradigmatic Bell experiment [1] involves two
distant observers, each with the capability to perform
one of two possible experiments on their shares of a
joint system. Bell observed that even absent of any detailed
information about the physical processes involved, the
causal structure of the setup alone implies strong con-
straints on the correlations that can arise from any classical
description [2]. The physically well-motivated causal
assumptions are the following: (i) Measurement independ-
ence: experimenters can choose which property of a system
to measure, independently of how the system has been
prepared. (ii) Locality: the results obtained by one observer
cannot be influenced by any action of the other (ideally
spacelike separated) experimenter. The resulting con-
straints are Bell’s inequalities [1]. Quantum mechanical
processes subject to the same causal structure can violate
these constraints—a prediction that has been abundantly
verified experimentally [3]. This effect is commonly
referred to as “quantum nonlocality”.
It is now natural to ask how stable quantum nonlocality is

with respect to relaxations of the causal assumptions. Which
degree of measurement dependence, e.g., is required to
reconcile empirically observed correlations with a classical
and localmodel? Such questions are not only,we feel, of great
relevance to foundational questions—they are also of interest
to practical applications of nonlocality, e.g., in cryptographic
protocols. Indeed, eavesdroppers can (and do [4]) exploit
the failure of a given cryptographic device to be constrained
by the presumed causal structure to compromise its security.
At the same time, it will often be difficult to ascertain that
causal assumptions hold exactly, which makes it important to
develop a systematic quantitative theory.
Several variants of this question have recently attracted

considerable attention [5–13]. For example, measurement

dependence has been found to be a very strong resource.
Only about 1=15 of a bit of correlation between the source
and measurements is sufficient to reproduce all correlations
obtained by projective measurements on a singlet state
[7,9]. In turn, considering relaxations of the locality
assumption, one bit of communication between the distant
parties is again sufficient to simulate the correlations of
singlet states [5].
In this paper, we provide a unifying framework for treating

relaxations of the measurement independence and locality
assumptions in Bell’s theorem. To achieve this, we borrow
several concepts from the mathematical theory of causality, a
relatively young subfield of probability theory and statistics
[14,15]. With the aim of describing the causal relations
(rather than mere correlations) between variables that can be
extracted from empirical observations, this community has
developed a systematic and rigorous theory of causal
structures and quantitative measures of causal influence.
Our framework rests on three observations: (i) Alternative

causal structures can systematically be represented graphically
via Bayesian networks [14]. There, variables are associated
with nodes in a graph, and directed edges represent functional
dependencies. (ii) These edges can beweighted by quantitative
measures of causal influence [14,16]. (iii) Determining the
minimum degree of influence required for a classical explan-
ation of observable distributions can frequently be cast as a
computationally tractable linear program.
The versatility of this framework is demonstrated in a

variety of applications. We give an operational meaning to
the violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [17] as the minimum amount of direct causal
influence between the parties required to reproduce the
observed correlations. Considering the Collins-Gisin

PRL 114, 140403 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

0031-9007=15=114(14)=140403(5) 140403-1 © 2015 American Physical Society258



scenario [18], we show that quantum correlations are
incompatible with a classical description, even if we allow
one of the parties to communicate its outcomes. We also
show that the results in [7,9] regarding measurement-
independence relaxations can be improved by considering
different Bell scenarios. Finally, we study the bilocality
assumption [19] and show that although it defines a
nonconvex set, its relaxation can also be cast as a linear
program, naturally quantifying the degree of nonbilocality.
Bayesian networks and measures for the relaxation of

causal assumptions.—The causal relationships between n
jointly distributed discrete random variables ðX1;…; XnÞ
are specified by means of a directed acyclic graph (DAG).
To this end, each variable is associated with one node of the
graph. One then says that the Xi’s form a Bayesian network
with respect to the graph, if every variable can be expressed
as a deterministic function Xi ¼ fiðPAi; NiÞ of its graph-
theoretic parents PAi and an unobserved noise term Ni,
such that the Ni’s are jointly independent. This is the case
if and only if the probability pðxÞ ¼ pðx1;…; xnÞ is of
the form

pðxÞ ¼
Yn

i¼1

pðxijpaiÞ: ð1Þ

This identity encodes the causal relationships implied by
the DAG [14].
As a paradigmatic example of a DAG, consider a bipartite

Bell scenario [Fig. 1(a)]. In this scenario, two separated
observers, Alice and Bob, each perform measurements
according to some inputs, here represented by random
variables X and Y, respectively, and obtain outcomes,
represented by A and B. The causal model involves an
explicit shared hidden variable Λ that mediates the correla-
tions between A and B. From (1), it follows that
pðx; y; λÞ ¼ pðxÞpðyÞpðλÞ, which reflects the measurement
independence assumption. It also follows that a ¼
fAðx; λ; nAÞ, b ¼ fBðy; λ; nBÞ.We incur no loss of generality

by absorbing the local noise termsNA;NB intoΛ andwill thus
assume from now on that a ¼ fAðx; λÞ; b ¼ fBðy; λÞ for
suitable functions fA; fB. This encodes the locality
assumption. Together, these relations imply the well-known
local hidden variable (LHV) model of Bell’s theorem:

pða; bjx; yÞ ¼
X

λ

pðajx; λÞpðbjy; λÞpðλÞ: ð2Þ

Causal mechanisms relaxing locality [Figs. 1(b)–1(d)]
and measurement independence [Fig. 1(e)] can be easily
expressed using Bayesian networks. The networks them-
selves, however, do not directly quantify the degree of
relaxation. Thus, one needs to devise ways of checking and
quantifying such causal dependencies. To define a sensible
measure of causal influence, we introduce a core concept
from the causality literature—interventions [14].
An intervention is the act of forcing a variable, say Xi, to

take on some given value x0i and is denoted by doðx0iÞ. The
effect is to erase the original mechanism fiðpai; niÞ and
place Xi under the influence of a new mechanism that sets it
to the value x0i while keeping all other functions fj for j ≠ i
unperturbed. The intervention doðx0iÞ changes the decom-
position (1) given by [20]

pðxjdoðx0iÞÞ ¼
�Q

n
j≠i pðxjjpajÞ if xi ¼ x0i;

0 otherwise:
ð3Þ

Considering locality relaxations, we can now define a
measure CA→B for the direct causal influence of A into B
for the model in Fig. 1(b):

CA→B ¼ sup
b;y;a;a0

X

λ

pðλÞjpðbjdoðaÞ; y; λÞ

− pðbjdoða0Þ; y; λÞj: ð4Þ
It is the maximum shift (averaged over the unobservable Λ)
in the probability of B caused by interventions in A.
Similarly, one can define CX→B for the DAG in Fig. 1(c)
and in other situations. This measure is strictly larger than
zero for any underlying causal influence, as opposed to
variations of it, such as the widely used average causal
effect that can be null even in the presence of causal
influences [16]. We are also interested in relaxations of
measurement independence. Considering the case of a
bipartite scenario [illustrated in Fig. 1(e) and that can be
easily extended to multipartite versions], we can define the
measure

MX;Y∶λ ¼
X

x;y;λ

jpðx; y; λÞ − pðx; yÞpðλÞj: ð5Þ

This can be understood as a measure of how much the
inputs are correlated with the source, i.e., how much the
underlying causal model fails to comply with measurement
independence. In the following, we focus on the case where
pðx; yÞ ¼ pðxÞpðyÞ, as usual in a typical Bell scenario.
The linear programming framework.—Given some

observed probabilities and a particular measure of

FIG. 1 (color online). (a) LHV model for the bipartite Bell
scenario. (b) A relaxation of locality, where A may have direct
causal influence on B. (c) Another relaxation in which X may
have direct causal influence on B. (d) The most general
communication scenario from Alice to Bob. (e) A relaxation
of measurement independence. (f) The bilocality scenario for
which the two sources Λ1 and Λ2 are assumed to be independent.
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relaxation, our aim is to compute the minimum value of the
measure compatible with the observations. As sketched
below and fully detailed in the Supplemental Material [21],
this leads to a tractable linear program.
For simplicity, we consider the usual Bell scenario of

Fig. 1(a). The most general observable quantity is the joint
distribution pða; b; x; yÞ ¼ pða; bjx; yÞpðxÞpðyÞ. Since we
control the “inputs” X and Y, their distribution carries no
information, and we may thus restrict attention to
pða; bjx; yÞ. This conditional probability is, in turn, a linear
function of the distribution of Λ. To make this explicit,
represent pða; bjx; yÞ as a vector p with components pj
labeled by the multi-index j ¼ ða; b; x; yÞ. Similarly, iden-
tify the distribution ofΛwith a finite vector with components
qλ ¼ pðΛ ¼ λÞ. Then, from the discussion above, we have
that p ¼ Tq, where T is a matrix with elements
Tj;λ ¼ δa;fAðx;λÞδb;fBðy;λÞ. Conditional expectations that
include the application of a do operation are obtained via
a modified T matrix. For example, q0

j ¼ pða; bjx;
y; doða0ÞÞ ¼ T 0q for T 0

j;λ ¼ δa;a0δb;fBðy;λÞ. The measures C
and M are easily seen to be convex functions of the
conditional probabilities pða; bjx; yÞ and their variants
arising from the application of do’s—and thus convex
functions of q. Hence, their minimization subject to the
linear constraint Tq ¼ p for an empirically observed dis-
tribution p is a convex optimization problem. This remains
true if only some linear function Vp ¼ VTq (e.g., a Bell
inequality) of the distribution p is constrained. The problem
is not manifestly a (computationally tractable) linear pro-
gram (LP), since neither objective function is linear in q.
However, we establish in [21] that it can be cast as such:
Theorem 1. The minimization of the measures C and

M over models involving only one independent hidden
variable, subject to any linear observation, can be reformu-
lated as a primal LP. Its solution is equivalent to

max
1≤i≤K

hvi; Vpi; ð6Þ

where the fvigKi¼1 are the vertices of the LP’s dual feasible
region.
We highlight that (6) is a closed-form expression in the

observations Vp: It is a maximum over finitely many explicit
linear functions Vp↦hvi; Vpi. In this way, our result goes
significantly beyond previous approaches [8–11], where
generally only information about the degree of violation
of a specific Bell inequality is utilized. In the following sec-
tions, we apply our framework to a variety of applications.
Novel causal interpretation of the CHSH inequality.—

Intuitively, the more nonlocal a given distribution is, the
more direct causal influence between Alice and Bob should
be required to simulate it. We make this intuition precise by
considering the models in Figs. 1(b) and 1(c) and the
CHSH scenario (two inputs, two outputs for Alice and
Bob). For any observed distribution pða; bjx; yÞ, we
establish in [21] that

ð1=2Þmin CA→B ¼ min CX→B ¼ max ½0;CHSH�; ð7Þ

where the maximum is taken over all the eight symmetries
of the CHSH quantity [17]

CHSH ¼ pð00j00Þ þ pð00j01Þ þ pð00j10Þ
− pð00j11Þ − pAð0j0Þ − pBð0j0Þ; ð8Þ

where the last two terms represent the marginals for Alice
and Bob. The CHSH inequality stipulates that for any LHV
model, CHSH ≤ 0. Equation (7) shows that, regardless of
the particular distribution, the minimum direct causal
influence is exactly quantified by the CHSH violation.
Inspired by the communication scenario of [5] [Fig. 1(d)]

and the operational interpretation of CHSH violation given
in [6], we can also quantify the relaxation of the locality
assumption as the minimum amount of communication
required to simulate a given distribution. We measure the
communication by the Shannon entropy HðmÞ of the
message m which is sent. For a binary message, we can
use our framework to prove, in complete analogy to (7), that

minHðmÞ ¼ hðCHSHÞ ð9Þ
if CHSH > 0 and 0 otherwise. Here hðvÞ ¼ −v log2 v −
ð1 − vÞ log2ð1 − vÞ denotes the binary entropy.We note that
for maximal quantum violation CHSH ¼ 1=

ffiffiffi
2

p
− 1=2, as

produced by a singlet state, a message with HðmÞ ≈ 0.736
bits is required. This is less than the ≈0.85 bits of
communication (after compression) required by the protocol
of [5] for reproducing arbitrary correlations of a singlet.
Quantum nonlocality is incompatible with some locality

relaxations.—Given that violation of CHSH can be directly
related to relaxation of locality, one can ask whether similar
interpretations exists for other scenarios. For example, we
can consider a setting with three inputs and two outputs for
Alice and Bob and consider the causal model in Fig. 1(b).
Similar to the usual LHV model (2), the correlations
compatible with this model form a polytope. One facet
of this polytope is

hE00i−hE02i−hE11iþhE12i−hE20iþhE21i≤4; ð10Þ
where Exy ¼ hAxByi ¼

P
a;bð−1Þaþbpða; bjx; yÞ. This

inequality can be violated by any quantum state jψi ¼ffiffiffi
ϵ

p j00i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞp j11i with ϵ ≠ 0; 1. Consequently, any
pure entangled state—no matter how close to separable—
generates correlations that cannot be explained even if we
allow for a relaxation of the locality assumption, where one
of the parties communicates its measurement outcomes to
the other.
How much measurement dependence is required to

causally explain nonlocal correlations?—The results in
Refs. [7,9] show that measurement dependence is a very
strong resource for simulating nonlocality. In fact, a mutual
information as small as IðX; Y∶λÞ ≈ 0.0663 is already
sufficient to simulate all correlations obtained by (any
number of) projective measurements on a singlet state [9].
Given the fundamental implication and practical relevance
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of increasing these requirements, we aim to find larger
values for IðX; Y∶λÞ by means of our framework. The result
of [9] leaves us with three options regarding the quantum
states: either nonmaximally entangled states of two qubits,
two-qudit states, or states with more than two parties.
Regarding nonmaximally entangled two-qubit states, we

were unable to improve the minimal mutual information.
Regarding qudits, we have considered relaxations in the
CGLMP scenario [29]—a bipartite scenario, where Alice
and Bob each have two inputs and d outcomes. The
CGLMP inequality is of the form Id ≤ 2. We have
evaluated the LP for minM in the setting of Fig. 1(e)
for various values of Id and up to d ¼ 8. The numerical
results strongly suggest that the simple relation

minM ¼ max ½0; ðId − 2Þ=4� ð11Þ

holds. Via the Pinsker inequality [30,31] and the definition
of mutual information (see Eq. (1) in [31] for further
details), (11) provides a lower bound on the minimum
mutual information IðX; Y∶ΛÞ ≥ M2log2e=2. This bound
implies that for any Id ≥ 3.214, the mutual information
required exceeds the 0.0663 obtained in Ref. [9]. Using the
results in Ref. [32] for the scaling of the optimal quantum
violation with d, one sees that this requires d ≥ 16.
However, we note that the bounds provided by the
Pinsker inequality are usually far from tight, leaving a
lot of room for improvement. Moreover, a corresponding
upper bound (obtained via the solution to the minimization
of M) is larger than the values obtained in [9] as soon as
d ≥ 5. Though this upper bound is not necessarily tight, we
highlight the fact that for d ¼ 2 it gives exactly
IðX; Y∶ΛÞ ¼ 0.0463, the value analytically obtained in [9].
Regarding multipartite scenarios, we have considered

GHZ correlations [33] in a tripartite scenario where each
party has two inputs and two outputs. We numerically
observe 0.090 ≤ IðX; Y; Z∶λÞ ≤ 0.207. This implies that
increasing the number of parties can considerably increase
the measurement dependence requirements for reproducing
quantum correlations.
Bilocality scenario.—To illustrate how our formalism

can be used in generalized Bell scenarios [19,34,35], we
briefly explore the entanglement-swapping scenario [36] of
Fig. 1(f) (see details in [21]). The hidden variables in this
scenario are independent pðλ1; λ2Þ ¼ pðλ1Þpðλ2Þ, the so-
called bilocality assumption [19].
As in Ref. [19], we take the inputs x; z and outputs a; c to

be dichotomic, while b takes four values that we decom-
pose in two bits as b ¼ ðb0; b1Þ. The distribution of
hidden variables can be organized in a 64-dimensional
vector q with components qα0;α1;β0;β1;γ0;γ1 , where αx spec-
ifies the value of a for a given x (and analogously for γ, c,
and z) and βi specifies the value of bi. Thus, together the
indices label all the deterministic functions for A, B, C
given their parents. As shown in [19], bilocality is equiv-
alent to demanding qacα0;α1;γ0;γ1 ¼ qaα0;α1q

c
γ0;γ1 , where

qacα0;α1;γ0;γ1 ¼
P

β0;β1qα0;α1;β0;β1;γ0;γ1 is the marginal for AC.
Similar to (5), a natural measure MBL of nonbilocality
quantifies by how much the underlying hidden variable
distribution fails to comply with this constraint:

MBL ¼
X

α0;α1;γ0;γ1

jqacα0;α1;γ0;γ1 − qaα0;α1q
c
γ0;γ1 j: ð12Þ

Clearly, MBL ¼ 0, if and only if bilocality is fulfilled.
However, demanding bilocality imposes a quadratic con-
straint on the hidden variables. This results in a nonconvex
set that is extremely difficult to characterize [19,34,35].
Nevertheless, our framework is still useful, as using the
marginals for a given observed distribution to constrain the
problem further, the minimization of MBL can be cast in
terms of a linear program with a single free parameter,
which is further minimized over.
As an illustration, we consider the nonbilocal distribu-

tion found in Refs. [19]. It is obtained by projective
measurements on a pair of identical two-qubit entangled
states ϱ ¼ vjΨ−ihΨ−j þ ð1 − vÞI=4. This distribution vio-
lates the bilocality inequality B ¼ ffiffiffiffiffijIjp þ ffiffiffiffiffiffijJjp

≤ 1 giving
a value B ¼ ffiffiffi

2
p

v. Using our framework, we numerically
observe MBL ¼ maxð2v2 − 1; 0Þ. Thus, for this specific
distribution (and up to numerical precision), MBL ¼
B2 − 1, so there is a one-to-one correspondence between
the violation of the bilocality inequality and the minimum
relaxation of the bilocality constraint required to reproduce
the correlations. This assigns an operational meaning to B.
Conclusion.—In this work, we have revisited nonlocality

from a causal inference perspective and provided a linear
programming framework for relaxing the measurement
independence and locality assumptions in Bell’s theorem.
Using the framework, we have given a novel causal
interpretation of violations of the CHSH inequality and
shown that quantum correlations are still incompatible
with classical causal models even if one allows for the
communication of measurement outcomes. This implies
that quantum nonlocality is even stronger than
previously thought. Also, we have shown that the minimal
measurement dependence required to simulated nonlocal
correlations can be improved by considering different Bell
scenarios. Finally, we showed how our framework can be
extended to treat the nonconvex problem arising in the
bilocality scenario. In particular, based on numerical
evidence for a specific class of nonbilocal distributions,
we have conjectured an operational meaning for the
bilocality inequality.
In addition to these results, we believe the generality of

our framework motivates and, more importantly, provides a
basic tool for future research. For instance, it would be
interesting to understand how our framework can be
generalized in order to derive useful inequalities in the
context of randomness expansion [10]. Another natural
possibility would be to look for a good measure of genuine
multipartite nonlocality [37]. Finally, it would be
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interesting to understand how our treatment of the bilo-
cality problem could be generalized and applied to the
characterization of the nonconvex compatibility regions of
more complex quantum networks [34,38].
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For the sake of being as self-contained as possible, we start the Supplemental Material with re-
viewing basic concepts in linear programming. We then use these concepts to establish Theorem 1 in
the main text – our main technical result. As detailed below, the measures of direct causal influence
and measurement dependence (equations (4) and (5) of the main text, respectively), can be recast as
vector norms. Their minimization, subject to the specific constraints of each of the causal models in
Fig. 1 is then explored in detail.

REVIEW OF LINEAR PROGRAMMING

Linear Programming (LP) is a very powerful and
widely used tool for dealing – both practically and the-
oretically – with certain families of convex optimization
problems. We refer to [1–3] for an overview. From now
on we assume that vectors x ∈ Rn are represented in
the standard basis {ei}n

i=1, i.e. x = ∑n
i=1 xiei. In this

representation, the two vectors 0n := (0, . . . , 0)T (the
“zero”-vector) and 1n := (1, . . . , 1)T (the “all-ones” vec-
tor) will be of particular importance. Furthermore, we
are frequently going to concatenate vectors x ∈ Rn and
y ∈ Rm via x⊕ y := ∑n

i=1 xiei + ∑m
j=1 yien+j ∈ Rn+m.

Also, 〈·, ·〉 shall denote the standard inner product of
finite dimensional real vector spaces.

There are many equivalent ways of defining the stan-
dard form of primal/dual LP’s. Here we adopt the for-
malism of [4]. A convex optimization problem fits the
framework of linear programming, if it can be reformu-
lated as

γ = min
ξ∈Rn

〈c, ξ〉 (1)

subject to Φξ ≥ b

ξ ≥ 0n,

where c ∈ R
n as well as b ∈ R

m are vectors and
Φ : Rn → R

m corresponds to an arbitrary real m× n-
matrix. Inequalities between vectors are to be under-
stood component-wise: two vectors x, y ∈ R

n obey
y ≥ x if and only if yi ≥ xi holds for all i = 1, . . . , n.

It is very useful to consider linear programming
problems in pairs. An optimization of the form (1) is
called a primal problem in standard form and is accompa-
nied by its dual problem (in standard form):

β = max
ζ∈Rm

〈ζ, b〉 (2)

subject to ΦTζ ≤ c

ζ ≥ 0m.

Here, ΦT : Rm → R
n denotes the transpose of Φ (with

respect to the standard basis). For a given pair of lin-
ear programs, we call ξ ∈ Rn primal feasible if it obeys
the constraints Φξ ≥ b and ξ ≥ 0n. Likewise, we call
ζ ∈ Rm dual feasible if ΦTζ ≤ c and ζ ≥ 0m hold. Fur-
thermore, we call an LP primal feasible, if it admits at
least one primal feasible variable ξ and dual feasible, if
there exists at least one dual feasible ζ. A primal LP is
soluble if there is a vector ζ that attains the minimum
γ. This is equivalent to γ being finite. One crucial fea-
ture of linear programming problems is the following
theorem (see e.g. [3, Theorem 4.3.4], the corollary uses
Theorem 4.3.2):

Theorem 1 (Strong Duality). If a primal LP is soluble, then
so is the dual. What is more, in that case, their optimal values
coincide:

γ = β (strong duality). (3)

Corollary 2. Consider a soluble primal LP. Then this opti-
mum is attained at one vertex di of the dual feasible region
D :=

{
ζ ∈ Rm : ΦTζ ≤ c, ζ ≥ 0m

}
:

γ = β = max
1≤i≤K

〈di, b〉.

(I.e., possible unbounded directions (rays) of D can be safely
ignored).

Strong duality is one of the two standard techniques
from linear programing that we will build on. The other
one is a well-known trick for converting optimizations
of certain (non-linear) norms into LPs. This will be
treated next.

Example 3 (`1-norm calculation, [1] p. 294 ). Let x ∈ Rn

be an arbitrary vector. Then

‖x‖`1 = min
t∈Rn

〈1n, t〉 (4)

subject to −t ≤ x ≤ t. (5)

Note that the constraint (5) implicitly assures t ≥ 0n.
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Example 4 (`∞-norm calculation, [1] p. 293). Let x ∈ Rn

be an arbitrary vector. Then

‖x‖`∞ = min
v∈R

v (6)

subject to −v1n ≤ x ≤ v1n. (7)

Note that the constraint −v1n ≤ x is redundant if the vector
of interest obeys x ≥ 0n. Also, (7) implicitly assures v ≥ 0.

The primal LPs in examples 3 and 4 are not yet in
standard form (1). However, they can be converted into
it by applying some straightforward reformulations –
we will come back to this later.

Another useful feature of LPs is that different mini-
mization procedures of the above kind can be combined
in order to yield an LP for a more complicated opti-
mization problem. An instance of such a combination
is the following result which will turn out to be crucial
for our analysis.

Lemma 5. Let {x1, . . . , xL} ⊂ Rn be an arbitrary family of
L vectors. Then

max
1≤i≤L

‖xi‖`1 = minimize
t1,...,tL∈Rn

v∈R

v

subject to
v ≥ 〈1n, ti〉
−ti ≤ xi ≤ ti

}
1 ≤ i ≤ L

which is a primal LP, albeit not yet in standard form. Also,
the constraints implicitly assure t1, . . . , tL ≥ 0n and v ≥ 0.

Proof. We introduce the non-negative auxiliary vector

u :=
L

∑
i=1
‖xi‖`1ei ∈ RL.

The equivalence

max
i=1,...,L

‖xi‖`1 = ‖u‖`∞

then follows from the definition of the `∞-norm. Re-
placing this `∞-norm calculation by the corresponding
LP (example 4 for non-negative vectors) and including
L unconstrained `1-norm calculations – one for each
component of u – as “subroutines” (example 3) yields
the desired statement.

Finally it is worthwhile to mention that constrained
norm-minimization, e.g.

β = min
x∈Rn

‖x‖`1 subject to Ax ≥ c,

can also be reformulated as a LP, because the constraint
is linear. To this end, simply include the additional lin-
ear constraint in the LP for calculating ‖x‖`1 :

γ = min
x,t∈Rn

〈1n, t〉 (8)

subject to −t ≤ x ≤ t

Ax ≥ c.

Clearly, this is a LP. Pushing this further, one can also
handle certain types of non-linear constraints, e.g.

γ̃ = min
x∈Rn

‖x‖`p subject to ‖Ax‖`q ≤ c

for p, q ∈ {1, ∞} within the linear programming for-
malism.

USEFUL RESULTS REGARDING LP’S

We can now use these concepts and techniques to ob-
tain a linear programming formalism for a particular
family of convex optimization problems that is relevant
for our analysis. As detailed in the following two sec-
tions, the measures of direct causal influence and of
measurement dependence (equation (4) and (5) of the
main text) can be cast as a `∞-norm and `1-norm, re-
spectively. This in turn allows us to state the associated
equivalent dual problem for the minimization of each of
these two measures, which is the scope of the following
theorems.

Theorem 6. Let A be a real m× n-matrix, {Mi}L
i=1 a fam-

ily of L real valued k × n-matrices and let p ∈ R
m be an

arbitrary vector. Then, the convex optimization problem

γ = min
q∈Rn

max
1≤i≤L

‖Miq‖`1

subject to Aq = p

〈1n, q〉 = 1

q ≥ 0

can be reformulated as a primal LP. Its associated dual prob-
lem is given by

maximize
yi∈Rk ,z∈Rm

wi ,u∈R

〈p, z〉+ u

subject to ATz + u1n ≤
L

∑
i=1

MT
i yi

−wi1k ≤ yi ≤ wi1k i = 1, . . . , L
L

∑
i=1

wi ≤ 1,

w1, . . . , wL ≥ 0.

Proof. Combining Lemma 5 – for xi = Miq ∈ Rk for i =
1, . . . , L – with the constrained minimization argument
from (8) shows that the convex optimization problem
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(9) is equivalent to solving

minimize
t1,...,tL∈Rk ,q∈Rn

v∈R

v (9)

subject to Aq = p

〈1n, q〉 = 1

v ≥ 〈1k, ti〉
−ti ≤ Miq ≤ ti

}
i = 1, . . . , L

q ≥ 0

which is clearly a LP. Note that the remaining optimiza-
tion variables v ∈ R and ti ∈ Rk are also implicitly con-
strained to be non-negative. So, in order to convert (9)
into a primal LP in standard form (1), we define

ξ := v⊕
L⊕

i=1

ti ⊕ q, c := 1
L⊕

i=1

0k ⊕ 0n and

b := (0)⊕L ⊕ (0k ⊕ 0k)
⊕L ⊕ p⊕ (−p)⊕ 1⊕ (−1).

Counting the dimensions of the resulting vector spaces
reveals ξ, c ∈ R

1+Lk+n and b ∈ R
L+2Lk+2m+2. Also,

the (implicit and explicit) non-negativity constraints on
v, t1, . . . , tL and q guarantee ξ ≥ 01+Lk+n. Due to our
choice of b, we can incorporate all relevant constraints
of (9) in the compact expression

Φξ ≥ b,

where Φ is the (L+ 2Lk+ 2m+ 2)× (1+ Lk+ n)-matrix
defined by

Φ =




1 −1T
k 0T

k · · · 0T
k 0T

n
...

...
1 0T

k · · · 0T
k −1T

k 0T
n

0k 1k×k Ok×k · · · Ok×k M1
0k 1k×k Ok×k · · · Ok×k −M1
...

...
0k Ok×k · · · Ok×k 1k×k ML
0k Ok×k · · · Ok×k 1k×k −ML
0m Om×k · · · · · · Om×k A
0m Om×k · · · · · · Om×k −A
0 0T

k · · · · · · 0T
k 1T

n
0 0T

k · · · · · · 0T
k −1T

n




in the (extended) standard bases of the spaces R1+Lk+n

and RL+2Lk+2m+2. Our definitions of ξ, c, b and Φ now
indeed convert (9) into primal standard form (1). Its
dual then simply corresponds to (2) which can be fur-
ther simplified. The structure of b suggests decompos-
ing the dual variable ζ ∈ RL+2Lk+2m+2 into

ζ :=
L⊕

i=1

wi

L⊕

i=1

(
y′i ⊕ y′′i

)
⊕ z′ ⊕ z′′ ⊕ u′ ⊕ u′′ (10)

with wi, u′, u′′ ∈ R, y′i, y′′i ∈ Rk and z′, z′′ ∈ Rm. Using
this decomposition of ζ, we obtain the following con-
straints from ΦTζ ≤ c:

AT(z′ − z′′) + 1n(u′ − u′′) ≤
L

∑
i=1

Mi
(
y′′i − y′i

)
,

y′i + y′′i ≤ wi1k for i = 1, . . . , L,
L

∑
i=1

wi ≤ 1.

Also, due to ζ ≥ 0L+2Lk+2l+2, all the optimization vari-
ables are non-negative. The objective function corre-
sponds to

〈ζ, b〉 = 〈p, z′ − z′′〉+ u′ − u′′.

The particular form of objective function and con-
straints suggests to replace the non-negative variables
z′, z′′ ∈ Rm and u′, u′′ ∈ R by

z := z′ − z′′ and u := u′ − u′′

which are not constrained to be non-negative anymore.
Also, y′i + y′′i ≤ wi1k together with y′i, y′′i ≥ 0 implies
the equivalent constraint

−wi1k ≤ y′′i − y′i ≤ wi1k

for all 1 ≤ i ≤ L. This motivates to define yi := y′′i − y′i
which is bounded by the above inequality chain, but
also not constrained to be non-negative. Putting every-
thing together yields the desired statement

Theorem 7. Let A be a real valued m× n matrix, {Mi}L
i=1

be a family of real valued k × n-matrices, N a real valued
l × n-matrix and let p ∈ Rm as well as c ∈ R be arbitrary.
The convex optimization problem

γ = min
q∈Rn

‖Nq‖`∞ (11)

subject to max
1≤i≤L

‖Miq‖`1 ≤ c

Aq = p

〈1n, q〉 = 1

q ≥ 0

can be converted into a primal LP. Its associated dual LP
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corresponds to

β = max
x∈Rl ,yi∈Rk ,z∈Rm

u,v,wi∈R

〈p, z〉+ u− cv (12)

subject to ATz + u1n ≤
L

∑
i=1

MT
i yi + NTx

−wi1k ≤ yi ≤ wi1k i = 1, . . . , L
L

∑
i=1

wi ≤ v

‖x‖`1 ≤ 1

w1, . . . , wL, v ≥ 0.

Proof. Proceeding along similar lines as in the previous
proof one can show that (11) is equivalent to solving

minimize
t1,...,tL∈Rk ,q∈Rn

v,ṽ∈R

ṽ (13)

subject to −ṽ1l ≤ Nq ≤ ṽ1l

v ≤ c
v ≥ 〈1k, ti〉
−ti ≤ Miq ≤ ti

}
i = 1, . . . , L

Aq = p

〈1n, q〉 = 1

q ≥ 0n,

which is again clearly a primal LP. Moreover, it strongly
resembles the linear program (9). Indeed, defining

c̃ := 1⊕ 0
L⊕

i=1

0k ⊕ 0n,

and extending ξ, b, as well as Φ from the proof of The-
orem 6 to

ξ̃ := ṽ⊕ ξ, b̃ := 0l ⊕ 0l ⊕ (−c)⊕ b

and

Φ̃ =

(
1l ⊕ 1l ⊕ 0 B

0L+2Lk+2m+2 Φ

)
,

where

B :=




0l Ol×k · · · · · · Ol×k N
0l Ol×k · · · · · · Ol×k −N
−1 0T

k · · · · · · 0T
k 0T

n




converts (13) into primal standard form. Going to the
dual and simplifying it in a similar way as shown in
the previous proof – decompose ζ̃ into x′ ⊕ x′′ ⊕ v⊕ ζ,
where ζ was defined in (10) – yields the desired state-
ment upon noticing that 〈1l , x′ + x′′〉 ≤ 1 together with
x′, x′′ ≥ 0l is equivalent to demanding that x := x′ − x′′

obeys ‖x‖`1 ≤ 1, but is not constrained to be non-
negative anymore.

(a) Bipartite	Bell (b) Rel.	of	locality (c) Rel.	of	locality

(d) General	comm. (e) Rel.	of	meas.	ind. (f) Bilocality

FIG. 1. (a) LHV model for the bipartite Bell scenario. (b) A
relaxation of locality, where A may have direct causal influ-
ence on B. (c) Another relaxation in which X may have direct
causal influence on B. (d) The most general communication
scenario from Alice to Bob. (e) A relaxation of measurement
independence, where the two inputs may be correlated, via a
common ancestor, with the hidden variable Λ. (f) The bilocal-
ity scenario for which the two sources Λ1 and Λ2 are assumed
to be independent. Round edges stand for observable vari-
ables while squares represent non-observable (hidden) ones.

Corollary 8. Suppose the `1-norm constraint in the convex
optimization (11) is omitted, then the corresponding dual LP
simplifies to

β = max
x∈Rl ,z∈Rm ,u∈R

〈p, z〉+ u (14)

subject to ATz + u1n ≤ NTx

‖x‖`1 ≤ 1.

If the normalization condition 〈1n, q〉 = 1 is dropped as well,
the optimization parameter u assumes 0 and need not be con-
sidered in the dual optimization.

Proof. Omitting the `1-norm constraint is equivalent to
letting the constraint c go to infinity. Since (−cv) is part
of the dual’s objective function (12), this limit enforces
v = 0. This in turn demands wi = 0 and consequently
yi = 0k for all i = 1, . . . , L. As a result, we obtain the
first desired statement.

The second simplification requires a closer look at the
proof of Theorem 7. Doing so reveals that the con-
straint 〈1n, q〉 = 1 results in the additional dual opti-
mization parameter u. Omitting this constraint in the
primal therefore implies that u has to be dropped ac-
cordingly.

RELAXATION OF LOCALITY

In this section we will analyze in details the relax-
ation of the locality assumption, as exemplified by the
DAG depicted in Fig. 1c. The models in Fig. 1b and
Fig. 1d are similar and will be analyzed in full details
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elsewhere. In particular, we will show that evaluating
the minimal direct causal influence – see equation (4) in
the main text – that is required to simulate a given non-
local distribution can be recast as a LP. Consequently, it
can be determined efficiently for any observed proba-
bility distribution.

For the model in in Fig. 1c, the input X of Alice has
a direct causal influence over the outcome B of Bob.
We consider the general, finite case where Alice has mx
inputs and oa outputs, that is, x = 0, . . . , mx − 1 and
a = 0, . . . , oa − 1 (and analogously for Bob).

The signalling model in Fig. 1c requires a hidden
variable λ assuming n = omx

a o
mxmy
b possible values. The

causal structure assures a = fA(x, λ) which resembles
the LHV model (Fig. 1a). This is not the case for b,
which can depend on x,y and λ – i.e. b = fB(x, y, λ).
Consequently there are omx

a possible deterministic func-
tions fA and o

mxmy
b possible deterministic functions

fB. In turn, we can split up the hidden variable into
λ = (λa, λb) = (α0, . . . , αmx−1, β0,0, β0,1, . . . , βmx−1,my−1)
where αx = 0, . . . , oa− 1 determines the value of a given
x. Similarly, βx,y = 0, . . . , ob − 1 specifies the value of b
given x and y. According to eq. (1) in the main text, the
observed distribution can be decomposed in the follow-
ing way:

p(a, b|x, y) = ∑
λ

p(a|x, λ)p(b|x, y, λ)p(λ). (15)

Given such a signalling model and some observed
constraints, our task is to find the minimum value of
CX→B. Similarly to eq. (4) in the main text, this quantity
can be defined as

CX→B = sup
b,y,x,x′

∑
λ

p(λ)|p(b|do(x), y, λ)− p(b|do(x′), y, λ)|,

(16)
which quantifies the amount of signalling required to
explain the observation. Moving on, we note that

∑
λ

p(λ)|p(b|do(x), y, λ)− p(b|do(x′), y, λ)|

= ∑
λ

p(λ)|δb, fB(x,y,λ) − δb, fB(x′ ,y,λ)| (17)

= ∑
i

qivi = 〈v, q〉,

where we have identified p(λ) with the n-dimensional
vector q via 〈ei, q〉 = p(λi). The vector v = v(x, x′, y, b)
only consists of 1’s and 0’s and fully characterizes the
action of the Kronecker-symbols in (17). By doing so,
the measure of causal influence (16) can be recast as

CX→B = max
i=1,...,L

〈q, vi〉 = ‖Cq‖∞. (18)

Here, the index i parametrizes one of the L possible in-
stances of (x, x′, y, b) with x 6= x′ and vi = v(x, x′, y, b)

denotes the vector corresponding to that instance. The
last equality in (18) then follows from introducing C :=
∑L

i=1 |ei〉〈vi| and the definition of the `∞-norm. Con-
sequently, minimizing CX→B over all hidden variables
that are compatible with our observations is equivalent
to solving

minimize
q∈Rn

‖Cq‖∞ (19)

subject to VTq = Vp

〈1n, q〉 = 1 (20)

q ≥ 0n.

Corollary 8 assures that this optimization problem can
be translated into a LP in standard form. As already
mentioned in the main text, Vp denotes the vector
representing the correlations under consideration – the
probability distribution itself (V = 1) or a function of
it, e.g., a Bell inequality ( V = |e1〉〈b| for some b ∈ Rm)
– and the matrix VT maps the underlying hidden vari-
able states to the actually observed vector Vp .

Given any observed distribution Vp of interest, one
can easily implement this linear program and solve it
efficiently. However, we are also interested in deriv-
ing an analytical solution which is valid for any vector
p encoding the full probability distribution p(a, b|x, y).
Subjecting to the full probability distribution p in par-
ticular guarantees that the normalization constraint (20)
is already assured by Tq = p. This allows for dropping
this constraint without loss of generality. Corollary 2
serves precisely the purpose of obtaining such an ana-
lytical expression, as it – in combination with Corollary
8 – assures that solving (19) is equivalent to evaluating

max
1≤i≤K

〈di, p〉,

where {di}K
i=1 denotes the vertices of the dual feasi-

ble region in (14). We highlight that this is the result
achieved by passing to the dual LP. One could equiva-
lently minimize over the vertices of the primal feasible
region – but these depend on the observations in a non-
explicit way.

Standard algorithms like PORTA [5] allow for eval-
uating these extremal points. We have performed such
an analysis for the particular case of the CHSH scenario
(mx = my = oa = ob = 2). We list all the 13 vertices of
the LP’s dual feasible region in Table I. Nicely, we see
that all the extremal points can be divided into three
types: i) the trivial vector 0m, ii) the symmetries of the
CHSH inequality vector, for example

pAB
00|00 + pAB

00|01 + pAB
00|10 − pAB

00|11 − pA
0|0 − pB

0|0 (21)

and iii) the non-signalling conditions, for instance

− pAB
01|00 − pAB

11|00 + pAB
01|10 + pAB

11|10. (22)
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Here, we have used the short hand notation pAB
ab|xy =

p(a, b|x, y) and similarly for the marginals.
For any non-signalling distribution, the conditions of

the third type vanish and the corresponding vertices
need not be considered. Therefore we arrive at the re-
sult stated in the main text, namely

min CX→B = max [0, CHSH] ,

where the maximum is taken over all the eight symme-
tries of the CHSH inequality.

MEASUREMENT DEPENDENCE MODELS

In this section we focus on the measureMX,Y:λ – see
equation (5) in the main text – which quantifies the
degree of measurement dependence in a given causal
model. Similar to the previous section, we are going to
show that determining the minimal degree of measure-
ment dependence required to reproduce a given non-
local distribution can be done via solving a LP.

To illustrate this, we consider the simplest scenario
of measurement dependence in detail. Such a model
is displayed in Fig. 1e and involves a bipartite Bell sce-
nario, where the measurement inputs X of Alice and Y
of Bob, respectively, can be correlated with the source
Λ producing the particles to be measured.

Without loss of generality, we model such correla-
tions by introducing an additional hidden variable µ
which serves as a common ancestor for x, y and λ.
This suggests to decompose this common ancestor into
µ = (µx, µy, µλ). We can assume x = µx, y = µy and
λ = µλ without loss of generality (x, y and λ are de-
terministic functions of their common ancestor µ). If
Alice’s apparatus has mx inputs (i.e. x = 0, . . . , mx − 1)
and oa outputs (i.e. a = 0, . . . , oa − 1), and similarly
for Bob, n = mxmyomx

a o
my
a different instances of µ suf-

fice to fully characterize the common ancestor’s influ-
ence. Similar to the previous section, we can use this
discrete nature of µ to identify any probability distri-
bution p(µ) : Ξ → [0, 1] uniquely with a non-negative,
real vector q via

qi = 〈ei, q〉 = p(µi) i = 1, . . . , n. (23)

Likewise, we can rewrite the observed probability dis-
tribution p(a, b|x, y) as

p(a, b|x, y)

=
1

p(x, y) ∑
µ,λ

p(a|x, λ)p(b|y, λ)p(x|µ)p(y|µ)p(λ|µ)p(µ)

=
1

p(x, y) ∑
µλ

p(a|x, µλ)p(b|y, µλ)p(µλ)

= 〈v(x, y, a, b, λ), q〉.

The usefulness of such vectorial identifications becomes
apparent when taking a closer look at the measure of
correlation (equation (5) in the main text). Indeed,

M= ∑
x,y,λ
|p(x, y, λ)− p(x, y)p(λ)| (24)

= ∑
x,y,λ
|∑

µ

δλ,µλ
(δx,µx δy,µy − p(x, y))p(µ)|

= ∑
x,y,λ
|〈w(x, y, λ), q〉|

= ‖Mq‖`1 ,

where M denotes the real k × n matrix M =

∑k
j=1 |ej〉〈wj| where 1 ≤ j ≤ k labels all possible values

of (x, y, λ). Note that this matrix implicitly depends on
p(x, y). However, p(x, y) is an observable quantity and
thus available. Moreover, one is typically interested in
the case, where said distribution for the inputs is uni-
formly distributed – i.e. p(x, y) = 1/(mxmy).

It is worthwhile to point out that different measures
of measurement dependence have been considered in
the literature. For instance, in Ref. [6] the following
measure of correlation has been proposed:

MHall = sup
x,x′ ,y,y′

∑
λ

|p(λ|x, y)− p(λ|x′, y′)|.

Similarly to (24), we can rewrite this measure as a `1-
norm, namely

MHall = max
i=1,...,L

‖Miq‖`1 .

The constrained minimization of both M and MHall
consequently corresponds to the following optimiza-
tion:

minimize
q∈Rn

max
i=1,...,L

‖Miq‖`1 (25)

subject to Vq = p̃

〈1n, q〉 = 1

q ≥ 0n,

Theorem 6 assures that such an optimization can be re-
cast as a primal LP in standard form.

In this work we have opted to focus on the measure
defined in (24). The reason for that is two-fold. Firstly,
such a choice assures L = 1 and numerically solv-
ing the corresponding LP is substantially faster. The
second reason stems from the fact that (24) is propor-
tional to the variational distance between the distribu-
tions p(x, y, λ) and p(x, y)p(λ). Knowledge of the total
variational distance allows to lower-bound the mutual
information between (X, Y) and Λ via the Pinsker in-
equality [7, 8]:

I(X, Y : Λ) ≥ (1/2)M2 log2 e.

268



7

List of extremal points
# p00

00 p01
00 p00

10 p00
11 p01

00 p01
01 p01

10 p01
11 p10

00 p10
01 p10

10 p10
11 p11

00 p11
01 p11

10 p11
11

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2 0 1/2 0 1/2 0 -1/2
3 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 1/2 0 -1/2 0 -1/2 0 1/2
4 0 -1/2 0 1/2 0 1/2 0 -1/2 0 -1/2 0 1/2 0 -1/2 -1 -1/2
5 0 -1/2 0 1/2 0 1/2 0 -1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2
6 0 1/2 0 -1/2 0 -1/2 0 1/2 0 -1/2 0 1/2 0 -1/2 - 1 -1/2
7 0 1/2 0 -1/2 0 -1/2 0 1/2 0 1/2 0 -1/2 -1 -1/2 0 -1/2
8 0 1/2 0 -1/2 0 1/2 1 1/2 0 -1/2 0 1/2 -1 -1/2 -1 -3/2
9 0 1/2 0 -1/2 0 1/2 1 1/2 0 1/2 0 -1/2 -1 -3/2 -1 -1/2

10 0 -1 0 -1 0 0 0 0 0 1 0 1 0 0 0 0
11 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 0 1
12 0 0 0 0 0 1 0 1 0 0 0 0 0 -1 0 -1
13 0 1 0 1 0 0 0 0 0 -1 0 -1 0 0 0 0

TABLE I. Extremal points for the feasible region in the dual problem (14) associated with the CHSH scenario. In the notation
above, pxy

ab corresponds to p(a, b|x, y). The extremal points 2-9 can be easily seen to correspond to the symmetries of the CHSH
inequality. Take for instance point 2 which can be written as the CHSH operator in (21). The extremal points 10-13 correspond
to the non-signalling conditions. For instance, point 10 corresponds to (22) and is zero for any non-signalling distribution.

The bound above follows directly from the Pinsker
inequality H(p||q) = ∑j p(j)(log2 p(j) − log2 q(j)) ≥
(1/2)D(p, q)2 log2 and the definition of mutual infor-
mation I(x : y) = H(p(x, y)||p(x)p(y)), where H(p||q)
stands for the relative entropy between to distribution
p and q and D(p, q) = |p− q|l1 = ∑j |p(j)− q(j)| is the
l1-norm of the difference between the vectors). See Ref.
[8] for further details. A converse bound on I(X, Y : Λ)
is obtained by noting that the (linear program) solu-
tion to the minimization ofM returns a specific hidden
variable model, for which we can readily compute the
mutual information.

BILOCALITY SCENARIO

In LHV models for multipartite Bell scenarios, it
is usually assumed that the same hidden variable is
shared among all the parties. That is, a Bell inequal-
ity violation rules out any shared LHV. However, in
quantum information protocols it is often the case that
different parties receive particles produced by indepen-
dent sources, e.g. in quantum networks [9–13]. It is then
natural to focus on LHV models which reproduce the
independence structure of the sources. That is, each
hidden variable can only be shared between parties re-
ceiving particles from the same source. Such models
are weaker than general LHV models, i.e. they form a
subset of all the models where the hidden variables can
be shared arbitrarily among the parties.

A particular case is an entanglement swapping sce-
nario [14] involving three parties A, B and C which
receive entangled states from two independent sources.
The DAG of Fig. 1f shows an LHV model with indepen-

dent variables for this scenario. The assumption that
the sources are independent, p(λ1, λ2) = p(λ1)p(λ2), is
known as bilocality [15, 16]. With this assumption, in
analogy with the usual LHV decomposition (see equa-
tion (2) in the main text), the correlations for this sce-
nario must fulfil

p(a, b, c|x, z) = ∑
λ1,λ2

p(λ1)p(λ2) (26)

p(a|x, λ1)p(b|λ1, λ2)p(c|z, λ2).

Note that the set of bilocal correlations is non-convex
because of the nonlinearity of the bilocality assumption.
This makes the set extremely difficult characterize [10,
15–19]. In the following, we introduce a measure of
relaxation of bilocality, and we show that, despite the
non-convex nature of the measure, it can nevertheless
be computed by means of a linear program.

For fixed numbers mx, mz and oa, ob, oc of the in-
put x, z and output a, b, c values, there is a finite
number n = omx

a obomz
c of deterministic strategies. We

can label the deterministic strategies for a by symbols
ᾱ = α0, . . . , αmx where αx is the value of a when the
input is x. Similarly, we label the functions for b by
β and for c by γ̄ = γ0, . . . , γmz . Thus, the distribution
over the deterministic strategies can be identified with
an n-dimensional vector q, analogous to the case in the
main text for usual LHV models. The vector q then has
components qᾱ,β,γ̄. Defining the marginals

qac
ᾱ,γ̄ = ∑

β

qᾱ,β,γ̄

qa
ᾱ = ∑

β,γ̄
qᾱ,β,γ̄, qc

γ̄ = ∑
β,ᾱ

qᾱ,β,γ̄,
(27)
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the bilocality assumption is equivalent to the require-
ment

qac
ᾱ,γ̄ = qa

ᾱqc
γ̄. (28)

In analogy with the measure of measurement depen-
dence, the degree of non-bilocality can be measured by
how much the distribution over the LHVs fail to com-
ply with this criterion. We define the measure of non-
bilocality as

MBL = ∑̄
α,γ̄
|qac

ᾱ,γ̄ − qa
ᾱqc

γ̄|. (29)

ClearlyMBL = 0 if and only if the bilocality constraint
is fulfilled.

The non-bilocality measure is quadratic in the dis-
tribution over the the deterministic strategies. Thus,
it is not obvious that linear programming will be
helpful in computing MBL or that the computation
can be made efficient. However, we notice that, for
given observed correlations, there are restrictions on the
marginals qa

ᾱ and qc
γ̄ imposed by the observed distribu-

tion p(a, b, c|x, z) because of the constraint (26) that the
LHV must reproduce the observations. This constraint
can be written

p(a, b, c|x, z) = ∑
ᾱ,β,γ̄

δa,αx δb,βδc,γz qᾱ,β,γ̄. (30)

Depending on the observed distribution, there may be
no or just a few free parameters ν which determine qa

ᾱ =
fᾱ(ν). We can then rewriteMBL as

MBL(ν) = ∑̄
α,γ̄
|qac

ᾱ,γ̄ − fᾱ(ν)qc
γ̄|. (31)

For fixed ν the measure MBL(ν) is linear and its min-
imum can be found via a linear program, as we now
show.

As previously, the first step is to writeMBL(ν) as an
`1-norm. For a given value of ν, we can write

MBL(ν) = ∑̄
α,γ̄
|∑

β

qᾱ,β,γ̄ − fᾱ(ν) ∑
ᾱ′ ,β

qᾱ′ ,β,γ̄| (32)

= ∑̄
α,γ̄
| ∑

ᾱ′β′γ̄′
Mν

ᾱγ̄,ᾱ′β′γ̄′qᾱ′β′γ̄′ | (33)

= ‖Mνq‖`1 , (34)

where Mν is a matrix of dimension l × n, with l =
omx

a omz
c and entries Mν

ᾱγ̄,ᾱ′β′γ̄′ = δᾱ,ᾱ′δγ̄,γ̄′ − fᾱ(ν)δγ̄,γ̄′

(where δᾱ,ᾱ′ = δα0,α′0
· · · δαox ,α′ox

etc.). Minimisation of
MBL(ν) for given, observed correlations p(a, b, c|x, z) is
then equivalent to

minimize
q∈Rn

‖Mνq‖1

subject to Aq = p

〈1n, q〉 = 1

q ≥ 0n,

(35)

where p is the k-dimensionsal vector representing the
observed correlations, with k = oaobocmxmz, and A is a
k× n matrix which encodes the constraint (30) that the
LHV must reproduce the observations. The entries of
A are Aabcxz,ᾱβγ̄ = δa,αx δb,βδc,γz . From Theorem 6, the
minimisation (35) is equivalent to the linear program

minimize
t∈Rl

〈1l , t〉

subject to − t ≤ Mνq ≤ t,

Aq = p,

〈1n, q〉 = 1,

q ≥ 0n

(36)

Thus, minimisingMBL(ν) for fixed ν is indeed a linear
program. To find the minimum of the measure MBL
we must minimise also over ν and hence we have an
optimisation over a linear program. In order to verify
non-bilocality of a given distribution we need to check
that the minimum over ν is non-zero, or equivalently
that the minimum ofMBL(ν) is non-zero for all values
of ν in the allowed range. On the other hand, if we
find a value of ν such thatMBL(ν) = 0 this is sufficient
to show that the distribution is bilocal (and as a by-
product we get an explicit bilocal decomposition).
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Abstract
Wegive bounds on the average fidelity achievable by any quantum state estimator, which is arguably
themost prominently used figure ofmerit in quantum state tomography.Moreover, these bounds can
be computed online—that is, while the experiment is running.We shownumerically that these
bounds are quite tight for relevant distributions of densitymatrices.We also show that the Bayesian
mean estimator is ideal in the sense of performing close to the boundwithout requiring optimization.
Our results hold for allfinite dimensional quantum systems.

1. Introduction

Inferring a quantummechanical description of a physical system is equivalent to assigning it a quantum state—a
process referred to as tomography. Tomography is now a routine task for designing, testing and tuning qubits in
the quest of building quantum information processing devices [1]. In determining how ‘good’ one is performing
this task, afigure ofmeritmust be reported. By far themost commonly used figure ofmerit for quantum states is
fidelity [2, 3]. Nowadays,fidelity is used to compare quantum states and processes in awide variety of tasks,
fromquantum chaos to quantum control to the continuousmonitoring of quantum systems [4–10]. The only
known casewhere the optimal estimator forfidelity is known is a single qubit [6].We generalize this result to
find upper and lower bounds on the average fidelity of any estimator for any dimension.

For d-dimensional state space,

L : 0, Tr 1 , 1d{ }( )( )≔ ( )  s s sÎ =

the fidelity between two states , r s Î is defined to be [2, 3],

F , Tr . 21
2 2( ) ≔ ( )⎡⎣ ⎤⎦r s r s rs r= 

Define the average fidelitywith respect to somemeasure dρ as F ,[ ( )] r sr
6.Wewant the average of this to be as

large as possible. Thus, the problem can be succinctly stated as follows:

Fmaximize ,

subject to Tr 1,

0. 3

[ ( )]
( )

( )





r s
s

s
=

r

In the context of tomography, we think of ρ as the ‘true state’ andσ as the estimated state. An estimator is a
function from the space of data to quantum states : ,( ) data datas s Î where data are the results of a
sequence of quantummeasurements. Since both the true state and data are unknown, we take the expected value
with respect to the joint distribution of ,( )datar to obtain the average fidelity:
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f F , . 4,( ) [ ( ( ))] ( ) datadatas r s= r

Wewant this to be as large as possible. The estimator whichmaximizes this quantity is equivalent to the
estimatormaximizing the following posterior average fidelity for every data set:

f , . 5( ∣ ) [ ( ( ))] ( )∣data F datadatas r s= r

An estimator whichmaximizes this is called aBayes estimator7. Bayes estimators are useful both to understand
Bayesian optimality and to provide upper bounds for theworst case performance.

Nowhere is the subtle and important point: themeasurements performed, the data themselves and the
distribution fromwhich theywere generated are not important once the posterior distribution has been
calculated. If we know the solution for everymeasure dρ, thenwe know the solution for the posteriormeasure
d .∣datar For brevity, then, wewill drop this conditional information fromnowon and the problem reduces
again to (3).

2. Summary of results

In this work, we provide absolute benchmarks for the average fidelity performance of any tomographic
estimation strategy byway of upper and lower bounds. This is important because, in thefield of quantum
tomography, a common theme is to compare estimators. Up to datemany options are available: linear inversion
[1], maximum likelihood [12], Bayesianmean [13], hedgedmaximum likelihood [14], and compressed sensing
[15, 16]—to name a few.Often estimators are compared by simulatingmeasurements on ensembles of states
drawn according to somemeasure and averaging the fidelity. This can only provide conclusions about the
relative performance of estimators. Thus, our bounds can be used to benchmark the fidelity performance of
other candidate estimators.

We complement our theoretical findings with numerical experiments. These demonstrate the relative
tightness of our bounds and, in particular, reveal that the Bayesianmean estimator is an excellent choice—owing
to its near-optimal performance and ease of implementation. Importantly, both themean of the distribution
and our bounds can be computed online—that is, the estimator and its performance can be computedwhile data
is being taken. In the context of Bayesian quantum information theory [13], ourfindings lend credence to the
standard approach of using themean of the posterior distribution as an estimator is a near-optimal one.

We note that this problemhas been solved for the case of a single qubit (d= 2). Bagan et al [6] have given the
optimal estimator (andmeasurement!) for any isotropic priormeasure. Unfortunately, bymaking heavy use of
the Bloch representation of a qubit, themethods do not generalize.Whereas, our bound holds for all
distributions of states in any dimension and coincides with the results of [6] for the case of a single qubit.

2.1. Ensembles of pure states
Wefirst present the analytically soluble case ofmeasures supported only on pure states. Such a case is common
in theoretical studies which average the performance of their protocols over the popular choice of the unique
Haar invariantmeasure on pure states. The solution is organized into the following theorem:

Theorem1.Choose an arbitrary dimension d and assume that the integrationmeasure d ρ is supported only on pure
states. Then, the state which solves the optimization problem (3) is the eigenvector of [ ] rr withmaximal eigenvalue.

It achieves amaximal fidelity of .[ ] rr ¥

The proof is a simple exercise in linear programming.When ρ is a pure state, the fidelity simplifies to
F(ρ,σ)=Tr(ρσ). Linearity allows us to bring the expectation inside the trace so that the problembecomes

maximize Tr

subject to Tr 1,

0. 6

( [ ] )
( )

( )





r s
s
s

=
r

The solution can be found inmany textbooks covering linear programming—e.g. [17]. This solution also
coincides with the one noted for a distribution supported on two states in [18].

2.2. Generalmeasures onmixed states
Formeasures with support onmixed states, the situation ismarkedly different. Ourmain technical contribution
are new upper bounds for this case.We obtain themby replacing the fidelity function—which is notoriously

7
The terminology and objective functions used here can be seen as standard generalizations of those familiar in decision theory. See,

e.g., [11].
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difficult to grasp—in themain optimization problem (3) by quantities that are easier to handle in full generality.
One rather straightforward approach to do so is to relate the fidelity function f (ρ,σ) between arbitrary states

, r s Î to corresponding Schatten-p-normdistances

Tr ,p
p

p1( )( )∣ ∣r s r s- = - 

with p1   ¥ and X X X∣ ∣ *= for any X L .d( )Î This can be done by employing thewell-known and
often used Fuchs–van deGraaf inequalities [19]

F F1 ,
1

2
1 , , .1( ) ( )  r s r s r s r s- - - " Î 

This inequality together with the hierarchy of Schatten-p-norms assures

F , 1
1

4
1

1

4
, 71

2
2
2( ) ∣ ( ) r s r s r s- - - -

for any two quantum states , .r s Î Replacing the objective function in the central optimization problem (3)
by such an upper bound results in a different optimizationwhich admits a general analytic solution. Clearly,
such a relaxed optimumbounds the originalfigure ofmerit from above and allows us to establish our second
main result.

Theorem2. For any finite dimension d and any distribution d ρ, themaximal average fidelity achieved by any
estimator s Î obeys

Fmax , 1
1

4
Tr . 82 2( )[ ( )] [ ] ( )⎡⎣ ⎤⎦


   r s r r- -

s
r r r

Î

Note that the expression on the right-hand side of (8) can be interpreted as a non-commutative generalization of
the variance of a probability distribution. Having already outlined themain ideas necessary to establish such a
result, we refer to section 4.2 for a complete proof.

Another way of establishing upper bounds on the average fidelity involves the concept of super-fidelity,
which provides the following upper bound on the fidelity [20]:

F , Tr 1 Tr 1 Tr . 92 2( ) ( )( ) ( ) ( )r s rs r s+ - -

Althoughmore involved, we shall see that such an approach yields strictly better bounds than the ones presented

in Theorem2. For brevity, we define ˆ ≔ [ ]r rr and p 1 Tr ,2≔ ( )⎡⎣ ⎤⎦ r-r r such that inequality (9) assures

F pmax , max Tr 1 Tr , 102( )( ) ( )[ ( )] ˆ ( )
 
 r s rs s+ -

s
r

s
r

Î Î

for any distribution d ρ. Althoughmore tractable than the original problem, the optimization on the right hand
side still requires solving a non-commutativemaximization over all quantum states .s Î However, applying a
corollary of the famous Birkhoff–vonNeumann theorem—see e.g. [21, theorem 8.7.6]—allows for restricting
this optimization to density operatorsσ that commutewith the distribution’smean r̂—see lemma 1 below. If
r r, , d1̂ ˆ¼ denote the eigenvalues of r̂ such a restriction assures that solving the right-hand side of (10) is
equivalent to

r s p s

s

s i d

maximize 1 ,

subject to 1,

0, 1 , 11

i

d

i i
i

d

i

i

d

i

i

1 1

2

1

ˆ

( )  

å å

å

+ -

=

r
= =

=

which is a commutative convex optimization problem.We refer to lemma 1 below for a detailed proof of this
assertion.Note that, if themeasure d ρ is supported exclusively on pure states, pρ vanishes and (11) reduces to
theorem1which is tight.

In order to obtain analytical bounds formixed states, we further relax (11) by replacing the non-negativity
constraints (s 0i  ) by theweaker demand that the optimization vector s s, , d

T d
1( ) ¼ Î is contained in the

Euclidean unit ball—i.e. s 1.
i

d
i1
2 å = Aswe shall show in section 5, such a simplification is the tightest possible

ellipsoidal relaxation of (11) and allows us to apply themethod of Lagrangianmultipliers in a straightforward
fashion.Doing so results in themain theoretical statement of this paper.
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Theorem3. For any finite dimension d and any distribution d ρ over states, the fidelity achieved by any estimator
s Î is bounded from above by

F
d

d d,
1

1 1 1 Tr Tr 1 . 122
2

2( ) ( )[ ( )] [ ] ( )
⎛
⎝
⎜⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟   r s r r+ - - + -r r r

Thematrix achieving this optimum corresponds to

d

d

d p d

1 1

Tr 1

1
, 13

2 2( )( )ˆ
ˆ ( )⎜ ⎟⎛

⎝
⎞
⎠s

r
r= +

-

+ -
-

r

 

where L d( )Î denotes the identitymatrix.

Again, we content ourselves herewith outlining the proof architecture necessary to establish such a result
and refer to section 4 for a detailed analysis.

Note that sincewe relaxed themaximization constraints, s in general fails to be positive-semidefinite and is
thus not a valid density operator, thoughwe do not use it as such. In particular, the bound is not tight when dρ is
supported only on pure states—asmight be evident from the possibility of non-positive states arising from the

d

1( )r̂ -  term in (13). On the other hand, the distribution is known and thus in the case of a distribution
supported only on pure states, one should consult the exact solution in theorem1.

Conversely, if s happens to be a state, it also solves the optimization (11) and the analytical bound (12)
exactly reproduces an a priori tighter one. In all of our numerical experiments, some ofwhich are presented
below, this was indeed the case.

It is alsoworthwhile to point out that super-fidelity—the bound in (9)—and the actualfidelity coincide for
one qubit, i.e. for d=2 [20]. Also replacing positive semidefiniteness by bounded purity yields the same feasible
set for that particular case. Consequently the bound (12) reproduces one of themain results in [6]:

Corollary 1. In the single-qubit case (i.e. d=2) the bound (12) exactly reproduces themaximumaverage fidelity in
[6, equation (2.9)] and s is the optimal estimator.

Finally, wewant to emphasize that establishing bounds on the average fidelity by using the super-fidelity
instead of the Fuchs–van deGraaf inequalities leads to strictly better results:

Corollary 2. Let the dimension d and the distribution d r over states be arbitrary. Then, the bound presented in
section 2 (Fuchs van–deGraaf inequality) is either trivial—i.e. equal to one—or it strictlymajorizes the one presented
theorem 3 (super-fidelity).

3.Numerical experiments

Note that fidelity achieved by any estimator is a lower bound on the one achieved by the optimal estimator. A
particularly convenient and generally wellmotivated [18] estimator is themean of the distribution .ˆ [ ]r r= r
Ourfindings underline that for distributions of states relevant to tomography, themean is very near-optimal. In
the context of tomography themean is furthermore arguably themost convenient estimator, since every other
quantity of interest requires its calculation anyway.

Finding an analytical expression for the posterior distribution is a very challenging problem, let alone
performing themultidimensional integrals required for the calculation of the expectations above. Thus, we turn
to numerics. In particular, we use the sequentialMonte Carlo (SMC) algorithm,which has been successfully
applied to quantum statistical problems in the context of dynamical parameter estimation [22–24] and quantum
state estimation [25–27]. Also, this algorithm is available as an open-source implementation in python [28].

Employing SMCallows us to perform the Bayesian updating and averaging. A complete and detailed
discussion of the algorithm appears in [23] and thuswewill not repeat the details here, but wewill sketch the
idea. The algorithm starts with a set of quantum states ,j j

n
0{ }r = the elements of which are called particles. Here,

n j∣{ }∣r= is the number of particles and controls the accuracy of the approximation. By approximating the
prior distribution by aweighted sumofDirac delta-functions,

wPr , 14
j

n

j j
1

( ) ( ) ( )år d r r» -
=
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Bayes’ rule then becomes

w Pr , 15j j j( ∣ ) ( )data wr

followed by a normalization step. The SMCalgorithm is designed to approximate expectation values, such that

f w f , 16
j

n

j j
1

[ ( )] ( ) ( ) år r»r
=

for any function f. In otherwords, the SMCalgorithm allows us to efficiently compute themultidimensional
integrals with respect to themeasure defined by the posterior probability distribution.We use this algorithm, as
implemented by [28], to numerically compute averages arising in simulated tomography experiments. By doing
so, we explore the efficacy of our claims for a variety of distributions relevant to practice and found natural in
experimentation.

Recall the sharp distinction betweenmeasures supported on pure states and thosewith full support.We use
the fact that theorem1 provides uswith the optimal estimator in the former case to lend support to the claim that
themean estimator is a good candidate for a computationally simple, yet still near-optimal, alternative to solving
the optimization problem in general. Infigure 1, we present the results of numerical simulations on two qubits.
Plotted is the average fidelity achieved by the optimal estimator (see theorem1) and themean estimator .[ ] rr
The average is takenwith respect to a distribution that begins as theHaar invariantmeasure on pure states and is
updated through simulatedmeasurement data, where themeasurement is the ‘uniformPOVM’ consisting of all
pure states, distributed uniformly according to theHaarmeasure. For independentmeasurements—i.e. local,
non-adaptive ones—thismeasurement is optimal [29, theorem3.1].We see that themean estimator’sfidelity
tracks the optimal fidelity quite well.

Infigure 2, we plot the average fidelity of themean estimator against our bound (12) formeasures supported
also onmixed quantum states. Again, we simulatemeasurement data to get an accurate sense of howwell the
average fidelity of themean estimator performswith respect to our bound for distributions relevant to
tomography. In this case, the prior distribution is either theHilbert–Schmidtmeasure (left column), or the
arcsine andBures distributions [30] for two qubits (right column). In each case,many other natural distributions
appear as we update our prior through Bayes’ rule.We see again that themean estimator is a ‘good’ estimator in
that it comes close to the bound on the optimal fidelity and is the easiest non-trivial average quantity to evaluate.

4. Proofs

In this sectionwe provide detailed derivations and proofs of the statements presented in section 2.

4.1. A detailed proof of theorem2
Recall that in theorem2we have claimed that the bound

Fmax , 1
1

4
Tr , 172 2( )[ ( )] [ ] ( )⎡⎣ ⎤⎦


   r s r r- -

s
r r

Î

is valid for any prior distribution d ρ. In order to derive such a statement, we start with inequality (7)

F , 1
1

4
,2

2( ) r s r s- - 

which is a direct combination of the Fuchs–van deGraaf inequalities and the norm inequality .2 1· ·    As
such it is valid for any two states , r s Î which in turn assures that it remains valid upon taking expectations

Figure 1.The average fidelity as a function of the number of single-shotmeasurements of theHaar uniformmeasurement. The prior
distribution is here is also theHaar uniformmeasure on two qubits. The lines are themedians and shaded areas the interquartile
ranges over 100 trials.
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over d ρ on both sides:

F , 1
1

4
. 182

2[ ( )] ( )⎡⎣ ⎤⎦  r s r s- -r r  

Moreover, we can optimize overσ on both sides to obtain

Fmax , 1
1

4
min . 192

2[ ( )] ( )⎡⎣ ⎤⎦
 
  r s r s- -

s
r

s
r

Î Î
 

Theminimumon the right-hand side can in fact be calculated analytically. To this end, we define the function

f Tr 2 Tr Tr .2
2 2 2( ) ( ) ( )( ) ≔ [ ]⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  s r s r r s s- = - +r r r 

Note that f (σ) is convex, because it corresponds to aweighted average of convex norm-functions 2
2s r-  and

itsmatrix-valued derivative corresponds to

f 2 2 . 20( ) [ ] ( )s r s¢ = - +r

This derivative vanishes if and only if [ ] s r= r holds and convexity of f(σ) implies that this critical state
corresponds to the uniqueminimum. The corresponding function value amounts to

f Tr Tr 212 2( )( ) ( )[ ] ( )⎡⎣ ⎤⎦  s r r= -r r

and reinserting this globalminimum into (19) yields the desired bound (17).

4.2. A detailed derivation of theorem3
Ourmain theoretical statement—theorem 3—follows from a three step procedure whichwas already briefly
outlined in section 2.

Thefirst step invokes the concept of super-fidelity [20]which assures

F pmax , max Tr 1 Tr ,2( )( ) ( )[ ( )] ˆ
 
 r s rs s+ -

s
r

s
r

Î Î

with ˆ [ ]r r= r and p 1 tr 2( )⎡⎣ ⎤⎦ r= -r r for any distribution dρ. As it turns out, the optimization on the

right-hand side of this equation ismuchmore tractable than the original problemon the left-hand side. This is
manifested by the following technical statement which is a direct consequence of the celebrated Birkhoff–von
Neumann theorem.

Figure 2.These plots depict the average fidelity as a function of the number of single-shotmeasurements of theHaar uniform
measurements. First column: the prior distribution is here isHilbert–Schmidtmeasure on two and three qubitmixed quantum states.
Second column: the prior distribution for the upper plot is theArcsine distributionwhile for the lower plot theBures distributionwas
used—both are supported on two qubitmixed quantum states (again, see [30] for a review of distributions of densitymatrices). In all
cases, the solid lines are themedians and shaded areas illustrate the interquartile ranges over 100 trials.

6

New J. Phys. 17 (2015) 123013 RKueng andCFerrie

278



Lemma1. Fix any p 0r and suppose that ˆ r Î is an arbitrary density operator with eigenvalue decomposition

r b b .
i

d
i i i1

ˆ ˆ ∣ ∣år = ñá= Then the optimization

pmaximize Tr 1 Tr ,

subject to 0, Tr 1 22

L

2
d

( ) ( )( )
ˆ

( ) ( )


rs s

s s

+ -

=

s
r

Î

is equivalent to solving

r s p s

s

s i d

maximize 1 ,

subject to 1,

0 1 . 23

s s i

d

i i
i

d

i

i

d

i

i

, , 1 1

2

1

d1

ˆ

( )  


å å

å

+ -

=

r
¼ Î = =

=

Moreover, there is a one-to-one correspondence between any feasible array s s, , d1( )¼ of this problem and the density
operator s b b .i

d
i i i1˜ ∣ ∣s = å ñá=

Proof.At the heart of this statement is an immediate corollary of the Birkhoff–vonNeumann theorem—see e.g.
[21, theorem8.7.6]. For d×dHermitianmatrices ρ,σ this corollary assures

r sTr , 24
i

d

i i
1

( ) ( ) års
=

where ri and si denote the eigenvalues of ρ andσ, respectively, arranged in non-increasing order. If r̂ has
eigenvalue decomposition r b b ,i

d
i i i1ˆ ˆ ∣ ∣r = å ñá= the right-hand side of (24) corresponds to Tr ( ˆ ˜ )rs where

s b b .i
d

i i i1˜ ∣ ∣s = å ñá= Clearly, if s Î was a quantum state to beginwith, so is ,s̃ because the spectra ofσ and s̃
coincide.Moreover, such a definition assures that both states have equal purity, i.e. Tr Tr .2 2( ) ( ˜ )s s=
Consequently, for any feasible pointσ of the optimization (22), there is a s̃ of the above formwhich admits a
larger value in the optimization. Inserting the particular formof s̃ into this program results in (23). ,

In order to arrive at the bound presented in theorem3, we employ onemore relaxationwhich is going to
allowus to solve the resulting problem analytically in full generality. To be concrete, we replace the non-
negativity constraints (s 0i  ) in (23) by theweaker demand that the optimization vector s s, , d

T d
1( ) ¼ Î is

contained in the Euclidean unit ball—i.e. s 1.
i

d
i1
2 å = Note that we explore the geometric properties of such a

relaxation in section 5. In a nutshell it corresponds to the tightest possible elliptical relaxation of the feasible set
in (22). By doing so, we arrive at the problem

r s p s

s s

maximize 1 ,

subject to 1, 1, 25

s s i

d

i i
i

d

i

i

d

i
i

d

i

, , 1 1

2

1 1

2

d1

ˆ

( )


å å

å å

+ -

=

r
¼ Î = =

= =

which can be solved analytically via themethod of Lagrangianmultipliers:

Lemma2. Let r r, , d1̂ ˆ¼ denote the eigenvalues of any density operator and fix pρ>0. Then the problem (25) has a
unique solution. The optimal value corresponds to

d
d d p

1
1 1 Tr 12 2( )( )ˆ⎜ ⎟⎛

⎝
⎞
⎠r+ - + -r

and the array s s, , d1( ) ¼ achieving this optimum corresponds to the particularmatrix

d

d

d p d

1 1

Tr 1

1
. 26

2 2( )( )ˆ
ˆ ( )⎜ ⎟⎛

⎝
⎞
⎠s

r
r= +

-

+ -
-

r

 

Note that this result together with the relaxations outlined in this section immediately implies theorem 3upon
inserting the definitions of pρ and .r̂ The assumption pρ>0 is furthermore non-critical, because, by definition,
pρ=0 if and only if d ρ is supported exclusively on pure states. This particular case, however, is already fully
covered by theorem 1.
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Proof of lemma 2.Throughout this proof we shall represent the eigenvalues of the density operator r̂ as a vector
r r r, , .d

T d
1(ˆ ˆ ) = ¼ Î Likewise we shall encompass the scalar optimization variables si in the vector s .dÎ

Furthermore, let 0 0, , 0 T( )= ¼ and 1 1, , 1 T( )= ¼ denote the ‘all-zeros’ and ‘all-ones’ vectors on ,d
respectively. For x y, ,dÎ wewill alsomake use of the standard inner product x y x y,

i

d
i i1åá ñ = = and the

vectorial inequality x y shall indicate component-wise inequality, i.e. x yi i for all i d1 . 
In such a vectorial form, the optimization problem (23) corresponds to

s r s s s

s s

s s

f p

g 1

maximize , 1 , ,

subject to , 0.

, 1. 27

( )

( )
( )

= á ñ + - á ñ

= á ñ =
á ñ

r

Note that (27) is a convex optimization problem, as it requiresmaximizing a concave function over a convex
set. As such, it has a uniquemaximum.Oneway offinding thismaximum is to apply standard techniques such as
theKarush–Kuhn–Tuckermultipliermethod [17]which are designed to take into account the inequality
constraint (28).

However, here we opt for a less direct but considerablymore convenient and less cumbersome approach: we
ignore the inequality constraint in (27) for now and employ the standard technique of Lagrangianmultipliers
(for equality constraints) in order tofind the unique critical point s of the optimization. In a second step, we are
going to verify that this vector strictly obeys the additional inequality constraint, we have ignored so far, i.e.
s s, 1. á ñ < This in turn implies that said inequality constraint is not active at the critical pointwhich in retrospect
confirms thatwewere in fact right to ignore it in thefirst place. Finally, the fact thatwe face a convex optimization
problemassures that this unique critical point indeed yields the sought for globalmaximumof (27).

In order tofind the critical point s in questionwe define the Lagrangian function

s s sL f g , 28( ) ( ) ( ) ( )l= +

wherewe have—as already announced—ignored the inequality constraint s s, 1.á ñ As a consequence, l Î
denotes the single Lagrangianmultiplier associatedwith the remaining normalization constraint. The necessary
condition for an optimal solution of (27) then reads

r
s

s s

p
1 0

1 ,
. 29( )l-

- á ñ
+ =r

Taking the inner product of this vector-identity with the ‘all-ones’ vector 1 results in

r
s

s s

p

s s

p
d1 0 1

1
1 10 , ,

,

1 ,
, 1

1 ,
, 30( )l l= á ñ = á ñ -

á ñ

- á ñ
+ á ñ = -

- á ñ
+r r

wherewe have used r r1, Tr 1i
n

i1ˆ ( ˆ )rá ñ = å = == and the normalization constraint, which likewise assures

s1, 1.á ñ = This equation allows us to replace s s1 ,- á ñ by
p

d1 l+
r and reinserting this into (29) results in the

equivalent vector equation

r sd 1 01 . 31( ) ( )l l- + + =

This can be readily inverted to yield

s r
d

1
1

1
. 32( ) ( )

l
l=

+
+

In order to determine the value ofλ, we revisit (30)which in combinationwith (32) demands

s s r r rp d d

d d d

1 1 11 1 , 1 , 2 , ,

1 2 1 1 Tr , 33

2 2 2 2

2 2( )
( ) ( ) ( )

( ) ( ) ˆ ( )

l l l l

l l r

= + - á ñ = + - á ñ - á ñ - á ñ¢

= - + - + -

r

wherewe have oncemore used r1, 1á ñ = aswell as r r r, Tr .i
n

i1
2 2ˆ ( ˆ )rá ñ = å == This results in the quadratic

equation

d d d
p

2 1

1
Tr 1 , 342 2 2( )( )( )

ˆ ( )l l r+ -
-

+ -r

forλwhose two possible solutions correspond to

d

d p

d

1
1

Tr 1

1
. 35

2 2( )( )ˆ
( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
l

r
= -

+ -

-
r
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Note that the argument of the square-root is non-negative, because the purity Tr 2( ˆ )r of any quantum state is
lower-bounded by 1/d. Also, the second solutionλ− is vacuous, since it leads to an immediate contradiction.
Indeed, it follows by inspection thatλ−<−1/d holds. Togetherwith (30) this implies the contradictory
relation

s s
p

d
1 ,

1
0, 36( )

l
- á ñ =

+
<r

-

because pρ is positive by assumption.
Consequently we are left with onemeaningful valueλ+ for the Lagrangianmultiplier and inserting it into

(32) yields the unique critical solution

s r
d

d

d p d
1 1

1 1

Tr 1

1
. 37

2 2( )( )ˆ
( )⎜ ⎟⎛

⎝
⎞
⎠

r
= +

-

+ -
-

r

Recall that throughout this proof we are exploiting a one-to-one correspondence between vectors
s s s, , n

T d
1( ) = ¼ Î and hermitian d×d-matrices s b b

i

n
i i i1
∣ ∣ås = ñá= that commutewith .r̂ Consequently,

the critical vector s corresponds to the criticalmatrix presented in (26).
Plugging the critical point s into the objective function sf ( ) furthermore yields the corresponding critical

function value

s r s s s
r r r

f p
d

p

d

d p d

d d

d

d p

d d
d d p

1
, 1 ,

, ,

1 1

Tr 1 1

1
,

1
1

Tr 1

1

1
1 1 Tr 1 , 38

2

2 2

2 2

2 2

( )
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( )
( )

( ) ( )

ˆ

ˆ
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⎛

⎝
⎜⎜⎜

⎞

⎠
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⎞
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l

r

l
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+
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+

= +
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r
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+ +

+

+
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wherewe have oncemore replaced s s1 , - á ñ+ + by
p

d1( )l+
r

+
and combined thatwith the fact that

d1
d p

d

Tr 1

1

2 2( )( )
( ˆ )

l+ =
r

+
+ -

-
r

holds.

With such a unique critical point s at hand, we are now ready to show that it strictly obeys the inequality
constraint s s, á ñwehave ignored so far. By employing the same equalities we have used in the previous
paragraph, we can readily establish such a claim:

s s s s
p

d
, 1 1 , 1

1
1. 39

2

2) ( )
( ( )   

l
= - - = -

+
<r

+

The strict inequality on the right follows from the fact that pρ>0 holds by assumption. This indeed establishes,
that s is also a critical point of the optimization problem (27). Since this optimization corresponds to
maximizing a concave function over a convex set, the unique critical point smust correspond to the unique
maximumof (27). ,

4.3.Detailed proofs of corollary 1 and corollary 2
Weconclude the proof sectionwith providing detailed proofs of the remaining statements, namely that section 3
reproduces themain result in [6] for the particular case of a single qubit, i.e. d=2 (corollary 1) that the bounds
presented in theorem 3 are strictly better than the ones outlined in theorem 2 (corollary 2).

Proof of corollary 1.We start this section by pointing out that in the particular case of dimension d=2, the two
relaxations we have employed in the previous subsection are not relaxations at all. Indeed, for dimension two,
fidelity and super-fidelity coincide, andmoreover the sets y y y y y y, : 1, , 0T

1 2
2

1 2 1 2{ }( )  Î + = and

y y y y y y, : 1, 1T
1 2

2
1 2 1

2
2
2{ }( )  Î + = + coincide (this one-to-one correspondence is illustrated infigure 3

below). These low-dimensional equivalences assure that all the relaxations employed in the derivation of
theorem3 are actually tight. Consequently, in this particular low-dimensional case, we solve the actual problem
of interest.
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For deducing the claimed statement from this fact, we consider equation (2.9) in [6]:

F V
1

2
1 . 402 ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å= +

c
c 

Hereχ simplymeans the the data generated via themeasurement. The vectorVχ is defined as follows:

V rPr , 41[ ( ∣ )] ( ) c r=c r

where r is related to the usual Bloch vector r x y z, ,( )= via

r rr 1 , . 422
2( ) ( )= -  

Wepoint out that this F is not the same average fidelity we have considered but the following quantity (which
corresponds to our equation (4) above):

F Fmax , . 43( ( ) ( )∣
⎡⎣ ⎡⎣ ⎤⎦⎤⎦  r s c=

s
r c r

Note however that, by employing Bayes’ rule, this is equal to

F Fmax , , 44[ ( ( )] ( )∣
⎡⎣ ⎤⎦  r s c=

s
c r c

and thusmaximizing the posterior average fidelity is equivalent tomaximizing the total average fidelity. Our
bound applies directly to the former but trivially extends to the latter.

Thus, to establish corollary 1, we need to extract the posterior average fidelity from the expressions above.
First, using Bayes’ rule, we calculate

V rPr . 45( ) ( )∣
⎡⎣ ⎤⎦c=c r c

Using the fact that r 2 Tr 12
2 2( )r= -  and

rTr
1

2
1 , 462

2

2( )( )[ ] [ ] ( )∣ ∣ r = +r c r c

wefind

V Pr 2 1 Tr 2 Tr 1 . 472
2 2 2

2
2( ) ( )( ) [ ] ( )∣ ∣

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟ c r r= - + -c r c r c 

Plugging this back into (40), we have

F
1

2
1 Pr 2 1 Tr 2 Tr 1 , 482

2
2( ) ( )( ) [ ] ( )∣ ∣

⎛
⎝
⎜⎜ ⎡

⎣⎢
⎤
⎦⎥

⎞
⎠
⎟⎟ å c r r= + - + -

c
r c r c

1

2
1 2 1 Tr 2 Tr 1 , 492

2
2( ) ( )[ ] ( )∣ ∣

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟  r r= + - + -c r c r c

Figure 3.Geometric relation between the standard simplexΔd−1 and its outer approximation d 1D - : geometrically, the latter set
corresponds to theminimumvolume outer ellipsoid of the standard simplex. The figure illustrates this relation for dimensions d=2
and d=3.Note that for d=2, the two sets coincide.
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1

2
1 2 1 Tr 2 Tr 1 . 502

2
2( ) ( )[ ] ( )∣ ∣

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜ ⎡

⎣⎢
⎤
⎦⎥

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥  r r= + - + -c r c r c

Thus, implied by the results of [6], themaximumposterior average fidelity (dropping theχ for parallelism) is

Fmax ,
1

2
1 2 1 Tr Tr 1 . 512

2
2( ) ( )[ ( )] [ ] ( )

⎛
⎝
⎜⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟  r s r r= + - + -

s
r r r

This coincides with ourmain result (12) for dimension d=2. ,

Proof of corollary 2. For notational simplicity, let us introduce the short-hand notation

s Tr Tr , 522 2( ) ( )≔ [ ] ( )⎡⎣ ⎤⎦ r r-r r r

such that the bound presented in theorem2 simply reads F
s

max , 1
4

.[ ( )] r s -s r
r

Î Note furthermore

that s0 1 r holds. As alreadymentioned, the lower bound follows from invoking Jensen’s inequality, while
the upper bound is a simple consequence of the fact that the purity of any state is atmost one. A vanishing sρ
would correspond to a trivial Fuchs–van deGraaf bound of onewhich is the first case instance covered by
corollary 2. Thereforewe can fromnowon safely assume that sρ>0 holds. Under this assumptionwe prove the
second claimby startingwith the bound presented in theorem3 andupper-bounding it via a chain of inequalities
whichwill ultimately lead to the bound presented in theorem2. Indeed, pick any dimension d and an arbitrary
distribution d ρ over states. Then Jensen’s inequality assures

1 Tr 1 Tr , 532
2

2( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦  r r- -r r

and the right-hand side of expression (12) in theorm3 can be upper-bounded by

d

d

d
d ds

1 1
1 , 54( )+

-
- - r

because the square root function ismonotonically increasing on the positive reals. Adding and subtracting sρ in
the last square root and oncemore invokingmonotonicity allows us to continue via

d

d

d
d s s

d

d

d
s

1 1
1 1

1 1
1 , 55( )( ) ( )+

-
- - - < +

-
-r r r

wherewe have used sρ>0 in the last line to obtain strict inequality. Since the square root is a concave function,

the inequality s s1 1
1

2
- -r r is valid for any s 1r and consequently

d

d

d
s

d

d
s

1 1
1 1

1

2
, 56( )+

-
- -

-
r r

is true. Finally, we use the simple fact that
d

d

1 1

2
-

holds for any d 2 to arrive at s1
1

4
- r which is just the

Fuchs–van deGraaf bound. Since a strict inequality sign connects the expressions in (55), the claimed strict
majorization follows. ,

5.Geometric interpretation of the relaxation leading to equation (25)

Recall that in order to arrive at theorem3, we have replaced the feasible set

s s s1 0: , 1, , 57d d1 { } ( ) D = Î á ñ =-

of the optimization problem (11) by

s s s s1: , 1, , 1 , 58dd 1 { } ( )  = Î á ñ = á ñD -

which is a convex outer approximation ofΔd−1. This follows from the basic fact that x x2  holds for any xä
[0,1]. Since the vector components si of any s d 1Î D - have to obey siä [0,1], we can readily conclude

s s s s, 1. 59
i

d

i
i

d

i
1

2

1

( )å åá ñ = =
= =

Note that the converse is true if and only if d=1, 2—a fact whichwe have exploited in proving corollary 1.
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Geometrically, the former set corresponds to the standard simplex in .d In this sectionwe prove that the
latter one is in fact theminimumvolume covering ellipsoid of the standard simplexwhich furthermore
corresponds to a (d−1)-dimensional Euclidean ball. For dimensions two and three this situation is illustrated
infigure 3.

Proposition 1. (Geometric nature of d 1D- )The convex outer-approximation d 1D- of the d-simplex corresponds to a

(d−1)-dimensional Euclidean ball with radius d

d

1- and center 1
d

1 which is contained in the (d−1)-

dimensional hyperplane s s1: , 1 .d
1,1 ≔ { } Î á ñ =

Proof.By definition, the set d 1D- corresponds to the intersection of the Euclidean unit ball
s s s0 : , 1d

1( ) { }  = Î á ñ and the hyperplane .1,1 This assures 1,1d 1 ÍD- by construction.
Oneway to establish that d 1D- is furthermore itself an Euclidean ball, is using ‘generalized cylindrical

coordinates’ for the Euclidean unit ball 0, 1 :d( ) Such coordinates use the fact that 0, 1d( ) is equivalent to the
union of a family of (d−1)-dimensional unit balls.More concretely: let z dÎ be an arbitrary unit vector and
let z Î denote a parameter. For each value of this parameter, we define the hyperplane z,̃ =z

s z s: ,d{ } zÎ á ñ = which in particular contains the vector zz by construction. Furthermore, let

z,d
z

1
,

˜ ( ) ˜ z Ì z
- be the (d−1)-dimensional Euclidean ball with radius 1 2z- and center zz that is

contained in the hyperplane .z,̃ z Clearly each element in such a union of sets is contained in the d-ball, and
letting ζ range from−1 to 1 covers the entire d-ball. In order to see this, decompose any s 0, 1d( )Î as
s s z z z,= á ñ + ^ such that z z, 0á ñ =^ and set s z, .z = á ñ Pythagoras’ theorem then assures

z 12
2 z-^  and consequently s z, .d 1˜ ( ) zÎ -

The structure of the particular problem at hand suggests tofix z
d

1
1

.= Indeed, such a particular choice of

z assures equality of the hyperplane 1,1 which contains d 1D- and the hyperplane ,
d

1, 1
d

1̃ wehave just

introduced. Consequently, the ‘cylindrical representation’ of the Euclidean unit ball assures that the intersection

0 11 ,1d 1 ( )  Ç=D- corresponds to the (d−1)-ball 1,d

d d

1 1 1( )̃ -
associatedwith the hyperplane 1,

d d
1 1̃

and a parameter value .
d

1z = By definition, this ball has center 1
d

1 and radius 1 d

d
2 1z- = - which

completes the proof. ,

The next statement establishes that our choice of replacing the original feasible setΔd−1 in the proof of
theorem3by the larger convex set d 1D- is in a precise sense the tightest possible elliptic relaxation of the original
optimization problem.

Proposition 2.The set d 1D- is the uniqueminimal volume covering ellipsoid of the standard simplexΔd−1.

The proof exploits the following standard result about Löwner–John ellipsoids that is originally due to John.
However, herewemake use of a slightlymore general version presented in [31].

Theorem4.Theorem 2.1 in [31]. Let K dÌ be a convex body and letK be contained in the Euclidean unit ball
0 .d( ) Then the following statements are equivalent:

1. 0d( ) is the uniqueminimum volume ellipsoid containing K.

2. There exist contact points u u, , m1 ¼ lying both in the boundary of K and 0 ,d( ) and positive numbers
m d, , , ,m1 l l¼ such that

u u uand0 . 60
i

m

i i
i

m

i i i
1 1

( )å ål l= =
= =



Proof. In proposition 1we have established that the set d 1D- corresponds to a (d−1)-ball with radius d

d

1-

and center 1
d

1 that (like the standard simplex) is contained in the hyperplane .1,1 Aquick calculation reveals

that all vertices of the standard simplexΔd−1
—which are just the standard basis vectors e e, , d1 ¼ —have

Euclidean distance d

d

1- to the ball’s center. Consequently they are contained in the boundary of the ball d 1D-
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andwe have found sufficientlymany contact points for applying theorem4. Since volume is translationally
invariant we can furthermore shift the coordinate’s origin into the point 1

d

1 (which is the center of the ball d 1D- ).
This has the advantage that the affine space 1,1 containing bothΔd−1 and d 1D- turns into 1,0 which is a linear
subspace.Note thatwith respect to the (translated) standard basis, the orthogonal projection onto this subspace
is given by

P
d

1 1
1

.∣ ∣= - ñá

With respect to this new coordinate system, the d contact points (vertices of the simplex) amount to
e e 1.i i d

1˜ = - Choosing unit weightsλi=1 for allm=d contact points u ei i˜= and calculating

u e e
d

1 0
1

61
i

m

i i
i

n

i
i

n

i
1 1 1

˜ ( )⎜ ⎟⎛
⎝

⎞
⎠å å ål = = - =

= = =

reveals that the first condition for theorem4 is fulfilled. A similar calculation reveals

u u
d

1 1
1

.
i

m

i i i
1

∣ ∣ål = - ñá
=



This, however equals just the projector P onto the subspace 1,0 which contains the entire (d−1)-dimensional
problemof interest. Restricted to its range, a projector corresponds to the identity which establishes the second
condition for theorem4. Since this statement is invariant under re-scaling, we can also apply it here, where the

radius of the (d−1)—dimensional surrounding Euclidean ball is not one but .d

d

1-

,

6. Conclusion

In this workwe have derived upper bounds on the average fidelity of any estimatorwith no restrictions on the
dimension or the distribution being averaged over. Furthermore, we have shown a sharp distinction in the
optimization problems ofmaximizing average fidelity betweenmeasures supported only on pure states and
thosewith full support. In the former case, we have provided the exact optimal estimator, while in both cases we
argued based on numerical evidence that themean estimator is a good proxy for the optimal solution.

Interestingly, we found that the analytical bound (12) (which is based on super-fidelity [20]) is strictly tighter
than a corresponding one obtained using thewell known, and often used, Fuchs–van deGraaf inequalities [19].

These results have obvious applications to practical Bayesian quantum tomography [13], since the bound
can be computed online—that is, it is only a property of the current distribution under consideration. Butwe
also expect our bound to be of interest in other theoretical work on tomography, where a benchmark is needed
tomake statements about absolute average performance of some candidate protocol.
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Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum com-
puting experiments, and measuring these error rates using randomized benchmarking is now routine. However,
direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking
estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large
computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we
facilitate comparison between the experimentally accessible average error rates and the worst-case quantities
that arise in current threshold theorems by deriving relations between the two for a variety of physical noise
sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and
worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average
error probabilities and fault-tolerance thresholds.

The fault-tolerance threshold theorem is a fundamental re-
sult that justifies the tremendous interest in building large-
scale quantum computers despite the formidable practical dif-
ficulties imposed by noise and imperfections. This theorem
gives a theoretical guarantee that quantum computers can be
built in principle if the noise strength and correlation are be-
low some threshold value [1–3].

To make precise statements of threshold theorems, we must
quantify the strength of errors in noisy quantum operations.
Ideally we would do this in terms of quantities that can be
measured in experiments. A standard measure for quantifying
errors in quantum gates is given by the average error rate,
which is defined as the infidelity between the output of an
ideal unitary gate U and a noisy version EU with noise process
E , uniformly averaged over all pure states,

r(E) = 1−
∫

dψ 〈ψ|E
(
|ψ〉〈ψ|

)
|ψ〉 . (1)

This quantity has many virtues: it can be estimated efficiently
for any ideal gate U , and in a manner that is independent of
state preparation and measurement (SPAM) errors by using
the now standard method of randomized benchmarking [4–7].
Recent experimental implementations include [8–17].

The major drawback of using Eq. (1) to quantify gate er-
rors is that it is only a proxy for the actual quantity of in-
terest, the fault-tolerance threshold. This is because r cap-
tures average-case behavior for a single use of the gate, while
fault tolerance theorems characterize noise in terms of worst-
case performance when the gate is used repeatedly in a large
computation. The importance of this distinction has recently
been emphasized by Sanders et al [18]. For some noise types
(such as pure dephasing and depolarizing noise) the worst-
and average-case behavior essentially coincide [19]. However
for other classes of errors, notably errors in detuning and cal-
ibration that lead to over or under rotation, the worst-case be-
havior is proportional to

√
r and can be orders of magnitude

worse than the average in the relevant regime of r � 1, as we
will discuss in more detail below. Thus it is not possible to

directly compare a measured value of r to a threshold result.
Despite this, experimentalists are increasingly wishing to re-
late the results of benchmarking experiments to fault tolerance
thresholds. There is thus a pressing need for techniques that
allow for direct comparison between experimentally measur-
able error rates and fault-tolerance thresholds.

In this Letter, we investigate the relationship between
worst-case and average-case error for a wide range of error
models that are relevant to experiments. Firstly, we show that
while closed form expressions do not typically exist, well-
established theoretical techniques of convex optimization are
often sufficient to determine the relationship between average-
case and worst-case errors for models of physical interest. The
details of these computations are largely relegated to the Sup-
plementary Material. Secondly, we study a wide range of
error models for one-qubit gates. Our main example is of a
one-qubit gate with combined dephasing and calibration error.
This allows us to demonstrate the crossover between a regime
dominated by dephasing, where average-case and worst-case
errors are not too different, and the limit of a unitary noise,
where the worst-case error scales like

√
r. We then turn to

general bounds on worst-case error, showing that it scales as√
r for all unitary errors and that for a wide class of errors it

can be accurately estimated in terms of r and a recently intro-
duced measure of how close an error process is to being uni-
tary. Finally, conventional benchmarking experiments contain
a lot more information than is required just to extract r. We
find that this information can often be used to show that the
worst-case error has an unfavourable scaling. This is an area
that we hope will attract much more study in future.

Fault-tolerance thresholds. A wide range of fault-
tolerance thresholds have been reported. The value of the
threshold depends greatly on the fault tolerant procedures that
are used, on the noise model that is assumed, and whether the
threshold is determined from (possibly conservative) analytic
bounds on the error, or from (possibly optimistic) numerical
simulations. We emphasize that the errors that are given in
theoretical fault tolerance papers typically refer to some mea-
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sure of worst-case error. For example the widely known re-
sults of Aliferis and collaborators [20–22] use concatenated
error correcting codes and consider a stochastic adversarial
noise model that includes all of the noise processes that we
will discuss in this paper. These papers find that large-scale
quantum computation can be performed for errors below a
few times 10−4, when that error is quantified by a measure of
worst-case error such as the diamond distance that we discuss
below. For more optimistic noise models and for fault-tolerant
protocols such as the widely known surface code approaches,
the threshold is around 10−2 based on numerical simulations
of Pauli errors [23]. For Pauli noise however there is no sig-
nificant difference between worst-case and average-case er-
rors [19]. The performance of these schemes in the presence
of coherent errors is not yet understood.

It is possible to state a version of the threshold theorem di-
rectly in terms of r, but given current knowledge the thresh-
olds in these theorems would be roughly the square of current
thresholds (around 10−8 for [20–22]). It is unclear if this can
be significantly improved upon since it may be that it is the
worst-case error that is physically relevant to the success of
the computation. However, our results here motivate research
into whether current fault tolerance results could be strength-
ened to provide significantly improved thresholds when ex-
pressed in terms of r for error models sufficiently general to
include coherent errors.

Diamond distance. We will now describe the most com-
monly used metric of worst-case error for quantum processes.
Any candidate measure of distance ∆(E ,F) between noise
operations E and F should satisfy certain desirable proper-
ties [24]. (The operation F should be thought of as a per-
fect identity gate for our purposes.) First, like any good dis-
tance measure it should have the structure of a metric, which
in particular means it should be symmetric, positive, and obey
the triangle inequality. Less obviously, but even more impor-
tantly, it should obey two additional properties: chaining and
stability. The chaining property,

∆(E2E1,F2F1) ≤ ∆(E1,F1) + ∆(E2,F2) , (2)

says that composing two noisy operations cannot amplify the
error by more than the sum of the two individual errors. Thus,
errors can grow at most linearly in the number of operations.
The stability property states that the error metric for a single
gate should be independent of whether that gate is embedded
in a larger computation. So we require

∆(I ⊗ E , I ⊗ F) = ∆(E ,F) , (3)

where I is the identity operation. This ensures that our mea-
sure is robust even if the input to the gate is entangled with
other qubits in the computation.

The diamond distance, whose formal definition is

D(E ,F) = 1
2 max

ρ
‖I ⊗ F(ρ)− I ⊗ E(ρ)‖1 , (4)

satisfies each of these physically motivated desiderata [1]. It
also has an appealing operational interpretation as the maxi-
mum probability of distinguishing the output of the noisy gate

from the ideal output [1, 25]. It is not obvious from the defi-
nition how to do practical computations with this quantity, but
it can be computed efficiently using the methods of semidef-
inite programming [26–28]. Because of these properties, the
diamond distance is an ideal measure for quantifying noise for
the purposes of a fault-tolerance threshold, although in princi-
ple other quantities could be employed as well [2].

The only drawback of this quantity is that it is not known
how to measure it directly in experiments. It is therefore of in-
terest to have a conversion to, or at least bounds for, diamond
distance in terms of the average gate fidelity. To date, the best
known bounds for a d-level quantum gate are [29]

d+1
d r ≤ D ≤

√
d(d+ 1)r ,

but it is unknown for what conditions these bounds are tight.
Single-qubit calibration and dephasing errors. In order

to discuss the relationship between average-case and worst-
case errors in quantum computing demonstration experiments
we will now analyze in detail a simple but physically relevant
noise model for a single-qubit gate. Suppose that the gate is
implemented by the noisy control Hamiltonian Hc = J(t)σz .
Due to experimental imperfections the control J(t) that is
implemented is distinct from the nominal control J0(t) that
would perfectly implement the required gate. Physically, this
noise results in two distinct types of errors: dephasing, where
δJ(t) = J−J0 varies stochastically between uses of the gate,
and calibration error where δJ takes the same fixed value
each time the gate is used. Where δJ(t) is stochastically vary-
ing we assume that the noise level does not change with time,
and that that the noise spectrum for δJ(t) is mainly confined
to frequencies f > 1/tg , where tg is the time required to
perform the gate. When averaged over uses of the gate the re-
sulting noisy operation is EU where U is the desired gate and
the noise process amounts to

E(ρ) = pσze
−iδσzρeiδσzσz + (1− p)e−iδσzρeiδσz . (5)

In this noise model the dephasing noise rate p arises from
the time-varying noise on the gate, while the unitary over ro-
tation δ results from the fixed miscalibration of the control
pulse J(t). (Although we speak here in terms of calibration
errors, this also approximately captures the effects of highly
non-Markovian errors arising from very low-frequency noise
in J(t).)

This noise model roughly captures many experimental
gates, but more importantly it will demonstrate the range of
behaviors that can be expected in terms of the relationship be-
tween average-case and worst-case error. Specifically when
δ = 0 we have a pure dephasing process. For such errors [19]
the worst case error scales like r, so this is the most favor-
able possible behavior. On the other hand for p = 0 we have
a purely unitary rotation error that has the worst possible be-
havior, where the worst-case error scales like

√
r.

Using well-known techniques [30, 31] we find the aver-
age error rate for this calibration and dephasing (CD) noise
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FIG. 1. Average error rate r and worst-case error rate (diamond dis-
tance) D for a combination of dephasing and unitary errors. The
logarithmic plot is of D/r, which quantifies how much greater the
worst-case error is than the average case as a function of a unitary
over rotation angle δ and a dephasing probability p, where the exact
noise process is given in Eq. (5). When p ≥ δ, then D and r are
comparable to within a small factor, but as soon as δ > p then D
rapidly becomes much greater than r.

to be rCD = 2
3

(
p cos(2δ) + sin2 δ

)
. Employing the semidef-

inite programming approach of Refs. [19, 26], we can eval-
uate the diamond distance for this noise channel and find
DCD =

√
3
2rCD − p(1− p). A logarithmic plot of the ratio

DCD/rCD is shown in Figure 1.
In the interesting regime of low error we find rCD '

2(p + δ2)/3, while DCD '
√
p2 + δ2. From this we can

see that when p � |δ| we have DCD ' 3rCD/2, as for a pure
dephasing process, and there is no great difference between
worst-case and average-case errors. But as the calibration er-
ror grows, the worst-case error grows significantly. When cal-
ibration error dominates, |δ| � p, we find DCD '

√
3rCD/2.

In this regime an average error rate rCD of around 10−4 corre-
sponds to a more than one percent worst-case error. Physically
then, we see that as dephasing error is reduced in a particu-
lar experimental setting, this places more stringent demands
on the calibration required if the average error rate r is to be
compared directly to a fault-tolerance threshold.

Single-qubit relaxation errors. Another natural single-
qubit noise process to consider is qubit relaxation or ampli-
tude damping errors (spontaneous emission or a T1 process
in NMR language), at finite temperature. In this process a
qubit with energy splitting E is coupled to a bath at temper-
ature T . Define as in [32] the probability for a decay pro-
cess during the action of the gate is γp and the probability
to go from the ground to the excited state is γ(1 − p). The
ratio of upgoing to downgoing transition rates p/(1 − p) =

p

0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5
r

0.2

0.4

0.6

0.8

1.0

D

FIG. 2. Tradeoff between average error rate r and the worst-case er-
ror rate in terms of the diamond distanceD for the thermal amplitude
damping channel, where the parameter p controls the temperature
with p = 1 corresponding to zero temperature and p = 1/2 cor-
responding to infinite temperature. The dashed line is the previous
best upper bound [29], while the upper black line is the new bound
derived here. The zero-temperature limit (p = 1) gives the least fa-
vorable scaling of D with r, but in every case the bound D ≤ 3r
holds. The infinite-temperature limit (p = 1/2) recovers the known
value of D = 1.5r.

exp(−E/kBT ) is the Boltzmann factor, which allows us to
identify p = 1/2 as infinite temperature and p = 1 as zero
temperature. For this amplitude damping (AD) noise chan-
nel we find rAD =

(
1 − √1− γ + γ/2

)
/3. Although we

have no closed form expression for the worst-case error for
these channels, we have adapted standard techniques in the
analysis of semidefinite programs to find the bound DAD ≤
3rAD max{p, 1 − p}. Therefore we have a guarantee that the
average-case and worst-case errors are not too different. Com-
paring with a direct evaluation of the semidefinite program we
find DAD ' 3rAD for zero temperature (p = 1) and low noise
rAD � 1, so this is the tightest bound possible. In the limit
of high temperature p→ 1/2 we approach a dephasing chan-
nel and recover the formula DAD = 3rAD/2. This behavior is
illustrated in Figure 2.

Leakage errors Another important class of errors encoun-
tered in experiment is leakage errors. Modified random-
ized benchmarking protocols for leakage errors are proposed
in [33, 34]. In Ref. [33] it was shown that a nearly trivial mod-
ification of a standard benchmarking protocol in the presence
of leakage errors can still be used to determine the average
error rate r, so we again use this figure of merit for compari-
son. For a leakage model we need to consider a larger space
of states, so we add a leakage level |l〉 to the two-qubit states
|0〉, |1〉. We follow [34] in distinguishing coherent and inco-
herent leakage errors and compare the average-case error to
the true worst-case error; this will be the diamond distance
on the full state space including both the leakage and qubit
states. Fault-tolerance theorems also exist for leakage error
processes [35] and this is the appropriate noise measure to
compare with the numerical values found in those papers.

As an example of incoherent leakage (IL) we will consider
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the case where the qubit state |1〉 relaxes to |l〉with probability
p. A benchmarking experiment (following [33]) then obtains
the average-case error rIL = [1 − √1− p + p]/3 where this
is now the infidelity averaged over states initially in the qubit
subspace. Since this process is so similar to the amplitude
damping channel we can use analogous techniques to find the
inequalityDIL ≤ 2rIL. Thus for this error process the average-
case and worst-case error again almost coincide.

As an example of coherent leakage (CL), consider the uni-
tary noise process ECL(ρ) = U(δ)ρU(δ)† given by U(δ) =
exp[−iδ(|1〉〈l| + |l〉〈1|)]. For this noise process one obtains
rCL = [1− cos δ − cos2 δ]/3. However, as for the unitary er-
rors discussed above, the worst-case error can be much larger
than this. We find

√
3rCL/2 ≤ DCL = | sin δ| ≤ √2rCL

for all δ ∈ [−π/2, π/2] and consequently the worst case er-
ror scales like

√
rCL. Where leakage errors are possible, it

would be important to use the methods of [34], or some other
method to bound coherent leakage errors, before comparing
the average-case error r to a fault-tolerance threshold.

Unitary errors. In looking at these examples we have
found that unitary or nearly unitary errors appear to result
in the largest difference between average-case and worst-case
errors. This is true in general. For unitary errors in a d-
dimensional space we find the following inequalities

√
d+1
d

√
rU ≤ DU ≤

√
(d+ 1)d

√
rU.

Thus any unitary error has a worst-case error scaling like
√
rU.

A general inequality. For a large and important class of
noise processes, the worst-case error can be directly estimated
from benchmarking-type data without side information about
the type of error, which generally requires doing full quan-
tum process tomography [36], or one of its SPAM-resistant
variants [37, 38]. In Ref. [39] a quantity called the unitarity
u(E) of a noise process E was defined (see the Supplemen-
tary Material for a precise definition), and it was shown that
this can be estimated efficiently and accurately using bench-
marking. We find that for all unital noise (i.e. noise where the
maximally mixed state is a fixed point) with no leakage, the
unitarity and the average error rate together give a characteri-
zation of the worst-case error via the inequality [40]

cd

√
u+

2dr

d− 1
− 1 ≤ D ≤ d2cd

√
u+

2dr

d− 1
− 1 , (6)

where cd = 1
2 (1 − 1

d2 )1/2. Since the unitarity generally
obeys the inequality u ≥ (1 − dr/(d − 1))2 (see Ref. [39])
we find (for unital noise without leakage) that the worst-
case error scaling matches the average-case if and only if
u = 1− 2dr/(d− 1) +O(r2).

To illustrate the power of Inequality (6), we immediately
find that for the single-qubit calibration and dephasing noise
model, the condition 1 − uCD = 4rCD + O(r2CD) is both nec-
essary and sufficient to recover the favorable linear scaling
between the worst- and average-case errors. In fact, the worst-
case error for this channel can be expressed directly in terms

of the unitarity as DCD =
√

3
2rCD − 3

8 (1− uCD). And be-
cause the unitarity can be estimated from a benchmarking-
type experiment, this gives direct experimental access to
worst-case errors for this family of noise models without the
need for expensive tomographic methods.

Moreover, Inequality (6) allows us to get insights into gen-
eralizing our conclusions for single-qubit models to few-qubit
systems such as those required for entangling quantum gates.
A natural generalization of our CD model to two-qubit cal-
ibration and dephasing errors would be an independent de-
phasing rate p on each qubit and unitary noise given by eiHCD2

where HCD2 = δ1σ
(1)
z + δ2σ

(2)
z + εσ

(1)
z σ

(2)
z . The semidef-

inite programming approach is possible here, but becomes
unwieldy because there are so many free parameters. How-
ever, both the average error rate and the unitarity are readily
computed as in the appendix. Inequality (6) then allows one
to easily and generally explore the tradeoffs in the calibra-
tion accuracy of the δ and ε parameters such that the overall
error remains roughly consistent between average and worst
case. Furthermore, since uCD2 can be measured efficiently in
a benchmarking experiment, large values of u can be used to
herald that an experiment has left the favorable scaling regime
and more characterization and calibration must be done.

Conclusion and Outlook. We have seen that many realis-
tic noise processes admit a linear relation between the average
error rate (which is accessible experimentally) and the worst-
case error (which is the relevant figure of merit for fault toler-
ance). The exceptions to this rule are highly coherent errors,
where the worst-case error scales proportionally to the square
root of the average error rate.

While our methods and results are very general, there are
noise sources that we have not tried to fit into our error tax-
onomy. Errors such as crosstalk [41], time-dependent or non-
Markovian noise [42, 43] should be amenable to these meth-
ods, however, and extending our results to cover such noise is
an important avenue for future work.

Finally, we reiterate that it is an interesting open question if
it is possible to prove a fault-tolerance threshold result directly
in terms of r without the lossy conversion toD. Fault-tolerant
circuits are not perfectly coherent since measuring error syn-
dromes necessarily removes certain coherences, and this may
provide an avenue to develop stronger theorems.
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SUPPLEMENTARY MATERIAL

Quantum states and operations

A d-level quantum system is fully characterized by its is density operator ρ, which is a Hermitian, positive semidef-
inite d × d matrix obeying Tr(ρ) = 1. A quantum operation or channel E is a completely positive linear map from
density operators to density operators [32, 45].

There are a number of representations of a completely positive operator, each of which is useful for different
purposes. The most well known is the representation in terms of Kraus operators. These are a set of operators {Ki}
that encapsulate the channel’s action via E(ρ) =

∑
iKiρK

†
i . Moreover,

∑
iK
†
iKi ≤ I holds, where I is the identity

matrix, and equality occurs when E is trace preserving.
Other representations include the Liouville operator L(E) =

∑
iKi ⊗ Ki where ⊗ denotes the tensor product.

The Liouville operator is also known as the transition matrix, or natural representation. It is a matrix that acts on the
vector obtained by stacking the columns of ρ, which we denote |ρ) as in [29], in the same way that E acts on the
density operator ρ. That is L(E)|ρ) = |E(ρ)).

Lastly, we will have cause to use the Choi-Jamiołkowski matrix of a quantum operation E , J(E) =
d(IA ⊗ EB)(|ψBell〉〈ψBell|). Here I is the identity channel and |ψBell〉 = 1√

d

∑d
j=1 |j〉 ⊗ |j〉 is the maximally

entangled state between systems A and B (this definition differs by a factor of d to that in [29], instead we use the
definition found in [19, 45] so as to be consistent with the semidefinite program in [26], which would otherwise re-
quire minor modification). It can be computed from the Kraus operators {Ki}with the formula J(E) =

∑
i |Ki)(Ki|

(where (Ki| = ¯|Ki)
T ).

This representation is useful because, unlike the other representations mentioned here, J(E) is positive semidefinite
for any completely positive quantum operation (the Kraus operators and Liouville operator need not even have a
complete set of eigenvectors).

We will be interested in relating the average infidelity r(E) to the diamond distance D(E) as defined in the main
text in Eqs. (1) and (4), respectively. (We will always be comparing a noise process to the identity channel, so we
write the diamond distance with only one argument for brevity.) A useful formula is provided by the following
relation which is a generalization of the main results in [30, 31] to completely positive maps that are not necessarily
trace preserving.

Proposition 1. Let E be a completely positive (but not necessarily trace preserving) map with Liouville representa-
tion L(E). Then

Favg(E) =
Tr[L(E)] + Tr[E(I)]

d(d+ 1)
, (7)

where Favg(E) = 1− r(E) is the average fidelity and d is the system size.

Note that this formula covers the main results in [30, 31] as a special case. Indeed, any trace preserving map obeys
Tr (E(I)) = d and Eq. (7) reduces to [31][Proposition 1] and [30][Equation (3)], respectively. For the scope of our
work, such a generalization is very useful, since it will allow us to evaluate the fidelity of leakage processes averaged
over qubit states.

Proof of Proposition 1. One way of proving the generalized formula (7) is to follow Nielsen’s simplified proof steps
[30] of the original formula [31] without assuming that E is trace preserving. At the core of this proof is the fact that
the average fidelity is invariant under twirling, i.e. Favg (E) = Favg (ET ) for ET (ρ) :=

∫
dUU †E

(
UρU †

)
U †. Here

dU denotes the unique unitarily invariant (Haar) measure over the unitary group U(d) normalized to one (
∫

dU = 1).
The same is true for the r.h.s. of Eq. (7). Indeed, suppose that E has Kraus representation E(ρ) =

∑
iKiρK

†
i .
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Twirling it results in the map ET (ρ) =
∫

dUU †
∑

i(KiUρU
†K†i )U whose Liouville representation obeys

Tr (L (ET )) =Tr

(∫
dU
∑

i

Ū †K̄iŪ ⊗ U †KiU

)
=

∫
dU
∑

i

Tr
(
Ū †K̄iŪ

)
Tr
(
U †KiU

)

=
∑

i

Tr
(
K̄i

)
Tr (Ki)

∫
dU = Tr

(∑

i

K̄i ⊗Ki

)
= Tr (L (E)) .

Also

Tr (ET (I)) =

∫
dUTr

(
U †E

(
UIU †

)
U
)

= Tr (E (I))

which establishes twirl invariance of the r.h.s. of (7). As a result, it suffices to establish the claimed equality for
twirled maps only. However, due to Schur’s Lemma, every twirl of a completely positive map is proportional to a
depolarizing operation

ET (ρ) = Dp,q(ρ) := pρ+ qTr(ρ)I ∀ρ (8)

with parameters p, q that may depend upon the original map E . Nielsen [30] established this by using the following
elementary argument based on the observation that any twirled channel obeys

V ET (ρ)V † = ET
(
V ρV †

)
∀V ∈ U(d), ∀ρ (9)

which is readily established by direct computation. Now let X = |x〉〈x| be a rank one projector, set X⊥ = I −X
and let V be an arbitrary unitary operator obeying V XV † = X . Inserting these particular choices into (9) reveals
ET (X) = ET

(
V XV †

)
= V ET (X)V † which in turn implies ET (X) = (p + q)X + qX⊥ = pX + qI for some

p, q ∈ R. A priori, the parameters p, q may depend on the choice of X , but (9) implies that they are actually the
same for any choice of X . From this, Formula (8) is readily deduced, e.g. by inserting eigenvalue decompositions
ρ =

∑d
i=1 λi|xi〉〈xi| of arbitrary density operators and exploiting linearity.

As a result, it suffices to establish Formula (7) exclusively for depolarizing maps Dp,q of the form (8) with pa-
rameters p, q. Noting that such a map has Liouville representation L (Dp,q) = pI ⊗ I + qd|ψBell〉〈ψBell|, where
|ψBell〉 = 1√

d

∑d
i=1 |i〉 ⊗ |i〉 denotes a maximally entangled state, and calculating

Favg (Dp,q) =p

∫
dψ〈ψ|ψ〉〈ψ|ψ〉+ q

∫
dψTr (|ψ〉〈ψ|) 〈ψ|I|ψ〉 = p+ q,

Tr (L (Dp,q)) =pTr (I ⊗ I) + qdTr (|ψBell〉〈ψBell|) = d2p+ dq,

Tr (Dp,q (I)) =pTr (I) + qTr (I)2 = dp+ d2q

reveals

Tr (L (Dp,q)) + Tr (Dp,q) = (d+ 1)d(p+ q) = (d+ 1)dFavg (Dp,q) ,

thus establishing the desired statement.

Semidefinite Programming

It is possible to efficiently calculate the diamond norm of a linear operator through the use of a semidefinite program
if a full description of the channel is known [26–28].

A semidefinite program (SDP) is a form of mathematical optimization problem (specifically a convex optimization
problem; see [46, 47] for a review). A mathematical optimization problem is very generally a specification of some
objective function to be maximized (or minimized), subject to some constraints on allowed variables in the form of
inequalities involving constraint functions. This can be stated in the form
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Maximize: f0(z)
Subject to: fi(z) ≤ bi, i = 1, ...,m.

where f0 is the objective function, the fi’s and bi’s encode the constraint functions, and z is the variable to be
changed so as to maximize f0(z). Any value of z which meets the constraints of the problem is called feasible. In
some contexts these problem specifications are called programs.

A convex optimization problem is a mathematical optimization problem in which the set of all feasible points
is a convex set and the objective function to be maximized is concave, i.e. it satisfies f(τ x + (1 − τ)y) ≥
τ f (x) + (1− τ) f(y) for any τ ∈ [0, 1] and feasible x, y. Note that minimising a convex function f0 over a convex
set also fits this framework, because it is equivalent to maximising (−f0) which is concave. Concave functions
have many desirable properties that render convex optimization tasks easier than general optimization problems (e.g.
concavity assures that any local maximum is also a global maximum) [48].

Finally, a semidefinite program is a particular instance of a convex optimization problem where one aims to maxi-
mize a linear function (which is both concave and convex) over a convex subset of the cone of positive semidefinite
matrices [48]. This cone induces a partial ordering on the space of all hermitian d×d matrices. Concretely, we write
X ≥ Y if and only if X − Y is positive semidefinite. With this notational convention, every SDP is of the form

Maximize: Tr (CX)
Subject to: Ξ(X) ≤ B,

X ≥ 0 .
(10)

and is specified by a triple (Ξ, B, C): B and C are hermitian matrices (not necessarily of the same dimensions) and
Ξ is a linear map between these matrices spaces. An SDP of the form (10) is called a primal program. In a geometric
sense, the problem here is to move as far along the direction of C as possible, while remaining inside the convex
region specified by the matrix inequalities [46–48]. A wide variety of problems can be cast in terms of semidefinite
programs and efficient methods are known that can solve them. Thus, finding an expression for a problem in terms
of a semidefinite program reduces it to one in which the solution is easily found numerically, and sometimes even
analytically.

Attached to every primal problem is another semidefinite program (10), known as its dual program. In a sense, it
corresponds to a reverse problem and is given by

Minimize: Tr (ZB)
Subject to: Ξ∗(Z) ≥ C

Z ≥ 0,
(11)

which is again completely specified by the triple (Ξ, C,B). Here, Ξ∗ denotes the adjoint map of Ξ with respect to
the trace-inner product, i.e. the unique map obeying Tr (Ξ∗(Z)X) = Tr (Z Ξ(X)) for all hermitian matrices X and
Z.

Primal and dual SDP’s are intimately related. In particular they have the property that any feasible value of the
primal objective Tr(CX) is less than or equal to any feasible value of the dual objective Tr(ZB). Using the fact that
positive semidefinite matrices A,B,C ≥ 0 obey Tr(AB) ≤ Tr(AC) if and only if B ≤ C allows for an easy proof
of this feature [48] via

Tr (CX) ≤ Tr (Ξ∗(Z)X) = Tr (Z Ξ(X)) ≤ Tr (ZB) ,

where we also have employed the constraints in (11) and (10), respectively. This result is known as weak duality.
Typically an even stronger relation – called strong duality – is true, namely that the optimum values of both problems
coincide.

Weak duality allows us to find an upper bound for the optimum value of (10) in the form of any feasible value of
(11). To be more explicit, if Z is feasible, then Tr(ZB) must be larger than or equal to any feasible Tr(CX). This
in particular includes the maximal value Tr(CX]) of (10). However, since Tr(CX]) is maximal, it is by definition
larger than or equal to any feasible value of Tr(CX). Consequently, the feasible values Tr(CX) and Tr(ZB) certify
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that the optimum primal value Tr(CX]) is in a certain range. These bounds are said to be certificates. Throughout
this work, we will employ such certificates in order to find bounds for the diamond norm. What is more, if we can
find a pair of feasible pointsX,Z that obey Tr(CX) = Tr(ZB), then weak duality dictates that we have analytically
found the optimum value for the program. We will also appeal to this fact later.

Semidefinite programs for the diamond distance

Watrous has provided several characterisations of the diamond distance in terms of semidefinite programs [26, 28].
We reproduce here a simplified version that can be used when the operator in question is a difference of quantum
channels ∆ = E − F [26], as this will always be the case for us. Given this condition, the following pair of primal
and dual SDP’s has an optimal value of D = 1

2‖∆‖�:

Primal problem

Maximize: 〈J(∆),W 〉
Subject to: W ≤ ρ⊗ Id,

Tr(ρ) = 1,
W ∈ Pos(A⊗B),
ρ ∈ Pos(A).

(12)

Dual problem

Minimize: ‖TrB(Z)‖∞
Subject to: Z ≥ J(∆),

Z ∈ Pos(A⊗B).
(13)

Here 〈X,Y 〉 = Tr(X†Y ) is the Hilbert-Schmidt inner product of the matrices X and Y , Pos(A⊗B) denotes the
cone of positive semidefinite operators acting on the system A⊗B and TrB(X) is the partial trace of X over system
B, i.e. the subsystem of X obtained when subsystem B is discarded. Also, ‖X‖∞ denotes the operator norm of X ,
which is the maximum eigenvalue of X (if X ≥ 0). Further information on these functions and spaces can be found
in [32, 45].

Note that, stated as it is, the primal problem is almost, but not quite, of the primal SDP form introduced in (10).
However, some straightforward manipulations allow one to convert this problem into such a standard form. Perhaps
a bit surprisingly, the same is true for the dual problem which can also be recast as an instance of a dual SDP
problem [26].

Finally, note that if Π+ is the projector onto the positive eigenspace of J(∆), then ρ = 1
dI , W = 1

dΠ+ are valid
primal feasible values and Z = Π+J(∆)Π+ is dual feasible. These feasible points were identified by Magesan,
Gambetta, and Emerson [19], and inspired by their approach we will use similar constructions of primal and dual
feasible points to get bounds on the diamond norm for various noise processes.

Dephasing and calibration errors for a single qubit

The channel described in the main text has Kraus operators K0 =
√

1− pU(δ) and K1 =
√
pU(δ)σz , where

U(δ) = exp(−iδσz). Using the formula above for the average fidelity it is straightforward to show that

rCD =
2

3

[
p cos(2δ) + sin2 δ

]
.

Likewise evaluating the upper and lower bounds on DCD arising from the primal and dual feasible solutions of
Ref. [19] we find them to be equal and so obtain the result

DCD =
1

2

∣∣∣∣1− (1− 2p)e2iδ
∣∣∣∣ .

A simple algebraic manipulation then shows the result claimed in the main text

DCD =

√
3

2
rCD − p(1− p).
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Thermal relaxation of a single qubit

This one-qubit channel EAD is characterized by 2 parameters p, γ ∈ [0, 1] and four Kraus operators [32, Chapter
8.3.5]

K0 =
√
p

(
1 0
0
√

1− γ

)
, K1 =

√
p

(
0
√
γ

0 0

)
, K2 =

√
1− p

(√
1− γ 0
0 1

)
, K3 =

√
1− p

(
0 0√
γ 0

)
.

Repeating the procedure outlined in the previous subsection, we will use a refined dual feasible point to find a bound
on the diamond distance in terms of the average fidelity. This feasible point improves over what can be obtained
using the Magesan-Gambetta-Emerson feasible solution [19].

Theorem 1. For the one-qubit amplitude damping channel defined above, the following relation is valid for any
choice of parameters p, γ ∈ [0, 1]:

DAD ≤ 3rAD max{p, 1− p}.
Proof. We first compute the Choi-Jamiołkowski matrix J(∆) for ∆ = I − EAD. In the basis |00〉 , |01〉 , |10〉 , |11〉,
this matrix is

J(∆) =




(1− p)γ 0 0 1−√1− γ
0 −(1− p)γ 0 0
0 0 −pγ 0

1−√1− γ 0 0 pγ


 . (14)

The middle block is already negative semidefinite and so our dual feasible point Z can afford to have zero support
on this subspace and still meet the constraints of Eq. (13). Let us therefore make the ansatz that

Z =




x+ y0 0 0 x
0 0 0 0
0 0 0 0
x 0 0 x+ y1


 = 2x|ψBell〉〈ψBell|+ y0|00〉〈00|+ y1|11〉〈11| (15)

where x =
(
1−√1− γ + γ/2

)
/2 and we will determine the parameters y0, y1 ≥ 0. Such a choice of parameters

assures that Z is positive semidefinite.
The only other constraint that must be respected is that Z − J(∆) must be positive semidefinite. Let us define

x− =
(
1−√1− γ − γ/2

)
/2 ≥ 0. Here we have used the elementary relation 1 − √1− γ ≥ γ

2 (which follows
from concavity of the square root). Secondly we can define |ψ−Bell〉 = (|00〉 − |11〉)/

√
2. In terms of this we may

write

Z − J(∆) =2x−|ψ−Bell〉〈ψ−Bell|+ [y0 − (1/2− p)γ]|00〉〈00|+ [y1 + (1/2− p)γ]|11〉〈11|
+ (1− p)γ|01〉〈01|+ pγ|10〉〈10|. (16)

Accordingly, this difference is positive semidefinite, if both

y0 − (1/2− p)γ ≥ 0 and y1 + (1/2− p)γ ≥ 0

hold. Setting y0 = max{γ/2 − pγ, 0} and y1 = max{0, pγ − γ/2} satisfies the requirements. The two cases
correspond to p ≤ 1/2 and p ≥ 1/2 respectively. Such a choice of parameters assures that Z is a valid feasible point
of the dual SDP (13) of the channel’s diamond distance. Its objective function value amounts to

‖trB (Z) ‖∞ =‖2x trB (|ψBell〉〈ψBell|) + trB (y0|00〉〈00|+ y1|11〉〈11|) ‖∞
= max{x+ y0, x+ y1}
=(1−

√
1− γ + γ/2)/2 + γ|1− 2p|/2

≤(1−
√

1− γ + γ/2)(1 + |1− 2p|)/2
=(1−

√
1− γ + γ/2) max{p, 1− p} .
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The inequality arises because 1−√1− γ ≥ γ/2 as noted above.
Using the formula of Eq. (7), one easily obtains rAD = 1

3

(
1−√1− γ + γ

2

)
. From this we may conclude

DAD =
1

2
‖∆AD‖� ≤ ‖trB(Z)‖∞ ≤ (1−

√
1− γ + γ/2) max{p, 1− p} = 3rAD max{p, 1− p}.

This is the inequality that was to be proven.

Incoherent leakage errors

Our model of incoherent leakage errors for a single qubit is typical of a physical leakage process that may occur.
We assume that the qubit state |1〉 can relax to a leakage state |l〉. We specify the noise process in terms of a leakage
probability p and Kraus operators

K0 = |0〉〈0|+
√

1− p|1〉〈1|+ |l〉〈l|, K1 =
√
p|l〉〈1|.

To compute the average fidelity over initial qubit states we note that this average fidelity is unchanged if we
replace the noise process with the a noise map where the Kraus operators are ΠqKiΠq and Πq = |0〉〈0| + |1〉〈1|
is the projector on the qubit subspace. The resulting process maps the qubit subspace to the qubit subspace and is
completely positive but not trace preserving. We can thus evaluate the average fidelity using Proposition 1 which is
valid for non-trace-preserving maps. Given this we find rIL = [4− (1 +

√
1− p)2 + p]/6 = [1−√1− p+ p]/3.

Note that if the average fidelity is computed over the full three-level space, the answer is slightly different and
corresponds to [1 − √1− p + p/4]/3. Using this alternate characterization of average error rate gives only minor
quantitative and no qualitative changes to our conclusions. We therefore choose the average only over the qubit space
as a more physically motivated quantity.

To bound the diamond norm error we modify the dual feasible solution that worked for the thermal relaxation
process above. The Choi matrix of the channel difference is

J (∆IL) = −p|11〉〈11|+ p|1l〉〈1l|+
(√

1− p− 1
)

(|00〉〈11|+ |11〉〈00|+ |ll〉〈11|+ |11〉〈ll|) .

We choose

Z =
(

1−
√

1− p
)

(|00〉〈00|+ |ll〉〈ll|+ |00〉〈ll|+ |ll〉〈00|) + p|1l〉〈1l|.

as dual feasible point. It is clear that Z ≥ 0 and the second feasibility condition follows from

Z − J (∆IL) =3
(

1−
√

1− p
)
|ψBell〉〈ψBell|+

[
p−

(
1−

√
1− p

)]
|11〉〈11|,

where here |ψBell〉 :=
∑3

i=1(|i〉 ⊗ |i〉)/
√

3. A routine calculation verifies that the coefficient in front of |11〉〈11| is
nonnegative for any p ∈ [0, 1] and Z − J (∆IL) is thus positive semidefinite. Inserting Z into the dual problem’s
objective function (13) yields

DIL ≤ ‖TrB (Z)‖∞ =
∥∥∥
(

1−
√

1− p
)

(|l〉〈l|+ |0〉〈0|) + p|1〉〈1|
∥∥∥
∞

= p ≤ 2rIL. (17)

This is the inequality that we wished to show. (The final inequality follows because p = (p + 2p)/3 ≤ 2(1 −√
1− p+ p)/3 = 2rIL since p/2 ≤ 1−√1− p as noted above.)
We may also consider the following alternative model for incoherent leakage in d-dimensional quantum systems:

EIL(ρ) = pPρP + (1− p)ρ,

with p ∈ [0, 1] and P is a rank-deficient orthogonal projection (i.e. P ≥ 0, P 2 = P and 1 ≤ tr(P ) ≤ d − 1).
For single qubits (d = 2), P necessarily coincides with a pure quantum state and we recover the incoherent leakage
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model examined in [34, Eq. (25)]. This channel model has the advantage that we can exactly determine its diamond
distance:

DIL = p. (18)

The related computations greatly simplifies if we exploit unitary invariance of both diamond distance and average
error rate [49]. This unitary invariance allows us to w.l.o.g. assume that P is diagonal in the computational basis:
P =

∑rank(P )
k=1 |k〉〈k|. The Choi matrix of ∆IL = I − EIL then amounts to

J (∆IL) = dI ⊗ (I − EIL) (|ψBell〉〈ψBell|) = pd (|ψBell〉〈ψBell| − |ψP 〉〈ψP |) ,

where |ψP 〉 = 1√
d

∑d
k=1 |kk〉 = 1√

d

∑rank(P )
k=1 |kk〉. In order to obtain an upper bound, we choose the following

feasible point of the diamond distance’s dual SDP: Z = pd|ψBell〉〈ψBell|. Clearly, this matrix is a feasible point,
because Z ≥ 0 and Z − J(∆IL) = pd|ψP 〉〈ψP | ≥ 0. It’s corresponding objective function value amounts to

‖trB(Z)‖∞ = pd‖trB (|ψBell〉〈ψBell|) ‖∞ = pd‖1

d
I‖∞ = p,

which serves as our upper bound on DIL.
For a lower bound, we turn to the primal SDP of the diamond distance. We set ρ = |d〉〈d| and W = |dd〉〈dd|

which is a feasible pair of primal variables (W ≤ ρ ⊗ I, tr(ρ) = 1 and W,ρ ≥ 0). Evaluating the primal objective
function at this point results in

(J(∆IL),W ) =dp |〈dd|ψBell〉|2 − pd |〈dd|ψP 〉|2 = p.

Note that this lower bound on DIL coincides with the upper bound established below. Weak duality allows us to
conclude (18).

Finally, the average error rate of EIL can be readily computed via Formula (7) and amounts to

rIL = p

(
1− tr(P )(tr(P ) + 1)

(d+ 1)d

)
∈
[

2p

d+ 1
, p

(
1− 2

d(d+ 1)

)]
.

The upper bound is saturated for rank-one projectors P , while the lower bound is achieved for projectors with
rank(P ) = d− 1. Comparing this to DIL = p reveals

DIL =

(
1− tr(P )(tr(P ) + 1)

(d+ 1)d

)
rIL ≤

d+ 1

2
rIL.

The upper bound provided here is tight for (d − 1)-dimensional projections and becomes increasingle loose for
more rank-deficient ones. For single qubits (d = 2), however, the upper bound is tight and we obtain DIL = 3

2rIL..
Finally, choosing d = 3 and rank(P ) = 2 mimics the dimensionalities ocurring in our previous model for incoherent
leakage. For such a choice, we obtain

DIL = 2rIL,

which agrees with (17), but is slightly stronger.

Coherent leakage errors

The coherent leakage process that we consider is a unitary error process

U(δ) = exp[−iδ(|1〉〈l|+ |l〉〈1|)] = |0〉〈0|+ cos(δ)(|1〉〈1|+ |l〉〈l|)− i sin(δ)(|1〉〈l|+ |l〉〈1|), (19)

where δ ∈ [−π, π] mediates the error strength. We can derive the average-case error using the same trick as above
of projecting onto the qubit subspace. Note that ΠqUΠq = |0〉〈0| + cos(δ)|1〉〈1|. As a result we find rCL =
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[2 − cos δ − cos2 δ]/3. Unlike the incoherent case, the average error rate here is by coincidence the same if we
compute it in the projected space or in the three-level space.

On the other hand the computation of the diamond norm distance is more straightforward for unitary error models
such as this, since the optimization over input states entangled with an ancilla in the definition is not required.
More details of the computation of the diamond norm distance for general unitary errors are given in the following
subsection. The result of Corollary 1 is that DCL = | sin δ|.

To relate worst-case and average-case error, we employ the relation 4 sin2(δ/2) ≥ sin2 δ which assures

rCL = (1− cos δ)/3 + (1− cos2 δ)/3 = 2 sin2(δ/2)/3 + sin2(δ)/3 ≥ sin2(δ)/2 = D2
CL/2.

On the other hand we can place a lower bound on the diamond norm distance. To tighten it, we will consider the case
of moderately small error with δ ∈ [−π/2, π/2]. This assures cos2 δ ≤ cos δ and we obtain

rCL = (1− cos δ)/3 + (1− cos2 δ)/3 ≤ 2[1− cos2(δ)]/3 = 2 sin2(δ)/3 = 2D2
CL/3.

So for the restricted range of δ ∈ [−π/2, π/2] we have
√

3rCL/2 ≤ DCL ≤
√

2rCL

which is the inequality we intended to show and demonstrates that the diamond norm distance scales with
√
rCL.

Unitary errors

In this section we do not restrict ourselves to qubits anymore and consider d-dimensional unitary channels, i.e.

ρ 7→ UρU †

where U : Cd → Cd is a unitary matrix (UU † = U †U = I). As we will show now, all channels of this form admit
the unfavorable “square root” behavior where the worst-case error is roughly equal to the square root of the average
case error. We summarize our results as follows.

Theorem 2. Fix a dimension d and let EU be a unitary channel. Then
√
d+ 1

d

√
rU ≤ DU ≤

√
(d+ 1)d

√
rU. (20)

Moreover, for single-qubit unitary channels, the lower bound holds with equality, i.e. DU =
√

3rU/2.

While the lower bound in (20) is tight, we do not know if the dimensional dependence in the upper bound can be
further improved and leave this for future work.

Proof of Theorem 2. Every unitary matrix U is normal and as such has an eigenvalue decomposition

U =

d∑

k=1

eiδk |k〉〈k|,

with eigenvalues eiδk on the complex unit circle and an orthogonal eigenbasis {|k〉}dk=1 of Cd. It greatly facilitates
our work if we define the maximally entangled state |ψBell〉 = 1√

d

∑d
k=1 |k, k〉 with respect to this eigenbasis. With

such a choice, the channel’s Choi matrix simply corresponds to

J (EU) = d(EU ⊗ I) (|ψBell〉〈ψBell|) = d (U ⊗ 1) |ψBell〉〈ψBell|
(
U † ⊗ 1

)
= d|φU〉〈φU|,
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where |φU〉 = 1√
d

∑d
k=1 eiδk |kk〉 is again a maximally entangled state. The channel’s average error rate then corre-

sponds to

rU =
d− 〈ψBell|J (EU) |ψBell〉

d+ 1
=
d− d |〈ψBell|φU〉|2

d+ 1
=
d2 −

∣∣∣
∑d

k=1 eiδk
∣∣∣
2

d(d+ 1)
. (21)

For the upper bound in (20), we use the fact that the Choi matrix of the channel difference ∆U = EU − I assumes
the form

J (∆U) = d
(

(U ⊗ 1) |ψBell〉〈ψBell|
(
U † ⊗ 1

)
− |ψBell〉〈ψBell|

)

which is proportional to the difference of two rank-one projectors. Such a matrix has two non-zero eigenvalues

λ± = ±d
√

1− |〈ψBell|φU〉|2 = ±
√

(d+ 1)d
√
rU

and corresponding normalized eigenvectors |v+〉, |v−〉 ∈ Cd2 – see e.g. [45, Example 2.3]. Setting Z =
λ+|v+〉〈v+| ≥ 0 yields a valid dual feasible point for the diamond norm’s dual SDP (13) and inserting it into
the program’s objective function reveals

DU ≤ ‖TrB (Z)‖∞ ≤ ‖TrB (Z) ‖1 = Tr (Z) = λ+〈v+|v+〉 = λ+ =
√

(d+ 1)d
√
rU,

as claimed. Here we have made use of the basic norm inequality ‖ · ‖∞ ≤ ‖ · ‖1 and the fact that the partial trace
preserves positive semidefiniteness which in turn assures ‖TrY (Z)‖1 = Tr (TrY (Z)) = Tr(Z).

For the lower bound, we use the fact that for the difference of two unitary channels, diamond norm and induced
trace norm coincide [45, Theorem 20.7]. This in turn assures

DU =
1

2
‖EU − I‖1→1 =

1

2
max
‖x‖`2=1

∥∥∥U |x〉〈x|U † − |x〉〈x|
∥∥∥
1

= max
‖x‖`2=1

√
1− |〈x|U |x〉|2, (22)

where the last simplification once more exploits that the matrix of interest is a difference of two rank-one projectors.
Choosing the particular vector x̃ =

∑n
k=1 |k〉/

√
d allows us to also conclude

DU ≥
√

1− |〈x̃|U |x̃〉|2 =
1

d

√√√√d2 −
∣∣∣∣∣
d∑

k=1

eiδk

∣∣∣∣∣

2

=

√
d+ 1

d

√
rU, (23)

which is the lower bound presented in (20).
For single-qubit unitary channels this argument can be substantially strengthened: in fact the inequality sign in

(23) can be replaced with actual equality. To see this, we first note that any unitary channel EU is invariant under a
global phase change U 7→ eiφU in the defining unitary matrix. For two-dimensional unitaries, this gauge freedom
assures that we can w.l.o.g. assume that U is of the form eiδ|0〉〈0|+ e−iδ|1〉〈1| with δ ∈ [−π, π]. This in turn assures
that any vector x = x1|0〉+ x2|1〉 ∈ C2 obeys

|〈x, Ux〉|2 =
∣∣∣eiδ|x1|2 + e−iδ|x2|2

∣∣∣
2

= |x1|4 + 2 cos (2δ) |x1|2|x2|2 + |x2|4.

Clearly, this function is ignorant towards individual phases of x1, x2 and when attempting to minimize it, we may
focus on real coefficients only. Taking into account normalization allows us to restrict x1 to the interval [0, 1] and
setting x22 = 1− x21. Doing so reveals

min
‖x‖`2=1

|〈x, Ux〉|2 = min
x1∈[0,1]

(
x41 + 2 cos(2δ)x21(1− x21) +

(
1− x21

)2)
= min

x1∈[0,1]

(
4 sin2(δ)

(
x41 − x21

)
+ 1
)

(24)

and maximizing the expression on the r.h.s. of (22) is therefore equivalent to finding the minimum of the particularly
simple double-well potential (24). The minimal value of the latter is achieved for x1 = 1/

√
2, which in turn assures

that the vector x̃ = (|0〉+ |1〉) /
√

2 in fact minimizes |〈x, Ux〉|2 and – as claimed – the inequality sign in (23) can
be replaced by equality.
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Similar techniques can be employed to exactly characterize the diamond distance of single qubit coherent leakage,
as it was introduced in the previous subsection.

Corollary 1 (Diamond distance of coherent leakage). Consider the three-level coherent leakage channel U(δ) with
δ ∈ [−π, π] introduced in (19). Then, its diamond distance amounts to DCL = |sin(δ)| .

Proof. We start by noting that U(δ) as introduced in (19) admits an eigenvalue decomposition of the form U(δ) =(
|v0〉〈v0|+ eiδ|v+〉〈v+|+ e−iδ|v−〉〈v−|

)
, where |v0〉, |v+〉, |v−〉 form an orthonormal basis of C3. Since this channel

is unitary, we can employ the particularly simple formula (22) to calculate it’s diamond distance:

DCL = max
‖x‖`2=1

√
1− |〈x|U(δ)|x〉|2 (25)

Now note that for any vector x = x1|v0〉+x2|v+〉+x3|v−〉 (represented with respect to the eigenbasis of U(δ)), we
have

|〈x|U(δ)|x〉|2 =
∣∣∣|x1|2 + |x2|2 eiδ + |x3|2 e−iδ

∣∣∣
2
.

An analysis similar to the one presented at the end of the proof of Theorem 2 reveals that such an expression is
minimal for x1 = 0 and |x2|2 = |x3|2 = 1/2. Inserting such an optimal vector into (25) implies

DCL = max
‖x‖`2=1

√
1− |〈x|U(δ)|x〉|2 =

√
1− cos2(δ) = |sin(δ)| ,

as claimed.

The unitarity and average error rate for two-qubit processes

We now consider the noise process on two qubits in the main text, generated by eiHCD2 where HCD2 = δ1σ
(1)
z +

δ2σ
(2)
z + εσ

(1)
z σ

(2)
z . Because the unitarity and average error rate can be computed directly, without the need of

analyzing a semidefinite program, we can simply use the formulas (7) and (31) (below) and do a direct computation.
The average error rate is given by

rCD2 =
1

10

[
4(2p− 1) cos(2δ) cos(2ε)− (1− 2p)2 cos(4δ) + 4p(1− p) + 5

]
,

and the unitarity is given by

uCD2 = 1
15

(
[8p(1− p)− 4]2 − 1

)
.

Here for simplicity we have choosen δ1 = δ2 = δ. This computation is routine, so we omit the details.

The unitarity as a witness for unfavorable scaling

The key message of this work is that the diamond distance D(E) of an error channel E may be proportional to the
square root of its average error rate r(E). This is undesirable, since it underlines that D(E) – which is the crucial
number for fault tolerance – may be orders of magnitude larger than r(E) – a quantity that is routinely estimated
via randomized benchmarking techniques. However, in our case studies we have found that for many channels this
worst case behavior does not occur and there is a linear relationship D(E) = O (r(E)). In this section, we provide
a necessary and sufficient criterion for such a desirable relationship. It is based on the unitarity, a scalar that was
introduced in [39] and quantifies the coherence (i.e. the “unitarity”) of a given noise channel E . To properly define it,
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we associate E with a reduced map E ′ that obeys E ′(I) = 0 as well as E ′(X) = E(X)− Tr(E(X))√
d

I for every traceless
X . We define the unitarity of E to be the following averaged quantity of the reduced map E ′:

u (E) :=
d

d− 1

∫
dψTr

(
E ′(|ψ〉〈ψ|)†E ′(|ψ〉〈ψ|)

)
. (26)

Defined that way, the unitarity obeys u(I) = 1 and its definition in terms of E ′ makes it sensitive towards possible
non-unital and trace decreasing features of E . In particular, it is also insensitive to unitary rotations, in the sense
that if U and V are unitary quantum channels, then u (UEV) = u (E) holds true for any quantum channel E . As a
result, the unitarity is independent of unitary pre- and post-rotations on the noise [39]. The unitarity boasts many
other desirable properties and – perhaps most importantly – can be efficiently estimated via a modified randomized
benchmarking experiment [39]. Moreover, it is related to the average error rate by means of the following inequality.

Proposition 2. Let E be a not necessarily trace preserving quantum operation obeying Tr
(
E(I)

)
≤ Tr(I). Then the

unitarity and average error rate of E obey

u(E) ≥
(

1− dr(E)

d− 1

)2

, (27)

where d denotes the dimension of the system.

This is a slightly more general version of the inequality in [39][Proposition 8] and we provide a new proof based
on fundamental Schatten-norm inequalities below. For now, we content ourselves with stating the main result of this
section: for a large family of error channels, nearly saturating the bound (27) is a necessary and sufficient condition
for the desirable scaling relation D(E) = O(r(E)).

Theorem 3. Let E be an arbitrary unital and trace-preserving channel. Then the diamond distance D(E) scales
linearly in the average error rate r = r(E), if and only if the bound (27) is saturated up to second order in r(E), i.e.

u(E) =

(
1− dr

d− 1

)2

+O
(
r2
)
. (28)

Since both r(E) and u(E) can be efficiently estimated in actual experiments, Theorem 3 provides an efficient
means to check whether or not D(E) and r(E) are of the same magnitude. It immediately follows from the following
technical result.

Proposition 3. Let E be a unital and trace-preserving quantum operation. Then D := D(E), r := r(E) and
u := u(E) are related via

cd

√
u+

2dr

d− 1
− 1 ≤ D ≤ d2cd

√
u+

2dr

d− 1
− 1, (29)

where cd = 1
2

(
1− 1

d2

)1/2 ∈
[√

3
4 ,

1
2

]
that only depends on the system dimension d.

To deduce Theorem 3 from this statement, let us start with assuming that (28) holds. Inserting this expression for
u into the upper bound provided by Proposition 3 yields

D ≤ d2cd

√(
1− dr

d− 1

)2

+O(r2) +
2dr

d− 1
− 1 = d2cd

√
d2

(d− 1)2
r2 +O (r2) = O (r) ,

as claimed. Conversely, suppose by contradiction that u =
(

1− dr
d−1

)2
+ O(r). Employing the lower bound

provided by Proposition 3 in a similar fashion assures D(E) = O(
√
r) which definitely does not scale linearly in r.

In order to establish the remaining statements – Proposition 3 and Proposition 2 – it is very useful to choose a
particular Liouville representation of error channels E . Concretely, we let {B1, . . . , Bd2} be a unitary operator basis
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obeying B1 = 1√
d
I and Tr

(
B†iBj

)
= δi,j (e.g. the normalized Pauli’s with the identity as first element). If defined

with respect to such a basis, L(E) admits the following block structure

L(E) =

(
1
dTr (E(I)) esdl

enu Eu

)
, (30)

where esdl, enu ∈ Cd2−1 encapsulate state dependent leakage and non-unitarity, respectively. With such a Liouville
representation, the unitarity of E is proportional to the squared Frobenius (or Hilbert-Schmidt) norm of the unital
block Eu [39][Proposition 1]:

u(E) =
1

d2 − 1
‖Eu‖22 . (31)

Moreover, such a block-matrix structure lets us establish the following relation [39][Proposition 9]

‖J(E)‖22 = (d2 + 1)u(E) + ‖enu‖2`2 + ‖esdl‖2`2 +
1

d
Tr (E(I)) . (32)

between the unitarity and the channel’s associated Choi matrix. Having laid out these relations, we are ready to prove
the main technical result of this section.

Proof of Proposition 3. We start with pointing out that the statement’s assumptions assure that both enu and esdl
vanish. This considerably simplifies the block structure (30) of L(E) as well as relation (32). At the heart of
this statement is an inequality that relates the diamond norm of any map M to different Schatten-norms of its
corresponding Choi matrix:

1

d
‖J(M)‖1 ≤ ‖M‖� ≤ ‖J(M)‖1, (33)

see e.g. [29][Lemma 7]. Recalling D(E) = 1
2‖∆‖� and weakening this estimate by employing the Schatten norm

inequalities ‖X‖2 ≤ ‖X‖1 ≤ rank(X)‖X‖2 allows us to deduce

1

2d
‖J(∆)‖2 ≤ D(E) ≤ d

2
‖J(∆)‖2, (34)

because J(∆) has at most rank d2. Note that an analogous relation can be derived using the diamond norm bound
presented in [50] instead of (33). As a matter of fact, the assumptions on E allow us to calculate ‖J(∆)‖2 explicitly.
To do so, start with

‖J(∆)‖22 = ‖J(I −E)‖22 = ‖d|ψBell〉〈ψBell|−J(E)‖22 = d2〈ψBell, ψBell〉2−2d〈ψBell|J(E)|ψBell〉+‖J(E)‖22 (35)

and note that the second term is related to the average error rate via

〈ψBell|J(E)|ψBell〉 = (d+ 1)Favg(E)− 1 = (d+ 1)(1− r(E))− 1.

This can readily be deduced from (7) by inserting the identity Tr (L(E)) = d〈ψBell|J(E)|ψBell〉 and noting that
Tr (E(I)) = Tr(I) = d holds, because E is trace-preserving. In turn, equation (32) allows to replace the last term in
Eq. (35) by

‖J(E)‖22 = (d2 − 1)u(E) +
1

d2
Tr (E(I))2 + ‖esdl‖2`2 + ‖en‖2`2 = (d2 − 1)u(E) + 1,

where we have used our assumptions that E is both unital and trace preserving to considerably simplify this expres-
sion. Inserting these identities into Eq. (35) reveals

‖J(∆)‖22 =d2 − 2d(d+ 1)(1− r(E)) + 2d+ (d2 − 1)u(E) + 1

=(d2 − 1)u(E) + 2d(d+ 1)r(E) +−d2 + 1

=(d2 − 1)

(
u(E) +

2dr(E)

d− 1
− 1

)
.

Plugging this explicit expression into the inequality chain Equation 34 then establishes the claim.
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Finally, we provide a proof of Propostion 2.

Proof of Proposition 2. The claim can be deduced from the fundamental norm inequality ‖X‖21 ≤ rank(X)‖X‖22.
Now, let L(E) be the particular block matrix representation (30). By construction Eu has rank at most (d2 − 1) and
we infer that

Tr(Eu)2 ≤ ‖Eu‖21 ≤ rank(Eu)‖Eu‖22 = (d2 − 1)2u(E) (36)

must hold, where we have employed Eq. (31). Also, Formula (7) together with the definition of the error rate implies

Tr(L(E)) + Tr(E(I)) = d(d+ 1)Favg(E) = d(d+ 1)(1− r(E)).

This in turn allows us to calculate

Tr(Eu) =Tr(L(E))− 1

d
Tr(E(I)) = Tr(L(E)) + Tr(E(I))− d+ 1

d
Tr(E(I))

=d(d+ 1)(1− r(E))− d+ 1

d
Tr(E(I)) ≥ d(d+ 1)(1− r(E))− (d+ 1)

=d(d+ 1)

(
d− 1

d
− r(E)

)
,

and combining this estimate with (36) readily yields the claimed bound.
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3 Additional results

This section is devoted to three novel results that were obtained in a recent collaboration
with Zhu, Grassl and Gross [KZG16a; KZG16b; ZKGG16]. The publication drafts are ready
for presentation and I include them in this chapter. I want to emphasize that the first paper
[ZKGG16]—where the main representation theoretical result is derived—is in large parts the
work of Zhu and Gross. However, Grassl and myself did provide relevant contributions. In
contrast to this, I am the main contributor to the follow-up results presented in the other two
drafts [KZG16a; KZG16b].
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The Cli�ord group fails gracefully to be a unitary 4-design

Huangjun Zhu,1 Richard Kueng,1 Markus Grassl,2 and David Gross1

1Institute for Theoretical Physics, University of Cologne, Germany
2Max Planck Institute for the Science of Light, Leuchs Division, 91058 Erlangen, Germany

(Dated: September 5, 2016)

A unitary t-design is a set of unitaries that is �evenly distributed� in the sense that the average of
any t-th order polynomial over the design equals the average over the entire group. In various �elds
� e.g. quantum information theory � one frequently encounters constructions that rely on matrices
drawn uniformly at random from the unitary group. It can often been shown that it su�ces to sample
these matrices from a t-design, for su�ciently high t. This results in more explicit, derandomized
constructions. The most prominent unitary t-design considered in quantum information is the multi-
qubit Cli�ord group. It is known that if forms a 3-design, but, unfortunately, not a 4-design. Here,
we give a simple, explicit characterization of the way in which the Cli�ord group fails to constitute
a 4-design. Our results show that for various applications in quantum information theory and in the
theory of convex signal recovery, Cli�ord orbits perform almost as well as true 4-designs. Technically,
it turns out that in a precise sense, the 4th tensor power of the Cli�ord group a�ords only one more
invariant subspace than the 4th tensor power of the unitary group. That additional subspace is a
stabilizer code � a structure extensively studied in the �eld of quantum error correction codes. This
allows for an explicit analysis.
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I. INTRODUCTION

A. Designs and derandomizations

A d-dimensional complex projective design is a con�guration of vectors that are �evenly distributed� on the unit
sphere in Cd. More precisely, a set of unit-length vectors is a complex projective t-design, if sampling uniformly from
the set gives rise to a random vector whose �rst 2t moments agree with the moments of the uniform measure on
the sphere. This property makes designs a useful tool for the derandomization of constructions that rely on random
vectors. To motivate our work, we mention one example from signal analysis and one from quantum information
theory.

1. Application: Phase Retrieval

The signal analysis example is the problem of phase retrieval : Let x be an unknown vector in Cd. Assume we have
access to a set of �phase insensitive linear measurements�

yi = |(ai, x)|, i = 1, . . . ,m. (1)

Here, the ai ∈ Cd are a given set of measurement vectors. The task now is to recover x given y1, . . . , yn. There are
many practical applications � for example in optical microscopy, where information about a sample is encoded in
the electro-magnetic light �eld, but where only phase-insensitive intensity measurments are usually feasible. From a
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mathematical point of view, the absolute value in Eq. (1) means that we are facing a non-linear inverse problem �
which are often di�cult to solve in theory in practice.
A recent research program has investigated the use of algorithms based on convex optimization for the purpose of

solving the phase retrieval problem. First theoretical results have shown that certain convex algorithms do indeed
recover x with high probability, if the measurements ai are random Gaussian vectors or drawn uniformly from the
unit-sphere in Cd [1, 2]. However, in many practical applications, such measurements cannot be realized. Therefore,
we are facing the task of re-proving those guarantees for measurements that are ideally deterministic, or, if randomized,
at least drawn from a �smaller� and �more highly structured� set of vectors than from the entire unit-sphere. Such
derandomized versions of have indeed been established for a variety of models�see e.g. Refs. [3, 4].
Starting with [5], some of the present authors have been interested in using spherical designs as �general-purpose�

tool for derandomzing phase retrieval algorithms. The basic insight is that protocols that ostensibly require Gaussian
vectors often only rely on certain measure concentration estimates that can be derived already from information about
�nite moments. Case in point is Ref. [6], which was proven initially for Gaussian measurements and then generalized
� with comparatively few additional e�orts � to any set of vectors which forms a 4-design.

2. Application: POVM norm constants

We take a related example from quantum information theory. In quantum mechanics, the state of a d-level system is
encoded in a positive semi-de�nite d×d-matrix, the so-called density operator. A measurement maps density operators
to classical probability distributions over a space of outcomes. The fundamental property of quantum complementarity
means that classical measurements necessarily entail a loss of information about the quantum system.
One way of precisely measuring this information loss is as follows: The (single-shot) statistical distinguishability of

two classical probability distributions p, q is measured by the total variational distance, or half their `1-norm distance
dc(p, q) := 1

2‖p − q‖`1 . Analogously, the optimal probability of distinguishing between two quantum states ρ, σ is

given by one half the Schatten-1 norm (or trace norm or nuclear norm) of their distance: dq(ρ, σ) := 1
2‖ρ − σ‖∗.

Quantum measurements are represented by (certain) linear maps Λ from the set of density matrices to the set of
classical probability distributions. The fact that �information is lost� in such a process can e.g. be made precise by
stating that Λ is a strict contraction:

dc(Λ(ρ),Λ(σ)) ≤ CΛdq(ρ, σ),

for some POVM norm constant CΛ < 1. It thus makes sense to ask for an optimal measurement, i.e. one that
maximises CΛ. It has been shown that the uniform POVM achieves this goal [7]. This measurement maps quantum
states to probability distributions on the complex unit sphere, where the density p(ψ) at the vector ψ is proportional
to tr ρ |ψ〉〈ψ|.
The situation is now very similar to the one considered in the phase retrieval example above: The uniform POVM is

optimal, but impractical to implement in large quantum experiments. However, as has been shown already in Ref. [7],
restricing the uniform POVM to a set of vectors that form a 4-design gives rise to a quantum measurement which
matches the optimal scaling behavior.

3. Outline of result: Overcoming the �t = 3-barrier�

One major drawback of the program of using complex projective designs for derandomization is that there has
been little progress in constructing explicit families of t-designs for t > 3. There are are various constructions using
�structured randomness� � most notably the random circuit model that yields approximate designs in any dimension
and of any degree [8, 9]. While the resulting designs are su�ciently well-structured for some tasks in quantum
information theory, they are arguably not as explicit as one could hope for.
This situation seems all the more unsatisfactory, as there are various applications � including the two examples

given above � where 2-designs are essentially useless (c.f. [7, 10]), 3-designs give �rst non-trivial improvements [10],
and 4-designs show already optimal behavior.
The only explicit in�nite family of complex projective 3-designs known to us are the orbits of the complex Cli�ord

group [11�13]. Unfortunately, it has also been shown that Cli�ord orbits are not, in general, 4-designs [11�13].
The main result of the present work is that while Cli�ord orbits fall short of constituting 4-designs, their 4th

moments can be explicitly calculated. The results are su�ciently well-behaved that for several applications, Cli�ord
orbits turn out to perform nearly as well as 4-designs or Gaussian random vectors would. In order to establish these
statements, we give an explicit description of the irreducible representations of the 4th tensor power of the Cli�ord
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group. In a precise sense, it turns out that the 4th tensor power of the Cli�ord group a�ords only one more invariant
subspace than the 4th tensor power of the unitary group. That additional subspace is a stabilizer code � a structure
extensively studied in the �eld of quantum error correction codes [14, 15]. This allows for an explicit analysis.
This paper contains only the representation-theoretic analysis of the 4th tensor power of the Cli�ord group. In

two companion papers, we apply this technical result to the applications mentioned in the introduction: In [16],
we establish performance guarantees for phase retrieval from stabilizer measurements; while [17] discuss the norm
constants of stabilizer POVMs. The reason for splitting our discussion three-ways is that we target both problems
form theoretical physics and from applied mathematics and that the respective communities employ very di�erent
language.

II. MATHEMATICAL BACKGROUND

In this section we review the mathematical background on complex projective designs and unitary designs.

A. Projective t-designs

Complex projective t-designs are of interest to a number research areas, such as approximation theory, combinatorics,
experimental designs etc. Recently, they have also found increasing applications in many quantum information
processing tasks, such as quantum state estimation [18�20], quantum state discrimination [7], and derandomization
[21]. Here we review three equivalent de�nitions of (complex projective) t-designs; cf. [18, 22, 23].
Let Hom(t,t)(Cd) be the space of polynomials homogeneous of degree t in the coordinates of |ψ〉 ∈ Cd (with respect

to a given basis) and homogeneous of degree t in the coordinates of 〈ψ|.
De�nition 1. A set of K pure states {|ψj〉} in dimension d is a (complex projective) t-design if

1

K

∑

j

p(ψj) =

∫
p(ψ)dψ ∀p ∈ Hom(t,t)(Cd), (2)

where the integral is taken with respect to the normalized Haar measure induced by the action of the unitary group.

To derive simpler criteria on t-designs, we need to introduce several additional concepts. Let Symt(Cd) be the

t-partite symmetric subspace of (Cd)⊗t with corresponding projector P Sym
t . The dimension of Symt(Cd) reads

DSym
t =

(
d+ t− 1

t

)
. (3)

The tth frame potential of {|ψj〉} is de�ned by

Φt({|ψj〉}) :=
1

K2

∑

j,k

|〈ψj |ψk〉|2t. (4)

Proposition 1. The following statements are equivalent:

1. {|ψj〉} is a t-design.

2. 1
K

∑
j(|ψj〉〈ψj |)⊗t = P Sym

t /DSym
t .

3. Φt({|ψj〉}) = 1/DSym
t .

Remark 1. In general, Φt({|ψj〉}) ≥ 1/DSym
t , and the lower bound is saturated i� {|ψj〉} is a t-design.

Proof. Let L(Symt(Cd)) be the space of linear operators acting on Symt(Cd). There is a one-to-one correspondence
between polynomials p ∈ Hom(t,t)(Cd) and operators A ∈ L(Symt(Cd)),

A 7→ pA, pA(ψ) := tr
[
A(|ψ〉〈ψ|)⊗t

]
. (5)

Therefore,

1

K

∑

j

pA(ψj) =
1

K
tr

[
A
∑

j

(|ψj〉〈ψj |)⊗t
]
,

∫
pA(ψ)dψ = tr

[
A

∫
(|ψ〉〈ψ|)⊗tdψ

]
. (6)
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It follows that {|ψj〉} is a t-design i�

1

K

∑

j

(|ψj〉〈ψj |)⊗t =

∫
(|ψ〉〈ψ|)⊗tdψ =

1

DSym
t

P Sym
t . (7)

Here the second equality follows from the fact the tth symmetric subspace is irreducible under the action of the unitary
group. This observation con�rms the equivalence of statements 1 and 2. The equivalence of statements 2 and 3 is a
consequence of the following equation,

∥∥∥∥
1

K

∑

j

(|ψj〉〈ψj |)⊗t −
1

DSym
t

P Sym
t

∥∥∥∥
2

2

= Φt({|ψj〉})−
1

DSym
t

, (8)

where ‖·‖2 denotes the Hilbert-Schmidt norm or the Frobenius norm. This equation implies that Φt({|ψj〉}) ≥ 1/DSym
t ,

and the lower bound is saturated i� Eq. (7) is satis�ed.

Any t-design in dimension d has at least

(
d+ dt/2e − 1

dt/2e

)(
d+ bt/2c − 1

bt/2c

)
(9)

elements, where dt/2e denotes the smallest integer not smaller than t/2, and bt/2c the largest integer not larger than
t/2 [18, 24, 25]. The bound is equal to d, d2, d2(d+ 1)/2, d2(d+ 1)2/4 for t = 1, 2, 3, 4, respectively. A t-design is tight
if the lower bound is saturated. A 1-design is tight i� it de�nes an orthonormal basis; a 2-design is tight if and only
it de�nes a symmetric informationally complete measurement (SIC) [18, 22, 23, 26, 27]. Other prominent examples
of 2-designs include complete sets of mutually unbiased bases (MUB) [28�30].

B. Unitary t-designs

Let Hom(t,t)(U(d)) be the space of polynomials homogeneous of degree t in the matrix elements of U ∈ U(d) and
homogeneous of degree t in thhe matrix elements of U∗ (the complex conjugate of U ; the Hermitian conjugate of U
is denoted by U†).

De�nition 2. A set of K unitary operators {Uj} is a unitary t-design if

1

K

∑

j

p(Uj) =

∫
dUp(U) ∀p ∈ Hom(t,t)(U(d)), (10)

where the integral is taken over normalized Haar measure. This equation remains intact even if Uj are multiplied by
arbitrary phase factors, so what we are concerned are actually projective unitary t-designs.

The tth frame potential of {Uj} is de�ned as

Φt({Uj}) :=
1

K2

∑

j,k

| tr(UjU†k)|2t. (11)

As shown in the proof of Proposition 2 below,

Φt({Uj}) ≥ γ(t, d) :=

∫
dU | tr(U)|2t, (12)

and the lower bound is saturated i� {Uj} is a unitary t-design [31�33]. The value of γ(t, d) has been computed
explicitly: it is equal to the number of permutations of {1, 2, . . . , t} with no increasing subsequence of length larger
than d [34, 35]. Here we only need the formula in the following two special cases [32],

γ(t, d) =

{
(2t)!

t!(t+1)! d = 2,

t! d ≥ t.
(13)

Like projective t-designs, there are many equivalent de�nitions of unitary t-designs.
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Proposition 2. The following statements are equivalent:

1. {Uj} is a unitary t-design.

2. 1
K

∑
j tr
[
BU⊗tj A(U⊗tj )†

]
=
∫

dU tr
[
BU⊗tA(U⊗t)†

]
for all A,B ∈ L((Cd)⊗t).

3. 1
K

∑
j U
⊗t
j A(U⊗tj )† =

∫
dUU⊗tA(U⊗tj )† for all A ∈ L((Cd)⊗t).

4. 1
K

∑
j U
⊗t
j ⊗ (U⊗tj )† =

∫
dUU⊗t ⊗ (U⊗tj )†.

5. 1
K

∑
j U
⊗t
j ⊗ (U⊗tj )∗ =

∫
dUU⊗t ⊗ (U⊗tj )∗.

6. Φt({Uj}) = γ(t, d).

Proof. Note that tr
[
BU⊗tA(U⊗t)†

]
is a homogeneous polynomial in Hom(t,t)(U(d)) and that all polynomials of this

form for A,B ∈ L((Cd)⊗t) span Hom(t,t)(U(d)). Therefore, statements 1 and 2 are equivalent. The equivalence of
statements 2 and 3 is obvious.
The equivalence of statements 1 and 4 follows from the following equation,

tr
{
V (B ⊗A)[U⊗t ⊗ (U⊗t)†]

}
= tr

{
BU⊗tA(U⊗t)†

}
, (14)

where V is the swap operator of parties 1, 2, . . . , t with the parties t+ 1, t+ 2, . . . , 2t. The equation in statement 5 is
a partial transposition of the one in statement 4.
The equivalence of statements 5 and 6 follows from the following equation

∥∥∥∥
1

K

∑

j

U⊗tj ⊗ (U⊗tj )∗ −
∫

dUU⊗t ⊗ (U⊗t)∗
∥∥∥∥

2

= Φt({Uj})− γ(t, d). (15)

Most known examples of unitary designs are constructed from subgroups of the unitary group, which are referred
to as (unitary) group designs henceforth. Given a �nite group G of unitary operators, the frame potential of G takes
on the form

Φt(G) =
1

|G|
∑

U∈G
| tr(U)|2t. (16)

Let G be the quotient of G over the phase factors. Then

Φt(G) = Φt(G) =
1

|G|
∑

U∈G
| tr(U)|2t. (17)

This formula is applicable whenever G is a �nite group even if G is not. Note that Φt(G) is equal to the sum of
squared multiplicities of irreducible components of τ t(G) := {U⊗t|U ∈ G} [31], which coincides with the dimension
of the commutant of τ t(G). Recall that the commutant A′ of a set of operatators A is the algebra of all operators
commuting with every element of A:

A′ = {B|[A,B] = 0 ∀A ∈ A}. (18)

Let H be a subgroup in G. It is clear that every irreducible representation of τ t(G) on
(
Cd
)⊗t

is also invariant under
τ t(H) and thus forms a representation space of H. However, these spaces need not be irreducible under the action
of H. As a consequence, Φt(H) ≤ Φt(G) for any subgroup H in G, and the equality is saturated i� every irreducible
component of τ t(G) is also irreducible when restricted to τ t(H); that is, τ t(G) and τ t(H) decompose into the same
number of irreducible components.
At this point, it is instructive to review the representation theory of U(d) on the space of all tensors (Cd)⊗t from

the point of view of Schur-Weyl duality. By de�nition the unitary group U(d) acts on Cd. The action extends to the
diagonal action on (Cd)⊗t,

U 7→ τ t(U) : |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉 7→ U |ψ1〉 ⊗ U |ψ2〉 ⊗ · · · ⊗ U |ψt〉 ∀|ψj〉 ∈ Cd, U ∈ U(d). (19)
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Meanwhile, the symmetric group St acts on the tensor product space (Cd)⊗t by permuting tensor factors:

π(|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉) = |ψπ1〉 ⊗ |ψπ2〉 ⊗ · · · ⊗ |ψπt〉 ∀|ψj〉 ∈ Cd, π ∈ St. (20)

The diagonal action of U(d) and the permutation action of St on (Cd)⊗t commute with each other. Schurl-Weyl duality
states that (Cd)⊗t decomposes into multiplicity-free irreducible representations of U(d)× St [36]. More precisely,

(
Cd
)⊗t

=
⊕

λ

Hλ =
⊕

λ

Wλ ⊗ Sλ. (21)

Here the λ's are non-increasing partitions of t into no more than d parts, Wλ is the Weyl module carrying the irrep of
U(d) associated with λ, and Sλ the Schur module on which St acts irreducibly. We denote the dimensions of Sλ and
Wλ by dλ and Dλ, respectively. Note that dλ equals the multiplicity of the Weyl module Wλ, and, likewise, Dλ is the
multiplicity of the Schur module Sλ. As an implication, the commutant of the diagonal action of the unitary group is
generated by all permutations of the tensor factors. When λ = [t] is the trivial partition, then Wλ = Symt(Cd) and
St acts trivially on Sλ ' C. In particular, it follows that the space Symt(Cd) carries an irreducible representation of
U(d).
The discussion above leads to a number of equivalent characterizations of t-designs constructed from groups.

Proposition 3. The following statements concerning G ≤ U(d) are equivalent:

1. G is a unitary t-design.

2. Φt(G) = γ(t, d).

3. τ t(G) decomposes into the same number of irreps as τ t(U(d)).

4. Every irreducible component in τ t(U(d)) is still irreducible when restricted to τ t(G).

5. τ t(G) and τ t(U(d)) has the same commutant.

6. The commutant of τ t(G) is generated by all the permutations of tensor factors.

For example, G is a 1-design i� it is irreducible, in that case, G has at least d2 elements, and the lower bound is
saturated i� it de�nes a nice error basis, that is, tr(UjUk) = dδjk for Uj , Uk ∈ G [37]. The group G is a unitary 2-design
i� τ t2(G) has only two irreducible components, which correspond to the symmetric and antisymmetric subspaces of
the bipartite Hilbert space. Prominent examples of unitary group 2-designs include Cli�ord groups and restricted
Cli�ord groups in prime power dimensions [31, 38�41].

Proposition 4. Any orbit of pure states of a unitary group t-design forms a complex projective t-design.

Proof. Let G be a unitary group t-design, then τ t(G) acts irreducibly on Symt(Cd). Therefore,
∑

U∈G

(
U |ψ〉〈ψ|U†

)⊗t
=
∑

U∈G
U⊗t(|ψ〉〈ψ|)⊗t(U⊗t)† ∝ P Sym

t (22)

for any pure state |ψ〉. It follows that any orbit of pure states of G forms a complex projective t-design.

III. DECOMPOSITION OF THE FOURTH TENSOR POWER OF THE CLIFFORD GROUP

A. Pauli group and Cli�ord group

Let F2 = Z2 = {0, 1} be the �nite �eld of integers with arithmetic modulo 2. We label the Pauli matrices on a
single qubit by elements of F2

2 in the following way:

σ(0,0) =

(
1 0
0 1

)
, σ(0,1) =

(
0 1
1 0

)
, σ(1,0) =

(
1 0
0 −1

)
, σ(1,1) =

(
0 −i
i 0

)
.

A Pauli operator on n qubits is de�ned as the tensor product of n Pauli matrices. Concretely, each a ∈ F2n
2 de�nes a

Pauli operator as follows,

Wa := σ(a1,a2) ⊗ · · · ⊗ σ(a2n−1,a2n).
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Every pair of Pauli operators either commute or anticommute,

WaWb = (−1)〈a,b〉WbWa, (23)

where 〈a, b〉 = aTJb is the symplectic product with J being the 2n× 2n block diagonal matrix over F2 with n blocks
of ( 0 1

1 0 ) on the diagonal. Let

P̄n = {Wa | a ∈ F2n
2 }

be the set of all n qubit Pauli operators. The Pauli group on n-qubits is the group generated by all the Pauli operators
in P̄n,

Pn = 〈P̄n〉 = {ijWa | a ∈ F2n
2 , j ∈ Z4}.

In the following discussion P̄n is also identi�ed as the projective Pauli group, the quotient group of Pn with respect
to the phase factors. As a group, P̄n is isomorphic to F2n

2 .
Let Sp(2n,F2) be the symplectic group composed of all 2n×2n matrices over F2 that satisfy the following equation

FJFT = J. (24)

The n-qubit Cli�ord group Cn is the normalizer of the n-qubit Pauli group Pn. For every Cli�ord unitary U ∈ Cn,
there is a unique symplectic matrix F ∈ Sp(2n,F2) such that

UWaU
† = (−1)f(a)WFa ∀a, (25)

for a suitable sign function f from F2n
2 to F2. Conversely, for each F ∈ Sp(2n,F2) there exists a Cli�ord unitary and

a suitable function f such that the above equation is satis�ed. Let Cn be the projective Cli�ord group. Then Cn/P̄n
is isomorphic to Sp(2n,F2).
The Cli�ord group plays an important role in quantum computation [14, 15, 42, 43], quantum error correction

[14, 15], and randomized benchmarking [44�46]. Many nice properties of the Cli�ord group are closely related to the
fact that the group is a unitary 2-design [8, 31�33, 38�41, 47]. Recently, it is shown that the Cli�ord group Cn forms
a unitary 3-design but not a 4-design [11�13]. The fourth frame potential of Cn reads [12],

Φ4(Cn) =





15 n = 1,

29 n = 2,

30 n ≥ 3.

(26)

Comparison with Eq. (13) shows that the frame potential of the Cli�ord group is quite close to that of a 4-design. This
observation indicates that the fourth tensor power of the Cli�ord group has only a few more irreducible components
than that of the whole unitary group, as spelled out more precisely in the next section.

B. A special stabilizer code

To state our main result precisely, we need to de�ne a certain stabilizer code. Recall that a stabilizer group is an
abelian subgroup of the Pauli group that does not contain −1. The order of any n-qubit stabilizer group is a divisor
of d = 2n. Those n-qubit stabilizer groups of order d are called maximal. A stabilizer code is the common eigenspace
of operators in a stabilizer group [14, 48]. If the stabilizer group has order 2m with m ≤ n, then the stabilizer code
has dimension 2n−m. When the stabilizer group is maximal, the stabilizer code has dimension 1 and reduces to a
stabilizer state.
Whenever k is even, the following set of Pauli operators

Sn,k = {τk(Wa) | a ∈ F2n
2 }

commute with each other. The set is also invariant under the diagonal action of the Cli�ord group. If in addition
k is a multiple of 4, then Sn,k is also closed under multiplication and thus forms a stabilizer group. Let Vn,k be the
stabilizer code de�ned by the joint +1 eigenspace of operators in Sn,k. The dimension of the stabilizer code is dk−2,
and the projector onto it is given by

Pn,k =
1

|Sn,k|
∑

a∈F2n
2

τk(Wa). (27)
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The stabilizer code Vn,k and projector Pn,k are invariant under the action of the symmetric group Sk, which acts

on
(
Cd
)⊗k

by permuting the k tensor factors. Meanwhile, they are also invariant under the diagonal action of the

Cli�ord group. In other words, Vn,k a�ords a representation of the Cli�ord group Cn and also Cn. Given that Vn,k
is a common +1 eigenspace of τk(Wa) for all Pauli operators Wa, it follows that the Pauli group P̄n acts trivially on
Vn,k. Therefore, Vn,k a�ords a projective representation of the symplectic group Sp(2n,F2), which is isomorphic to

Cn/P̄n. When n 6= 2, 3, Sp(2n,F2) has trivial Schur cover [49], so the projective representation can be turned into
ordinary representation with a suitable choice of phase factors.
In the rest of this section, we construct an orthonormal basis for Vn,k, though this is essential to understand our

main result. First consider the special case n = 1. Let u ∈ Fk2 and de�ne ũ := a+ (1, 1, . . . , 1) as the bitwise �NOT� of

u. If k is a multiple of 4 and a has even number of digits equal to 1, then the state |φu〉 := (|u〉+ |ũ〉)/
√

2 is a common
+1 eigenstate of τk(Wa) for all single qubit Pauli operators Wa; that is, |φu〉 ∈ V1,k. Now it is straightforward to
verify that the follow set

{|φu〉|u ∈ Fk1 ,
k∑

j=1

uj = 0, u1 = 0} (28)

forms an orthonormal basis of V1,k.
Simple analysis shows that Vn,k and Pn,k can be written as tensor products as follows,

Vn,k = V ⊗n1,k , Pn,k = P⊗n1,k . (29)

So an orthonormal basis of Vn,k can be constructed by taking tensor product of the basis of V1,k.

C. Main results

The most concise way to state our main result is in terms of the commutant of τ4(Cn). The classic Schur-Weyl
duality states that the commutant of τk(U(d)) is generated by the symmetric group Sk with permutation action [36].
If d = 2n and we restrict from τ4(U(d)) to the subgroup τ4(Cn), the commutant becomes larger. Our main result
says that there is only one additional generator: the stabilizer projector Pn,4 introduced above.

Theorem 1 (Main Theorem). The commutant τ4(Cn)′ of the diagonal action of the Cli�ord group on
(
Cd
)⊗4

is
generated as an algebra by S4 (permuting tensor factors) and the stabilizer projection Pn,4.

Next, we will give a more concrete formulation of the main result. To this end, recall that Schur-Weyl duality can
be used to �nd the decompositoin

(
Cd
)⊗4

=
⊕

λ

Hλ =
⊕

λ

Wλ ⊗ Sλ (30)

of
(
Cd
)⊗4

into irreps of U(d)×S4. Here, the λ's are partitions of 4 into no more than d parts, Wλ is the Weyl module
carrying an irrep of U(d) and Sλ the Schur module on which S4 acts irreducibly; the group U(d)×S4 acts irreducibly
on each Hλ. The dimensions of Sλ and Wλ are denoted by dλ and Dλ, respectively, as listed in Table I. Note that dλ
equals the multiplicity of the Weyl moduleWλ, and, likewise, Dλ is the multiplicity of the Schur module Sλ. Let G be
a subgroup of U(d), then the number of irreducible components of G×S4 on Hλ is equal to the number of irreducible
components of G on Wλ. In particular, G × S4 is irreducible on Hλ i� G is irreducible on Wλ. The multiplicity of
each irrep of G appearing in Hλ is always a multiple of dλ.
Now recall that Vn,4 is the stabilizer code de�ned above. We denote its orthgonal complement by V ⊥n,4 and de�ne

the spaces

H+
λ := Hλ ∩ Vn,4, H−λ := Hλ ∩ V ⊥n,4.

Because Vn,4 is invariant under the action of S4, and because the Sλ are irreducible under the same action, it follows
that for each λ, there is a subspace W+

λ ⊂Wλ such that

H+
λ = W+

λ ⊗ Sλ.
Likewise,

H−λ = W−λ ⊗ Sλ,
where W−λ is the ortho-complement, within Wλ, of W

+
λ .

The dimensions of these spaces can be computed explicitly.
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TABLE I. Dimensions of the Schur modules, Weyl modules and irreducible components of the n-qubit Cli�ord group appearing
on (Cd)⊗4, where d = 2n.

λ dλ Dλ D+
λ D−

λ

[4] 1 d(d+1)(d+2)(d+3)
24

(d+1)(d+2)
6

(d−1)(d+1)(d+2)(d+4)
24

[1, 1, 1, 1] 1 d(d−1)(d−2)(d−3)
24

(d+1)(d+2)
6

(d+1)(d−1)(d−2)(d−4)
24

[2, 2] 2 d2(d2−1)
12

(d2−1)
3

(d2−4)(d2−1)
12

[2, 1, 1] 3 d(d−2)(d2−1)
8

0 d(d−2)(d2−1)
8

[3, 1] 3 d(d+2)(d2−1)
8

0 d(d+2)(d2−1)
8

Lemma 1. Let D±λ = dimW±λ . The values of D±λ for partitions λ of 4 are given in Table I. In addition, dimH±λ =

dλD
±
λ .

Then the main theorem can be expressed equivalently in each of the following two ways.

Corollary 1. Whenever they are non-trivial, the spaces W±λ carry irreducible representations of the n-qubit Cli�ord

group Cn, while H
±
λ carry irreducible representations of Cn × S4.

Corollary 2. Under the action of Cn × S4, the space
(
Cd
)⊗4

decomposes into these irreps:

(
Cd
)⊗4

=
⊕

λ;s=± |Dsλ 6=0

W s
λ ⊗ Sλ.

D. Proofs

In this section, we prove Lemma 1 and derive from it our main result Theorem 1.

Proof of Lemma 1. Let Hλ,Wλ, Sλ be the representation spaces appearing in the Schur-Weyl decomposition in
Eq. (30). Let Pλ be the projector onto Hλ. We have

Pλ =
dλ
24

∑

σ∈S4

χλ(σ)Uσ, (31)

where Uσ is the unitary operator that realizes the permutation of the tensor factors corresponding to σ, and χλ is
the character of the irrep of S4 corresponding to the partition λ; see Table II. For example, the projectors onto the
symmetric and antisymmetric subspaces are respectively given by

P[4] =
1

24

∑

σ∈S4

Uσ, (32)

P[14] =
1

24

∑

σ∈S4

sgn(σ)Uσ, (33)

where sgn(σ) is equal to 1 for even permutations and −1 for odd permutations.
Note that Pλ commutes with the projector Pn,4 onto the stabilizer code, so the dimension of Vn,4 ∩Hλ is given by

dλD
+
λ = tr(Pn,4Pλ). Therefore,

D+
λ =

1

dλ
tr(Pn,4Pλ) =

1

d2dλ

∑

a

tr(W⊗4
a Pλ)

=
1

d2

[
Dλ +

1

24

∑

σ∈S4

∑

06=a∈F2n
2

χλ(σ) tr
(
UσW

⊗4
a

)]
. (34)

Let l(σ) be the number of cycles in σ with even lengths. If a 6= 0, then

tr(UσW
⊗4
a ) =

{
0 σ contains a cycle of odd length,

dl(σ) otherwise.
(35)
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TABLE II. Characters of the symmetric group S4.

cycle type (14) (22) (2, 12) (3, 1) (4)

order 1 2 2 3 4

# 1 3 6 8 6

χ1 = [4] 1 1 1 1 1

χ2 = [1, 1, 1, 1] 1 1 −1 1 −1

χ3 = [2, 2] 2 2 0 −1 0

χ4 = [2, 1, 1] 3 −1 −1 0 1

χ5 = [3, 1] 3 −1 1 0 −1

According to Table II, the symmetric group S4 has 3 permutations of cycle type (22) and six permutations of cycle
type (4), while all other permutations contain at least one cycle of odd length. In conjunction with the above two
equations, this observation enables us to compute D+

λ and then D−λ , with the result shown in Table I.

An alternative proof � which is slightly longer, but may give a better feeling for the spaces involved � is presented
in Appendix C.

Proof of Theorem 1. Note that Theorem 1 and Corollary 1 are equivalent. To prove Theorem 1, it su�ces to prove
Corollary 1, which states that the spaces W±λ carry irreducible representations of the n-qubit Cli�ord group Cn
whenever W±λ are non-trivial.
The sum of squared multiplicities of irreducible components in τ4(Cn) is equal to the fourth frame potential of the

Cli�ord group Cn, as shown in Eq. (26). When n ≥ 3, both Vn,4∩Hλ and V ⊥n,4∩Hλ are nontrivial invariant subspaces
of Cn × S4 for λ = [4], [1, 1, 1, 1], [2, 2]. So the frame potential of Cn is at least

Φ4(Cn) ≥ d2
[4] + d2

[1,1,1,1] + d2
[2,2] +

∑

λ

d2
λ = 30. (36)

The lower bound is saturated i� all the representations of Cn a�orded by W±λ for D±λ 6= 0 are irreducible and

inequivalent. If any of W±λ is reducible, then Φ4(Cn) would be strictly larger than 30, in contradiction with Eq. (26).
This contradiction con�rms Corollary 1 in the case n ≥ 3, from which Theorem 1 follows. The proofs for the special
cases n = 1, 2 are similar.

IV. t-DESIGNS FROM CLIFFORD ORBITS

In this section we determine all Cli�ord covariant t-designs in the case of a single qubit. We then show that random
orbits of the Cli�ord group are very good approximation of 4-designs. Furthermore, we introduce several simple and
e�cient methods for constructing exact and approximate �ducial states of 4-design.

A. Cli�ord covariant t-designs for qubit

Now the t-partite symmetric subspace has dimension t + 1, so the frame potential of a qubit t-design is equal to
1/(t+1). Since the Cli�ord group is a unitary 3-design, every orbit of the Cli�ord group forms a complex projective 3-
design. The unique shortest orbit is composed of six stabilizer states, which form a complete set of mutually unbiased
bases. When represented on the Bloch sphere, the six states form the vertices of the octahedron.
To derive a simple criterion on those orbits that form 4-design, suppose the �ducial state has Bloch vector (x, y, z)

with x2 + y2 + z2 = 1. Then the fourth frame potential of the Cli�ord orbit is given by

Φ4(x, y, z) =
21− 6(x4 + y4 + z4) + 5(x4 + y4 + z4)2

96
. (37)

The orbit forms a 4-design i� x4 + y4 + z4 = 3/5, in which the case Φ4(x, y, z) attains the minimum 1/5. The orbit
forms a 5-design under the same condition. One explicit solution is given by

x =

√
5 + 2

√
10

15
, y = z =

√
5−
√

10

15
. (38)
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By contrast, Φ4(x, y, z) is maximized when x4 +y4 +z4 = 1, in which case the Bloch vector corresponds to a stabilizer
state.
When the condition x4 + y4 + z4 = 3/5 is satis�ed, the sixth and seventh frame potential satisfy the following

equation

8Φ7(x, y, z)− 1 = 4[7Φ6(x, y, z)− 1] =
11(1− 21x2 + 105x4 − 105x6)

2400

=
11(1− 21y2 + 105y4 − 105y6)

2400
=

11(1− 21z2 + 105z4 − 105z6)

2400

=
11[3− 7(x6 + y6 + z6)

480
. (39)

The orbit forms a 6-design i� x2, y2, z2 are distinct roots of the equation 1−21u+ 105u2−105u3 = 0, which are given
by

uj =
1

3

(
1 + 2

√
2

5
cos

θ + 2jπ

3

)
, θ = arctan

3
√

10

20
, j = 1, 2, 3. (40)

Equivalently, the orbit forms a 6-design i� x6 +y6 +z6 = 3/7 or if x2y2z2 = 1/105 (assuming x4 +y4 +z4 = 3/5). The
same condition also guarantees that the orbit forms a 7-design. There are 48 solutions in total, which compose two
Cli�ord orbits. When represented on the Bloch sphere, the two orbits can be converted to each other by inversion.
The two orbits are not unitarily equivalent, but are equivalent under antiunitary transformations. Actually the 48
solutions form one orbit under the action of the extended Cli�ord group, the group generated by the Cli�ord group
and complex conjugation with respect to the computational basis. Since any qubit 8-design has at least 25 elements
according to Eq. (9), no Cli�ord orbit can form an 8-design.
Calculation shows that a random Cli�ord orbit is approximately a t-design for t up to 7. The ratio of the average

frame potential over the minimum potential is given by

(t+ 1)E[Φt(x, y, z)] =





1 t = 3,
127
126 t = 4,
43
42 t = 5,
1795
1716 t = 6,
1381
1287 t = 7.

(41)

B. Random Cli�ord orbits are good approximation to 4-designs

In this section we show that random Cli�ord orbits are very good approximation to projective 4-designs. Recall
that τ4(Cn) has two irreducible components W±[4] in the totally symmetric space W[4] = Sym4(C2n). According to

Table I, the dimensions of W[4] and W
±
[4] are

D[4] =
d(d+ 1)(d+ 2)(d+ 3)

24
,

D+ := D+
[4] =

(d+ 1)(d+ 2)

6
,

D− := D−[4] =
(d− 1)(d+ 1)(d+ 2)(d+ 4)

24
.

(42)

The projectors P± onto the two irreps W±[4] read

P+ = Pn,4P[4], P− = (1− Pn,4)P[4]. (43)

where Pn,4 is the projector onto the stabilizer code de�ned in Eq. (27) and P[4] is the projector onto W[4].
As an implication of Corollary 2, we have

Corollary 3. Let X be the orbit of any normalized vector ψ ∈ C2n under the action of the Cli�ord group Cn. Then

1

|X|
∑

φ∈X

(
|φ〉〈φ|

)⊗4
= α+P+ + α−P−,
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where

α+ =
1

D+
tr
[
P+(|ψ〉〈ψ|)⊗4

]
=

1

D+
tr
[
Pn,4(|ψ〉〈ψ|)⊗4

]
, D+α+ +D−α− = 1. (44)

The state |ψ〉 is a �ducial state of a 4-design i� α− = α+ = 1/D[4], that is,

β+(ψ) := tr
[
Pn,4(|ψ〉〈ψ|)⊗4

]
=
D+

D[4]
=

4

d(d+ 3)
. (45)

The deviation of the Cli�ord orbit of ψ from 4-design can be characterized by

ε(ψ) =
D[4]

D+
β+(ψ)− 1, (46)

which satis�es β+(ψ) = D+[1 + ε(ψ)]/D[4]. Note that |ε(ψ)| is the operator norm of the deviation

D[4]

|X|
∑

φ∈X

(
|φ〉〈φ|

)⊗4 − P[4].

It also determines the fourth frame potential of the Cli�ord orbit of ψ as follows,

Φ4(orb(ψ)) =
β+(ψ)2

D+
+
β−(ψ)2

D−
=

1 +D+ε(ψ)2/D−
D[4]

, (47)

where β−(ψ) = 1− β+(ψ).
To determine potential deviation, note that d2Pn,4 =

∑
aW

⊗4
a . So β+(ψ) is proportional to the second frame

potential of the orbit of |ψ〉 under the action of the Pauli group. De�ne characteristic function Ξ(ψ) as the vector
composed of the d2 elements

Ξa(ψ) = tr(Wa|ψ〉〈ψ|). (48)

Then β+(ψ) = ‖Ξ(ψ)‖4l4/d2. Since {Wa} forms a nice error basis and Hermitian operator basis, we have

‖Ξ(ψ)‖2l2 =
∑

a

tr
[
W⊗2
a (|ψ〉〈ψ|)⊗2

]
= d, ‖Ξ(ψ)‖l∞ = max

a
tr(Wa|ψ〉〈ψ|) = 1. (49)

Consequently,

2d

d+ 1
≤ ‖Ξ(ψ)‖4l4 ≤ d, (50)

which implies

2

d(d+ 1)
≤ β+(ψ) ≤ 1

d
, − d− 1

2(d+ 1)
≤ ε(ψ) ≤ d− 1

4
. (51)

The upper bound in Eq. (50) follows from the Hölder inequality; it is saturated i� Ξ(ψ) has d entries equal to 1 and
all other entries equal to 0; this can happen i� |ψ〉 is a stabilizer state. The lower bound is saturated i�

Ξa(ψ) =
1√
d+ 1

∀a 6= 0, (52)

in which case the d2 states Wa|ψ〉 for a ∈ F2n
2 form a symmetric informationally complete measurement (SIC), which

happens to be a minimal 2-design [18]. According to Godsil and Roy [50], SIC �ducial states of the n-qubit Pauli
group can exist only for n = 1, 3. As an implication of Eq. (51), the frame potential satis�es

1

D[4]
≤ Φ4(orb(ψ)) ≤ 1

D[4]

(
1 +

d− 1

4(d+ 4)

)
, (53)

where the lower bound is saturated i� the orbit forms a 4-design, and the upper bound is saturated i� the orbit
consists of stabilizer states, that is, ψ is a stabilizer state.
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In the rest of this section we compute the variance of the deviation parameter ε(ψ) of a random Cli�ord orbit
and thereby show that random Cli�ord orbits are very good approximation to 4-designs. Suppose ψ is distributed
according to the Haar measure. The �rst and second moments of β+(ψ) are given by

E[β+(ψ)] = tr(Pn,4E[(|ψ〉〈ψ|)⊗4]) =
1

D[4]
tr(Pn,4P[4]) =

4

d(d+ 3)
, (54)

E[β+(ψ)2] =
1

D[8]
tr(P⊗2

n,4P[8]) =
16(d2 + 15d+ 68)

d2(d+ 3)(d+ 5)(d+ 6)(d+ 7)
, (55)

where the last equality was derived in the appendix. The variance reads

Var[β+] = E[β2
+]− E[β+]2 =

96(d− 1)

d2(d+ 3)2(d+ 5)(d+ 6)(d+ 7)
. (56)

As a consequence of the above equations,

E[ε(ψ)] = 0, E[ε(ψ)2] =
Var[β+]

E[β+]2
=

6(d− 1)

(d+ 5)(d+ 6)(d+ 7)
. (57)

This equation enables us to determine the ratio of the average fourth frame potential over the minimum frame potential
(the potential for a 4-design),

D[4]E[Φ4] = 1 +
D+

D−
E[ε(ψ)2] = 1 +

24

(d+ 4)(d+ 5)(d+ 6)(d+ 7)
. (58)

Equations (57) and (58) show that random Cli�ord orbits are very good approximation to 4-designs.
The following lemma is useful for deriving large-deviation bound for the frame potential of random Cli�ord orbits.

Lemma 2 (Levy). Let f : S2d−1 → R be Lipschitz-continuous with Lipschitz constant η, that is,

|f(x)− f(y)| ≤ η‖x− y‖, (59)

where ‖x − y‖ is the Euclidean norm in the surrounding space R2d of S2d−1. Drawing a point in S2d−1 at random
with respect to the uniform measure on the sphere yields

Prob{|f(x)− E[f ]| ≥ ε} ≤ 2 exp
( −dε2

9π3η2

)
. (60)

Lemma 3. The function ψ → β+(ψ) is Lipschitz-continuous with Lipschitz constant 8/d, that is,

β+(ψ)− β+(ϕ) ≤ 8

d
‖|ψ〉 − |ϕ〉‖. (61)

Question: How much can we improve this lemma.

Lemma 4. Suppose ψ is drawn randomly according to the Haar measure. Then

Prob{|β+(ψ)− E[β+(ψ)]| ≥ ε} ≤ 2 exp
(
− d3ε2

576π3

)
. (62)

This large deviation bound is not very good. We expect that there is a much better bound, but how can we get
better bounds?

C. Fiducial states of exact 4-designs up to �ve qubits

In this section we propose a method for constructing exact �ducial states of 4-designs of the Cli�ord group. Exact
�ducial states up to �ve qubits are constructed explicitly.
Recall that an n-qubit state |ψ〉 is a �ducial state for a 4-design i� ‖Ξ(ψ)‖4l4 = 4d/(d+ 3) Suppose ψ = ψ1 ⊗ ψ2 is

a tensor product of an n1-qubit state and an n2-qubit state with n1 + n2 = n. Then ‖Ξ(ψ)‖4l4 = ‖Ξ(ψ1)‖4l4‖Ξ(ψ2)‖4l4
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since Pn,4 can be written as a tensor product Pn,4 = Pn1,4 ⊗ Pn2,4. In the case of a single qubit, let ψ(x, y, z) be a
�ducial state with Bloch vector (x, y, z), where x2 + y2 + z2 = 1; then

‖Ξ(ψ)‖4l4 = 1 + x4 + y4 + z4. (63)

The state generates a 4-design i� x4 + y4 + z4 = 3/5 as pointed out in Sec. IVA. Let ψT be the magic state (also

a SIC �ducial) with Bloch vector (1, 1, 1)/
√

3. Then �ducial states of 4-designs for n = 2, 3, 4 can be constructed as
follows,





ψT ⊗ ψ(x, y, z), x4 + y4 + z4 = 5/7, n = 2;

ψ⊗2
T ⊗ ψ(x, y, z), x4 + y4 + z4 = 7/11, n = 3;

ψ⊗3
T ⊗ ψ(x, y, z), x4 + y4 + z4 = 8/19, n = 4.

(64)

There are also many other constructions.
In dimension 8, the set of Hoggar lines forms a SIC that is covariant with respect to the three-qubit Pauli group

[26, 51, 52]. One �ducial state of the SIC is given by

|ψHog〉 =
1√
6

(1 + i, 0,−1, 1,−i,−1, 0, 0)T. (65)

Note that ‖Ξ(ψHog)‖4l4 = 16/9 attains the minimum over all three-qubit states. This observation enables us to
construct �ducial states of 4-designs for n = 4, 5,

{
ψHog ⊗ ψ(x, y, z), x4 + y4 + z4 = 17/19, n = 4;

ψHog ⊗ ψT ⊗ ψ(x, y, z), x4 + y4 + z4 = 8/19, n = 5.
(66)

The tensor-product construction of �ducial states of 4-designs also has a limitation. Consider tensor products of
qubit magic states and ψHog for example,

‖Ξ(ψ⊗nT )‖4l4 =
(4

3

)n
.

‖Ξ(ψ⊗nHog)‖4l4 =
(16

9

)n/3
=
(4

3

)2n/3

, 3|n.
(67)

As n increases, ‖Ξ(ψ⊗nT )‖4l4 and ‖Ξ(ψ⊗nHog)‖4l4 increase exponentially with n. By contrast, the value required for a
4-design approaches the constant 4. The following proposition clari�es this limitation; see the appendix for a proof.

Proposition 5. Suppose a 4-design �ducial state of the n-qubit Cli�ord group is a tensor product of m states ψ =
⊗mj=1ψj, where ψj is an nj-qubit state with

∑
j nj = n and n1 ≥ n2 ≥ · · · ≥ nm. Then m ≤ 3 except when n = 4. If

m = 3, then n2 = n3 = 1, except when (n1, n2, n3) = (2, 2, 1) or (n1, n2, n3) = (3, 2, 1).

D. Algorithms for constructing �ducial states of 4-designs

Here we present two algorithms for constructing �ducial states of 4-designs. Let |ψ〉 be an n-qubit state. Recall
that |ψ〉 is a �ducial state of a 4-design i� β+(ψ) = 4/[d(d+ 3)] or, equivalently, i� ε(ψ) = 0; cf. Eqs. (45) and (46).
Given two n-qubit states |ψ1〉, |ψ2〉, if γ(|ψ1〉) > 0 and γ(|ψ2〉) < 0, then any continuous curve of pure states joining
|ψ1〉 and |ψ2〉 contains a 4-design �ducial. The following bisection algorithm is based on this simple observation. Let
ε0 be the precision required.
Algorithm 1:

1. Generate two states |ψ1〉, |ψ2〉 such that ε(ψ1) > 0, ε(ψ2) < 0, and 〈ψ1|ψ2〉 6= 0. Choose suitable phase factors
so that 〈ψ1|ψ2〉 > 0.

2. Let |ψ′3〉 = (|ψ1〉+ |ψ2〉)/2 and |ψ3〉 = |ψ′3〉/
√
〈ψ′3|ψ′3〉. If |ε(ψ3)| ≤ ε0, stop.

3. If γ(ψ3) ≥ 0, then replace |ψ1〉 with |ψ3〉; otherwise, replace |ψ2〉 with |ψ3〉. Repeat Steps 2,3.
Remark 2. |ψ1〉 can be chosen to be a stabilizer state, while a potential candidate for |ψ2〉 is an eigenstate of a Singer
unitary introduced in the next section. In Step 2 we may also use weighted sum of |ψ1〉, |ψ2〉, say

|ψ′3〉 =
|ψ1〉ε(ψ1)− |ψ2〉ε(ψ2)

ε(ψ1)− ε(ψ2)
. (68)
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The second algorithm is based on the tensor product construction discussed in the previous section.
Algorithm 2:

1. Generate an (n− 1)-qubit state |ψn−1〉 such that β+(ψn−1) ≤ 3/d(d+ 3), where d = 2n.

2. Let c = 4/[d(d+3)β+(ψn−1)]. Choose a qubit state |ψ〉 with Bloch vector (x, y, z) such that x4 +y4 +z4 = c−1.
Then |ψn−1〉 ⊗ |ψ〉 is a �ducial state of a 4-design.

Remark 3. The qubit state required in Step 2 can always be found. Note that 1/3 ≤ c− 1 ≤ 2(d+ 2)/(d+ 3)− 1 < 1
since β+(|ψn−1〉) ≥ 1/2n(2n−1 + 1) = 2/d(d+ 2), where the lower bound is saturated i� |ψn−1〉 is a SIC �ducial state
of the (n− 1)-qubit Pauli group; cf. Eq. (51).
In general, it is still not clear that there exists an (n− 1)-qubit state |ψn−1〉 such that β+(ψn−1) ≤ 3/d(d+ 3), but

we believe that the answer is positive. Actually, any eigenstate of a Singer unitary might satisfy the requirement; see
the next section.

E. Approximate �ducial states of 4-designs from MUB cycler

Let {|ψrj 〉}r,j be a set of mutually unbiased bases, where r labels the basis, and j labels each element in a basis. A
balanced state |ψ〉 with respect to {|ψrj 〉}r,j is a state that looks the same from every basis in the set, that is, the set

of probabilities {|〈ψrj |ψ〉|2}j is independent of r. If there exists a unitary operator that cycles through all the bases,
then any eigenstate of the unitary operator is a balanced state. For example, the complete set of MUB constructed
by Wootters and Fields [29] has a cycler when the dimension is a power of 2, that is d = 2n. Each MUB cycler is a
special element in the Cli�ord group, which is also known as a Singer unitary [53]. The group generated by a Singer
unitary is called Singer unitary group. All Singer unitary groups are conjugated to each other in the Cli�ord group,
all of them have the same order of d+1 (modular phase factors). In addition, each Singer unitary has a nondegenerate
spectrum, so the eigenbasis is well-de�ned. In the case of a qubit, each Singer unitary has order 3, and each eigenstate
of a Singer unitary is a SIC �ducial and a magic state.
When n is a power of 2, a simple construction of Singer unitaries (MUB cyclers) was presented in Ref. [54]. Here

we are interested in constructing approximate �ducial states of 4-designs from the eigenstates of a Singer unitary. For
n = 1, 2, 4, 8, numerical calculation shows that all eigenstates |ψn〉 of a Singer unitary for given n have the same value
of ε(ψn) [cf. Eq. (46)]. Let |ψT〉 be a single qubit magic state. Calculation shows that

−ε(|ψn〉 ⊗ |ψT〉) =





2
9 n = 1,

0.12 n = 2,

0.0312 n = 4,

0.0020 n = 8.

(69)

The magnitude of the deviation ε(ψn⊗ψT) is around 1/2n+1, which has the same order of magnitude as the standard
deviation of ε(ψ) for a random (n + 1)-qubit state |ψ〉; cf. Eq. (57). The orbit generated from |ψn〉 ⊗ |ψT〉 is a very
good approximation to a 4-design. Exact 4-design �ducial state can be constructed using algorithm 2 in the previous
section. In addition, |ψn〉 or |ψn〉 ⊗ |ψT〉 can serve as an input to Algorithm 1 presented in the previous section.

Conjecture 1. Suppose |ψn〉 is any eigenstate of a Singer unitary operator in the n-qubit Cli�ord group. Then

lim
n→∞

ε(ψn ⊗ ψT) = 0. (70)

This conjecture implies that the orbit generated by (n + 1)-qubit Cli�ord group from |ψn〉 ⊗ |ψT〉 converges to a
4-design with respect to the operator norm. Equation (70) has several equivalent formulations, one of which reads

lim
n→∞

‖Ξ(ψn)‖4l4 = 3. (71)

V. OPEN PROBLEMS

1. Is there any orbit of the Cli�ord that forms a t-design for t > 4? The answer is positive when n = 1. It seems
that the same should hold for larger n.

2. What is the maximum t such that there is an orbit of the Cli�ord group that forms a t-design. The answer is 7
when n = 1. How about approximate t-designs?

3. Prove Conjecture 1.
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TABLE III. Permutations of S8 without cycle of odd length. N1 is the number of permutations of a given cycle type; N2

is the number of balanced permutations (those in A ) of a given cycle type; N3 = N3+ − N3−, where N3± is the number of
permutations of a given cycle type that belong to A±. The sets A and A± are de�ned in the text. Note that N3++N3− = N2.

cycle type (24) (22, 4) (42) (2, 6) (8)

N1 105 1260 1260 3360 5040

N2 9 252 684 1440 5040

N3 9 108 108 288 432

Appendix A: Derivation of Eq. (55)

In this appendix, we derive the second moment of β+(ψ), as presented in Eq. (55).

E[β+(ψ)2] =
1

D[8]
tr(P⊗2

n,4P[8]) =
1

d4D[8]

∑

a,b

tr(P[8]W
⊗4
a ⊗W⊗4

b ) =
16(d2 + 15d+ 68)

d2(d+ 3)(d+ 5)(d+ 6)(d+ 7)
, (A1)

where Wa are n-qubit Pauli operators, P[k] is the projector onto k-partite symmetric subspace of (Cd)⊗k with d = 2n,
and D[k] is the rank of P[k] or the dimension of the k-partite symmetric subspace. In deriving the las equality in
Eq. (A1), we have made use of the following formula

tr(P[8]W
⊗4
a ⊗W⊗4

b ) =





D[8] Wa = Wb = 1,
D[8]

D[4]

3d2+6d
24 Wa = 1,Wb 6= 1 orWb = 1,Wa 6= 1,

1
2688 (7d4 + 84d3 + 308d2 + 336d) Wa = Wb 6= 1,

1
4480 (d4 + 28d3 + 236d2 + 560d) Wa,Wb 6= 1,WaWb = WbWa,

1
4480 (d4 + 12d3 + 44d2 + 48d) Wa,Wb 6= 1,WaWb = −WbWa.

(A2)

To derive Eq. (A2), we recall the following facts,

P[k] =
1

k!

∑

σ∈Sk
Uσ, trk P[k] =

D[k]

D[k−1]
P[k−1], (A3)

where trk means the partial trace over party k. If a 6= 0, then

tr(UσW
⊗k
a ) =

{
0 σ contains an cycle of odd length,

dl(σ) otherwise.
(A4)

where l(σ) is the number of cycles in σ with even lengths. The cycle types of elements in S8 without cycle of odd
length are listed in Table III.
The �rst case in Eq. (A2) is trivial. When Wb = 1,Wa 6= 1,

tr
(
P[8]W

⊗4
a ⊗W⊗4

b

)
=
D[8]

D[4]
tr
(
P[4]W

⊗4
a

)
, (A5)

recall that the symmetric group S4 has three permutations of cycle type 22, six permutations of cycle type 4, and all
other permutations contain at least one cycle of odd length (cf. II). The case Wa = 1,Wb 6= 1 has the same result.
When Wb = Wa 6= 1, the result follows from Eqs. (A3), (A4), and Table III.
To settle the last two cases in Eq. (A2), we need to introduce some terminology. A permutation in S8 is balanced

if each cycle involves even number of parties both in the �rst four parties and in the second four parties. De�ne
A as the subset of balanced permutations in S8. Each permutation in S8 induces a permutation on the vector
v = (a, a, a, a, b, b, b, b). De�ne

A+ = {σ ∈ A | σ induces even number of transpositions between a and b}. (A6)

A− = {σ ∈ A | σ induces odd number of transpositions between a and b}. (A7)

Note that A = A+ ∪A−.
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If Wb,Wa 6= 1, Wb 6= Wa, and WbWa = WaWb, then

tr(UσW
⊗4
a ⊗W⊗4

b ) =

{
dl(σ) σ ∈ A ,

0 σ /∈ A .
(A8)

If WbWa = −WaWb, then

tr(UσW
⊗4
a ⊗W⊗4

b ) =





dl(σ) σ ∈ A +,

−dl(σ) σ ∈ A−,

0 otherwise.

(A9)

Now the last two cases in Eq. (A2) can be determined by virtue of Table III and the above two equations.

Appendix B: Proof of Proposition 5

Proof. Let dj = 2nj and suppose m = 4. Then

‖Ξ(ψ)‖4l4 =

4∏

j=1

‖Ξ(ψj)‖4l4 ≥
4∏

j=1

2dj
dj + 1

≥
(4

3

)3 2n−2

2n−3 + 1
. (B1)

If n ≥ 5, then

(4

3

)3 2n−2

2n−3 + 1
− 2n+2

2n + 3
=

5× 2n+2(2n − 24)

27(2n + 3)(2n + 8)
> 0. (B2)

So the state ψ cannot generate a 4-design.
Now suppose m = 3, so that n1 + n2 + n3 = n. If n3 = 2, then

‖Ξ(ψ)‖4l4 ≥
(8

5

)3

=
512

125
≥ 4 >

4d

d+ 3
, (B3)

which leads to a contradiction. If n3 = 1, n1, n2 ≥ 3, then n ≥ 7,

‖Ξ(ψ)‖4l4 −
2n+2

2n + 3
≥

4∏

j=1

2dj
dj + 1

− 2n+2

2n + 3
≥ 4

3

16

9

2n−3

2n−4 + 1
− 2n+2

2n + 3
=

2n+2(5× 2n − 336)

27(2n + 3)(2n + 16)
> 0. (B4)

So ψ cannot be a 4-design �ducial. If n3 = 1, n1, n2 ≥ 2, then n ≥ 5,

‖Ξ(ψ)‖4l4 −
2n+2

2n + 3
≥

4∏

j=1

2dj
dj + 1

− 2n+2

2n + 3
≥ 4

3

8

5

2n−2

2n−3 + 1
− 2n+2

2n + 3
=

2n+2(2n − 72)

15(2n + 3)(2n + 8)
. (B5)

If in addition n ≥ 7, then ‖Ξ(ψ)‖4l4 ≥ 2n+2/(2n + 3), so that ψ cannot be a 4-design �ducial. This observation
completes the proof of the proposition.

Appendix C: Alternative proof of Lemma 1

When n = 1, the following four states

|φ0〉 := |0000〉+ |1111〉,
|φ1〉 := |1001〉+ |0110〉,
|φ2〉 := |0101〉+ |1010〉,
|φ3〉 := |0011〉+ |1100〉.

(C1)

form an orthonormal basis of Vn,4. The symmetric group S4 (permuting the four tensor factors) �xes |φ0〉 and acts
like S3 on the |φ1〉, |φ1〉, |φ2〉. For general n, we have that

Vn,4 = V ⊗n1,4 .
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One orthonormal basis of Vn,4 is composed of the following 4n states

|φi1i2,...,in〉 = |φi1〉 ⊗ · · · ⊗ |φin〉, i1, i2, . . . , in ∈ {0, 1, 3, 4}. (C2)

Each state is labeled by a length-n word i1, . . . , in with ij ∈ {0, 1, 3, 4}. Each permutation in the symmetric group S4

induces a permutation on the basis states and a corresponding permutation on the words, which acts on all letters
simultaneously. We get these orbits:

1. One orbit containing 0×n, referred to as type I orbit below.

2. Any string in {0, i}×n (for given i ∈ {1, 2, 3}) excluding 0×n generates an orbit of size 3 . There are 2n− 1 such
orbits of length three, referred to as type II orbits below..

3. We have accounted for 3× (2n−1)+1 = 3×2n−2 strings. The remaining ones have either two or three distinct
non-zero letters. These strings are partitioned into orbits of length 6, referred to as type III orbits below.

The three type of strings are referred to as type I, II, III strings below; the corresponding orbits are referred to with
similar names. The total number of orbits is

2n +
4n − 3× 2n + 2

6
=

4n + 3× 2n + 2

6
=

(2n + 2)(2n + 1)

6
=

(d+ 2)(d+ 1)

6
. (C3)

Now we are ready to construct an orthonormal basis for the totally W+
[4] = Vn,4 ∩ Sym4(Cd). For each string

s ∈ {1, 2, 3}n, let orb(s) be the orbit of the string under the action of S4. Then

P[4]|φs〉 =
1

|orb(s)|
∑

r∈orb(s)

|φs〉 (C4)

Note that P[4]|φs〉 ∈W+
[4] only depends on orb(s) and that the states corresponding to di�erent orbits are orthogonal.

Let S be a subset of {0, 1, 3, 4}n that contains exactly one string from each orbit. Then

{
√
|orb(s)|P[4]|φs〉|s ∈ S } (C5)

is an orthonormal basis for W+
[4]. In particular, the dimension of W+

[4] is equal to the total number of orbits, that is,

D+
[4] = dim(W+

[4]) =
(d+ 2)(d+ 1)

6
. (C6)

Now consider the subspace W+
[14]. Note that P[14]|φs〉 = 0 when s is an type I or type II string. An orthonormal

basis for W+
[14] is

{
√
|orb(s)|P[14]|φs〉|s ∈ S is of type III}. (C7)

The dimension of W+
[14] is equal to the number of type III orbits, that is,

D−[14] = dim(W+
[14]) =

(d− 2)(d− 1)

6
. (C8)

It is more involved to compute the dimension W+
[22], but it is also unnecessary if we can compute the dimension of

W+
[2,1,1] and W

+
[3,1]. With Lemma 5 below one can show that P[2,1,1]|φs〉 = 0 and P[3,1]|φs〉 = 0 for all strings s. So

both W+
[2,1,1] and W

+
[3,1] have dimension 0. It follows that

D+
[4] +D+

[14] + 2D+
[22] = d2, (C9)

which implies that D+
[22] = (d2 − 1)/3.

Lemma 5. Let H be the unique order-4 normal subgroup of S4. Then
∑
σ∈gH χλ(σ) = 0 for λ = [2, 1, 1], [3, 1] and

all g ∈ S4.
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We study the reconstruction of hermitian low rank matrices from an undersampled number of
measurements via nuclear norm minimization. We consider the particular scenario, where the mea-
surements correspond to rank-one projectors onto orbits of the Clifford group chosen uniformly at
random. This includes stabilizer states as a particular special case. Novel results about the higher
moments of the multi-qubit Clifford group [1] allow us to establish reconstruction guarantees for
m ≥ Cnrκ(r) log(n) measurements. The factor κ(r) depends on the choice of fiducial. For stabilizer
states it amounts to r. This reconstruction is stable towards both additive noise and the model as-
sumption of low rank. If the matrix of interest is in addition positive semidefinite, reconstruction
may be performed by a constrained nuclear norm minimization.

Our results in particular imply near-optimal performance guarantees for phase retrieval via
PhaseLift.

I. INTRODUCTION AND MAIN RESULTS

A. Phase retrieval and low rank matrix recovery

The problem of retrieving phases has a long history
in many different scientific disciplines. Accordingly, the
problem’s mathematical structure has received consid-
erable attention in its own right. Mathematically, the
discrete version of the phase retrieval problem asks to
reconstruct an unknown complex vector x ∈ Cd from
measurements of the form

yk = |〈ak, x〉|2 + ek 1 ≤ k ≤ d. (1)

Here, a, . . . , am ∈ Cd model linear measurements, while
the absolute values assure that the corresponding obser-
vations yk are ignorant towards complex phases. Finally,
the ek’s model additive noise of unknown size and struc-
ture.

Importantly, a measurement process of the form (1) is
not linear in x. This non-linearity can be overcome by
“lifting” the problem to the outer-product xx∗ of x [2, 3]:

yk = |〈ak, x〉|2 + ek = tr (aka∗k xx∗) + ek. (2)

Known as “PhaseLift” [4], such a trick seemingly changes
the problem’s nature and asks for estimating the posi-
tive semidefinite, rank-one matrix xx∗ from linear mea-
surements. Such a task is a particular instance of low
rank matrix recovery. Building on ideas from compressed
sensing, low rank matrix recovery aims at estimating an
unknown d× d matrix X ∈ Md from m� d2 linear mea-
surements of the form

yk = tr (AkX) + ek 1 ≤ k ≤ m, (3)

under the prior assumption that X is (approximately)
low rank. By defining the measurement operator

A : Md → Rm (4)

Z 7→
m

∑
k=1

tr (AkZ) ek,

where e1, . . . , em denotes the standard basis in Rm, an
entire measurement process can succingtly be written as

y = A(X) + e (5)

with y = (y1, . . . , ym)T and e = (e1, . . . , em)T . Up to
date, several measurement ensembles A1, . . . , Am ∈ Md
have been identified [5, 6] for which any rank r matrix
can be stably estimated from

m = Crdpolylog(d)

noisy measurements of the form (3). With a notable ex-
ception [7], these results rely on randomly selected mea-
surements. In order to deal with noise corruption, an a
priori bound η ≥ ‖e‖`q on that noise is required. Subse-
quently, the actual reconstruction is carried out by solv-
ing

Z] = arg min ‖Z‖1 (6)
subject to ‖A(Z)− y‖`q ≤ η

algorithmically. This is a computationally tractable con-
vex optimization task. With high probability, the quality
of such a reconstruction is then bounded by this a-priori
chosen noise bound η. A typical uniform recovery guar-
antee (see also Theorem 2 below) for a measurement op-
erator A assures

‖X− Z]‖2 ≤ C
η√
m

for all target matrices X ∈ Md with rank(X) ≤ r.

B. Clifford Orbits

Throughout this section (and the remainder of this pa-
per) we shall assume that the dimension d is a power of
two.

Let U1, . . . , Ud2 denote the Pauli matrices and Wk :=
1√
d

Wk their re-normalized counterparts. These matrices

327



2

form a unitary operator basis of Hd with respect to the
Frobenius inner product:

(Wk, Wl) =
1
d
(Uk, Ul) =

δk,l

d
‖Uk‖2

2 = δk,l .

The characteristic function

w : Hd → Rd2
(7)

X 7→
d2

∑
k=1

(Wk, X) ek, (8)

maps every hermitian matrix to the vector of expansion
coefficients with respect to the basis W1, . . . , Wd2 . We
point out that the characteristic function is an isometry,
i.e. ‖w(Z)‖`2 = ‖Z‖2 ∀Z ∈ Hd. In addition, it obeys

‖w(X)‖`∞ = max
1≤k≤d2

1√
d
|(Uk, X)| ≤ ‖X‖1√

d
∀X ∈ Hd

(9)
according to the Hoelder inequality.

The Clifford group C(d) is the group of unitary trans-
formations that—up to a global phase—maps Pauli
matrices to Pauli matrices under conjugation. It has
many remarkable properties. One of them is that
in qubit dimensions it forms a unitary 3-design [8, 9].
Roughly speaking, unitary t-designs are discrete sub-
sets of the unitary group U(d) that reproduce the Haar
measure up to t-th moments. We refer to [1] for fur-
ther information. This in turn implies that every orbit
Oz = {Cz : C ∈ C(d)} forms a complex projective 3-
design. Similar to unitary 3-designs, complex projective
3-designs reproduce the first 2t moments of the uniform
distribution over the complex unit sphere Sd−1.

Stabilizer states form the smallest Clifford orbit. The
fact that they also constitute a complex projective 3-
design was independently derived by a subset of the au-
thors [14].

The 3-design property of any Clifford orbit in partic-
ular implies that a random vector a ∈ Cd chosen uni-
formly from such an orbit obeys

Ea∈Oz [aa∗] =
1
d
1, (10)

Ea∈Oz

[
Ten3 (aa∗)

]
=

(
d + 1

2

)−1
PSym2 , (11)

Ea∈Oz

[
Ten3 (aa∗)

]
=

(
d + 2

3

)−1
PSym3 .

Here, Tenk(Z) = Z⊗k denote the canonical k-fold tensor
product of a matrix Z ∈ Hd.

Recently, we were able to extend this knowledge
about moments to order four:

Theorem 1 (Corollary 3 in [1]). For any power of two d,
uniformly sampling a ∈ Sd−1 from a Clifford orbit with fidu-
cial z ∈ Sd−1 results in a distribution obeying

E
[
Ten4 (aa∗)

]
= d

(
d + 2

3

)−1

(α1(z)P1 + α2(z)P2) ,

where P1, P2 ∈ Ten4(Hd) are orthogonal projections that
commute with PSym4– the projector onto the totally symmet-

ric subspace. Defining Q = ∑d2

k=1 Ten4(Wk) allows to char-
acterize them explicitly by

P1 = PSym4 Q and P2 = PSym4 (I−Q)

and the coefficients amount to

α1(z) =‖w(zz∗)‖4
`4

and α2(z) = 4
1− ‖w(zz∗)‖4

`4

(d + 4)(d− 1)
,

where w(·) : Hd → Rd2
is the isometry introduced in (7).

C. Main results

The results in [10, 11] highlight that random measure-
ment projectors onto elements of a 4-design admit a re-
quired sampling rate of m = rd log(d). This is opti-
mal up to a single log-factor. In general, Clifford orbits
Oz ⊂ Sd−1 fail to constitute a 4-design. In our main
results, we pay the prize for this lack of structure by re-
quiring a (potentially trivial) oversampling factor. De-
pending only on the Clifford orbit’s fiducial z ∈ Sd−1

and a parameter ρ ∈]0, 1[ it amounts to

κ(z, ρ) :=
1
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}
∈
[

1
ρ

,
r
ρ

]
, (12)

where w : Hd → Rd2
is the i The lower bound on

κ(z, ρ)’s range is trivial, while the upper bound follows
from Lemma 3 below. In our reconstruction guarantee,
this factor will feature not only in the sampling rate, but
also in the reconstruction bound and the failure proba-
bility.

Theorem 2. Let d be a power of two, z ∈ Sd−1 and fix
1 ≤ r ≤ d, ρ ∈ ]0, 1[. Consider a measurement operator
A containing

m ≥ C1

ρ2 κ2
zrd log(d). (13)

projectors Ak = aka∗k onto uniformly sampled elements of

z’s Clifford orbit. Then, with probability 1− e
−C2

m
κ2

z , a noisy
measurement process of the form A(X) = y + e suffices to
stably reconstruct the best rank-r approximation of any X ∈
Hd. Concretely, the solution Z] of (6) obeys

‖X− Z]‖2 ≤
C(ρ)√

r
σr(X) + D(ρ)κ(z, ρ)

Motivated by the structure of PhaseLift (1) we focus
our attention on estimating low rank matrices X that
are in addition positive-semidefinite (psd) and rank-one
projective measurements Ak = aka∗k which are also psd.
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Such a restriction to psd target matrices X and mea-
surements Ak has a crucial advantage. As pointed out
in [11–13], such positive semidefinite shape constraints
often render nuclear norm minimization superfluous in
the algorithmic reconstruction step. This in particu-
lar allows for replacing (6) by a simple constrained `q-
regression (q ≥ 1):

Z] = arg min
Z is psd

‖A(Z)− y‖`q
. (14)

Compared to (6), Algorithm (14) has the considerable
advantage of not requiring an a-priori bound η on the
noise corrupting the measurement process. From a prac-
tical perspective, this feature is highly desirable and our
main result has this feature:

Theorem 3. Let d be a power of two, z ∈ Sd−1, fix 1 ≤ r ≤ d
and ρ ∈

]
0, 1

2

[
. Let w(·) : Hd → Rd2

be the isometry
introduced in (7) and define

κz :=
1
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}
∈
[

1
ρ

,
r
ρ

]
. (15)

Consider a noisy measurement operator A containing

m ≥ C1

ρ2 κ2
zrd log(d). (16)

projectors Ak = aka∗k onto uniformly sampled elements of

z’s Clifford orbit. Then, with probability 1− de
− C2m

max{κ2
z ,d} , a

noisy measurement process of the formA(X) = y+ e suffices
to stably reconstruct the best rank-r approximation of any psd
matrix X ∈ Hd. Concretely, for any q ≥ 1, the solution Z] of
Algorithm (14) obeys

‖X− Z]‖2 ≤
C3(ρ)√

r
σr(X)1 + C4(ρ)

κz
√
(d + 1)d
m1/q ‖e‖`q ,

where σr(X)1 = inf {‖X− Z‖1, Z has rank r} is the nu-
clear norm error of best rank-r approximation to the matrix
X. Here, C1, C2 are absolute constants and C3(ρ), C4(ρ) de-
pend exclusively on the choice of ρ (see (46) and (47) below
for explicit dependencies).

We note that Lemma 3 below assures that

‖w (zz∗) ‖4
`4
≤ 1

d
∀z ∈ Cd (17)

is true. So, in the worst case the sampling rate required
in (16) amounts to

m ≥ C1

ρ4 r3d log(d). (18)

While sub-optimal in the rank parameter, its depen-
dence on the ambient dimension d is optimal up to a
single log-factor. Clearly, different choices of fiducials
z ∈ Cd lead to different requirements on the sampling
rate:

1. Stabilizer states: (e.g. z = e1) (17) is tight, which
results in the worst case (18).

2. “Magic states:” For d = 2n set z = Tenn(m) and
choose m ∈ Cd such that

mm∗ =
1
2

(
I± 1√

3
U1 ±

1√
3

U2 ±
1√
3

U3

)
,

where U1, U2, U3 ∈ H2 denote the non-identity
Pauli matrices[21]. By construction such a x obeys
‖w(zz∗)‖4

`4
< d−

3
2 , which results in a required

sampling rate

m ≥ C1

ρ4 max
{

1,
r2

d

}
rd log(d)

that is order-optimal for any rank parameter 1 ≤
r ≤
√

d.

3. 4-design fiducial: if z ∈ Cd obeys ‖w(zz∗)‖4
`4

=
4

d(d+3) , the corresponding Clifford orbit forms a
complex projective 4-design [1]. This work also
shows that such a choice is always feasible and in-
serting such a ‖w(zz)‖4

`4
into (16) results in a sam-

pling rate requirement

m ≥ 4C1

ρ4 rd log(d) (19)

which is always order-optimal. This result should
not come as a surprise, since order optimal uni-
form recovery guarantees have already been es-
tablished in [10, 11] based on the 4-design prop-
erty alone.

Finally, let us turn our attention to the particular case
of phase retrieval. The PhaseLift approach by construc-
tion assures that the target signal is a psd matrix with
rank-one, i.e. σ1(xx∗)1 = 0. Setting r = 1 and employ-
ing (17) we thus may conclude the following from The-
orem 3:

Corollary 1 (PhaseLift with Clifford orbits). Let d be a
power of two and suppose that a1, . . . , am are

m ≥ C1d log(d) (20)

uniformly sampled elements of any Clifford orbit. Then, with
probability at least 1− de−C̃2m, the associated phaseless mea-
surements yk = |〈ak, x〉|2 + ek allow for estimating any xx∗
(and thus x) by employing Algorithm (14) with any q ≥ 1.
Its minimizer is guaranteed to obey

‖Z] − xx∗‖`2 ≤ C3

√
(d + 1)d
m1/q ‖e‖`q . (21)

Any Clifford orbit forms a 3-design [8, 9, 14]. Viewed
from this angle, Corollary 1 may be viewed as a substan-
tial strengthening of the main result in [15] for particular
3-designs.
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Note that the factor
√
(d + 1)d in (21) is an artifact of

our normalization. If we change the normalization of
the sampling vectors from one to 4

√
(d + 1)d – a length

that closely resembles the expected length of random
Gaussian vectors – we obtain measurements of the form

ỹk = |〈ãk, x〉|2 + ẽk with ãk =
√
(d + 1)dak (22)

and ẽ =
√
(d + 1)de, because the noise term is ampli-

fied as well. For re-scaled measurements of this form
and q = 1, Corollary 1 assures whp that for any x ∈ Cd,
solving

Z] = arg min
Z is psd

m

∑
k=1
|〈ãk, Zãk〉 − ỹk| (23)

yields a matrix obeying

‖Z] − xx∗‖2 ≤ C3
‖ẽ‖`2

m
. (24)

Up to a single log-factor in the sampling rate (20) and
a slightly weaker bound on the probability of failure
(de−C̃2m vs. O (e−γm)) this special case reproduces the
main result in [16] – the strongest recovery guarantee
for PhaseLift with Gaussian measurements available.

II. PROOFS

A. Null space properties under positive semidefinite
constraints

Low rank matrix recovery aims to reconstruction
rank-r matrices X ∈ Hd form an incomplete collection
of m linear, and potentially noisy, measurements (3). A
necessary and sufficient criterion for this to be uniformly
possible (i.e. all matrices of rank ≤ r may be recovered),
is that the measurement operator A obeys a null space
property [17]. A strong matrix version thereof was intro-
duced in [11]:

Definition 1 (Definition 3.1 in [11] for hermitian ma-
trices). For fixed r and q ≥ 1, a measurement operator
A : Hd → Rm obeyes the `q-robust null space property
of order r (r/`q-NSP) with constants ρ ∈]0, 1[ and τ > 0,
if

‖Zr‖2 ≤
ρ√
r
‖Zc‖1 + τ‖A(Z)‖`q ∀Z ∈ Hd. (25)

Here Zr denotes the best rank-r approximation of Z and
Zc = Z−Zr is the error matrix of best rank-r approximation.
Consequently, ‖Zc‖1 equals σr(Z)1 introduced in Theorem 3.

Validity of a r/`q-NSP assures that any matrix Z with
rank at most r need obey ‖Z‖2 ≤ τ‖A(Z)‖`q . This as-
sures that no such matrix can lie inA’s null space. While
such a criterion is clearly neccessary for uniform rank-r
matrix recovery, the following statements shows that it
is also sufficient.

Theorem 4 (Theorem 3.3 in [11] for hermitian matrices).
Fix r, q ≥ 1 and suppose that A : Hd → Rm obeys a r/`q-
NSP with constants ρ ∈]0, 1[ and τ > 0. Then

‖Z− X‖2 ≤
Cρ√

r
(‖Z‖1 − ‖X‖1 + 2‖Xc‖1) (26)

+Dρτ‖A(Z− X)‖`q ∀X, Z ∈ Hd,

with Cρ = (1+ρ)2

1−ρ and Dρ = 3+ρ
1−ρ .

The nuclear norm difference ‖Z‖1 − ‖X‖1 appearing
in (26) motivates to perform a constrained nuclear norm
minimization (6) in order to estimate a matrix X from
noisy measurements y = A(X) + e with ‖e‖`q ≤ η. By
construction, the target matrix X is a feasible point of
this algorithm which implies ‖Z]‖1 ≤ ‖X‖1 and

‖A(X)− Z)‖`q ≤‖A(X)− y‖`q + ‖A(Z)− y‖`q

≤‖e‖`q + η ≤ 2η.

Inserting these features into (26) assures

‖Z] − X‖2 ≤
2Cρ√

r
σr(X)1 + 2Dρτη, (27)

provided that A obeys a r/`q-NSP. This stable and uni-
form recovery guarantee for constrained nuclear norm
minimization underlines that a NSP is also sufficient for
matrix recovery.

In this work we shall assume more structure: namely
that the target matrices are also psd. For a pair of
psd matrices X, Z, the nuclear norm difference in (26)
amounts to

‖Z‖1 − ‖X‖1 = tr(Z)− tr(X) = tr (I(Z− X)) . (28)

In addition, a measurement operator A containing m
random Clifford orbit measurements Ak = aka∗k obeys

d
m

E [A∗(1)] = E

[
m

∑
k=1

d
m

Ak

]
= I, (29)

because every Clifford orbit forms a tight frame (10).
Here, A∗ : Rm → Hd denotes the adjoint of A and
1 = (1, . . . , 1)T ∈ Rm is the “all-ones” vector. Combin-
ing these two statements assures

‖Z‖1 − ‖X‖1 =
d
m
〈1, E [A] (X− Z)〉

≤ d

m
1
q
‖E [A] (X− Z)‖`q

for any pair of psd matrices X, Z. So, at least in expec-
tation, the nuclear norm difference (‖X− Z‖1) between
psd matrices is controllable by means of ‖A(X−Z)‖`q –
the second term featuring in (26). This is a strong indi-
cation that for psd matrices, the first term in said bound
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is superfluous. And it certainly is, if (29) were also true
for A’s concrete realization – this realization is due to
Kalev[22] et. al. [12]. One of the main results in [11] fur-
ther generalizes this statement: for measurements form-
ing a tight frame, any actual realization of A∗(1) does
not deviate much from its expectation whp [11, Propo-
sition 8.3]:

Pr
[∥∥∥∥

d
m
A∗(1)− I

∥∥∥∥
∞
≥ β

]
≤ de−

3β2m
8(d−1) ∀β ∈ [0, 1[. (30)

This readily follows from applying a matrix Bernstein
deviation inequality (see e.g. proof of Proposition 8.3
in [11]). Theorem 8.1 in [11] then assures that validity
of ‖A∗(1)− I‖∞ < β suffices to omit the nuclear norm
terms in (26) , provided that both X and Z are psd. This
omission comes at the price of larger constants Cρ, Dρ

and tighter conditions on ρ that all depend on β ∈ [0, 1[.
These dependences is particularly simple for β =

√
2−1√
2+1

,
where we obtain:

Corollary 2. Suppose thatA : Hd → Rm obeys a r/`q-NSP

with parameters ρ ∈
]
0, 1

2

[
and τ > 0 that in addition obeys

∥∥∥∥
d
m
A∗(1)− I

∥∥∥∥
∞
<

√
2− 1√
2 + 1

. (31)

Then,

‖Z− X‖2 ≤
C̃ρ√

r
‖Xc‖1 + D̃ρ

(
d

m
1
q
+ τ

)
‖A(X− Z)‖`q

is true for any pair of psd matrices X, Z ∈ Hd. The constants

amount to C̃ρ = 4 (1+2ρ)2

1−2ρ and D̃ρ = 2 3+2ρ
1−2ρ .

Moreover, if A consists of m projectors onto uniformly
sampled elements of a tight frame, then (31) holds with prob-
ability at least 1− de−C4

m
d−1 .

B. A null space property for Clifford orbits

Recall that a measurement operator A : Hd → Rm

obeys a r/`q-NSP, if

‖Zr‖2 ≤
ρ√
r
‖Zc‖1 + τ‖A(Z)‖`q ∀Z ∈ Hd.

For any fixed r and ρ, all matrices Z ∈ Hd obeying
‖Zr‖2 ≤ ρ√

r‖Zc‖1 meet this requirement by default.
Also, the NSP is invariant under scaling, which allows
us to set ‖Z‖2 = 1 without loss of generality. So, when
aiming to establish a r/`q-NSP with constant ρ ∈ [0, 1[
for any A, we may restrict our attention to

Tρ,r =

{
Z ∈ Hd : ‖Zr‖2 >

ρ√
r
‖Zc‖1, ‖Z‖2 = 1

}
⊂ Hd.

(32)

And a measurement operator A obeys the r/`q-NSP
with constants ρ ∈]0, 1[ and τ > 0, if

inf
Z∈Tρ,r

‖A(Z)‖`q
≥ 1

τ
. (33)

Note that the parameters r, ρ implicitly feature in the
definition of Tρ,r, while τ is inversly proportional to the
best lower bound we manage to establish in (33). The
space Tρ,r is contained in Hd – a d2-dimensional real vec-
tor space. Moreover, the “effective rank” of any Z ∈ Tρ,r
cannot be too large:

Lemma 1. Let Tρ,r ⊂ Hd be the set introduced in (32) for
some ρ ∈]0, 1[ and 1 ≤ r ≤ d. Then:

‖Z‖2
1 =
‖Z‖2

1
‖Z‖2

2
≤
(

ρ + 1
ρ

)2
r ∀Z ∈ Tρ,r. (34)

Proof. Combining ‖Zr‖1 ≤
√

r‖Zr‖2 with the defining
property of Z ∈ Tρ,r reveals

‖Z‖1 = ‖Zr‖1 + ‖Zc‖1 ≤
ρ + 1

ρ

√
r‖Zr‖2,

and the claim follows from ‖Zr‖2 ≤ ‖Z‖2 = 1.

Also, A : Hd → Rm is comprised of m independently
selected projectors onto random elements of a Clifford
orbit. The real-valued structure of the underlying vec-
tor space together with independence of the individ-
ual measurement matrices allows us to employ Mendel-
son’s small ball method [18–20]. This strong probabilis-
tic anti-concentration inequality will enable us to estab-
lish (33) with high probability.

Theorem 5 (Mendelson’s small ball method). Fix E ⊂
Rd arbitrary and let φ1, . . . , φm ∈ Rd be independent copies
of a random vector φ. For ξ > 0 define

Qξ (E; φ) = inf
z∈E

Pr [|〈φ, z〉| ≥ ξ] , and (35)

Wm(E; φ) =E

[
sup
z∈E
〈h, z〉

]
with (36)

h =
1√
m

m

∑
k=1

εkφk ∈ Rd, (37)

where ε1, . . . , εm is a Rademacher sequence. Then for any
ξ > 0 and t ≥ 0, the following bound is true with probability
at least 1− e−2t2

:

1√
m

inf
z∈E

m

∑
k=1
|〈φk, z〉| ≥ ξ

√
mQ2ξ(E; φ)− 2Wm(E; φ)− ξt.

(38)

We emphasize that this is not the standard result
known as “Mendelson’s small ball method”. The latter
establishes a lower bound on infz∈E

√
∑m

k=1 |〈φk, z〉|2.
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As such, the assertion of Theorem 5 is stronger, but is
also implied by Mendelson’s original proof. Adapting
this statement to the cause at hand yields the following
corollary which we are going to employ in order to es-
tablish (33).

Corollary 3 (Consequence of Remark 5.1 in [11]). Fix r,
ρ and let Tρ,r ⊂ Hd be the set introduced in (32). Suppose
that A : Hd → Rm is a measurement operator containing m
independent instances of a single random matrix A ∈ Hd as
individual measurements. Then for any q ≥ 1, ξ > 0 and
t ≥ 0

inf
Z∈Tρ,r

‖A(Z)‖`q

≥m
1
q− 1

2
(
ξ
√

mQ2ξ(Tρ,r; A)− 2Wm(Tρ,r, A)− ξt
)

is true with probability at least 1− e−2t2
. Here Q2ξ(E; A)

and Wm(E, A) are the parameters defined in (35) and (36).

Proof. Hd is a real-valued vector space isomorphic to
Rd2

. By assumption, we may also identify each Ak with
an instance φk of the random “vector” A := φk ∈ Rd2 '
Hd. We may also identify any Tρ,r ⊂ Hd ' Rd2

with the
set E in Theorem 5. Said theorem is applicable and al-
lows us to bound

inf
Z∈Tρ,r

1√
m

m

∑
k=1
|(Ak, z)| = inf

Z∈Tρ,r

1√
m
‖A(Z)‖`1

from below. Finally, we employ the basic norm inequal-

ity ‖z‖1 ≤ m1− 1
q ‖z‖`q ∀z ∈ Rm, ∀q ≥ 1 [17, Equation

A.3] to conclude

inf
Z∈Tρ,r

‖A(Z)‖`q ≥ m
1
q− 1

2 inf
Z∈Tρ,r

1√
m
‖A(Z)‖`1

and the claim follows with Mendelson’s bound (38).

In our sampling model, A consists of m projectors
Ak = aka∗k , where each ak is sampled uniformly from a
Clifford orbit Oz ⊂ Cd. The choice of a fiducial z ∈ Sd−1

is arbitrary. According to Equation 10 each Clifford or-
bit forms a tight frame. Combining this feature with the
structural insights from Lemma 1 allows us to establish
the following bound:

Proposition 1. For any z ∈ Sd−1, let A = aa∗ be a projector
onto a ∈ Oz chosen uniformly at random. Also, fix 1 ≤
r ≤ d, ρ ∈]0, 1[ and m ≥ 2d log(d). Then the parameter
Wm(Tρ,r, A) featuring in Corollary 3 obeys

Wm(Tρ,r; A) ≤ 6.2098
ρ

√
r log(2d)

d + 1
.

Proof. This proof closely resembles a comparable anal-
ysis provided in [10]. Matrix Hoelder together with

Lemma 1 assures

Wm(Tρ,r; A)= E

[
sup

Z∈Tρ,r

(H, Z)

]
≤ sup

Z∈Tρ,r

‖Z‖1E [‖H‖∞]

≤ ρ + 1
ρ

√
rE [‖H‖∞] ≤ 2

ρ

√
rE [‖H‖∞] ,

where H = 1√
m ∑m

k=1 εkaka∗k . Each ak is by assumption
chosen from a tight frame and normalized to one. This,
together with the assumption m ≥ 2d log(d), allows for
bounding E [‖H‖∞] by means of [10, Proposition 13].
Adapting said statement to unit normalization of the
ak’s yields

E [‖H‖∞] ≤ 3.1049

√
log(2d)

d + 1

and the claim readily follows.

Establishing a sufficiently tight lower bound on the
other parameter – Qξ

(
Tρ,r; aa∗

)
defined in (35) – for Clif-

ford orbits is considerably more challenging. The rea-
son for this complication is that Clifford orbits in gen-
eral do not constitute a complex projective 4-design. As
demonstrated in [10, 11], a 4-design property alone al-
lows for achieving the task at hand by applying a Paley-
Zygmund argument. Unfortunately, Clifford orbits in
general do not have this structural property.

However, novel insights about the structure of the
Clifford group [1] – see also section I B – allow us to still
carry out a similar Paley-Zygmund argument.

Lemma 2. Fix Z ∈ Tρ,r for some 1 ≤ r ≤ d, ρ ∈]0, 1[ and
define the random variable S := 〈a, Za〉, where a is uniformly
chosen from a Clifford orbit Oz with fiducial z ∈ Sd−1. Then

E
[
S2
]
=

1 + tr(Z)2

(d + 1)d
≥ 1

(d + 1)d
and (39)

E
[
S4
]
≤84κzE

[
S2
]2

, (40)

(41)

where κz = max
{

1, rd‖w(zz∗)‖4
`4

}
was defined in (15).

While (39) directly follows from the 2-design prop-
erty of Clifford orbits, establishing the bound (40) is
considerably more challenging. Said bound constitutes
this work’s main technical contribution. We devote sec-
tion II D to proving it. We point out that a comparable
bound for 4-designs would read E

[
S4] ≤ 24E

[
S2]2 [10,

Proof of Proposition 12]. Inequality (40) is weaker than
such a 4-design bound. The nature of this bound will
ultimately result in the additional factor κz featuring in
Theorem 3.
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Proposition 2. For any z ∈ Sd−1m let A = aa∗ be a pro-
jector onto a ∈ Oz chosen uniformly at random. Then the
parameter Qξ(Tρ,r, A), featuring in Corollary 3, obeys

Qξ

(
Tρ,r; A

)
≥ 1

κz

(
1−

(√
(d + 1)dξ

)2
)2

for any 0 ≤ ξ ≤ 1√
(d+1)d

, 1 ≤ r ≤ d and ρ ∈]0, 1[.

Proof. Fix Z ∈ Tρ,r, ξ ≥ 0 and define the real-valued ran-
dom variable S = 〈a, Zz〉, where a is chosen uniformly
from Oz. Then

Pr [|〈a, Za〉| ≥ ξ] =Pr [|S| ≥ ξ] = Pr
[
S2 ≥ ξ2

]

≥Pr
[
S2 ≥ (d + 1)dξ2E

[
S2
]]

,

where the last inequality is due to (39). Applying the
Paley-Zygmund inequality to the non-negative random
variable S2 assures

Pr
[
S2 ≥ (d + 1)dξ2E

[
S2
]]
≥
(

1− (d + 1)dξ2
)2 E

[
S2]2

E [S4]

≥ 1
κz

(
1− (d + 1)dξ2

)2
,

where the last line is due to (40). Since such a lower
bound is valid for any Z ∈ Tρ,r we may conclude that it
also holds for

Qξ

(
Tρ,r; A

)
= inf

Z∈Tρ,r
Pr [|〈a, Za〉| ≥ ξ] .

We have now assembled all necessary ingredients to
lower bound infZ∈Tρ,r ‖A(Z)‖`q

for any choice of q, r, d.

Applying Corollary 3 with ξ = 1
4
√

(d+1)d
and t =

√
C̃2m
κz

– where C̃2 is a sufficiently small constant – implies

inf
Z∈Tρ,r

‖A(Z)‖`q
≥m

1
q− 1

2


√m

Q 1
2
√

(d+1)d
(Tρ,r; A)

4
√
(d + 1)d

− 2Wm(Tρ,r; A)−
√

C̃2m
4
√
(d + 1)dκz




≥ m
1
q− 1

2

κz
√
(d + 1)d

(
9ρ
√

m
1344

− 13
ρ

√
κ2

zrd log(2d)−
√

C̃2m
4

)
(42)

with probability at least 1− e
− 2C̃2m

κ2
z . In the last line, we

have inserted the bounds provided by Proposition 1 and
Proposition 2, respectively. Let us now fix

m ≥ C1

ρ2 κ2
zrd log(2d),

where C1 is a sufficiently large constant. Such a choice
assures that the bracket in (42) is lower bounded by

√
m

C3
,

where C3 is constant. Inserting this novel bound into
(42) allows us to conclude

inf
Z∈Tρ,r

‖A(Z)‖`q ≥
m

1
q− 1

2
√
(d + 1)d

√
m

C3κz
=

m
1
q

C3κz
√
(d + 1)d

with high probability. Comparing this bound to (33) re-
veals that it in turn establishes a NSP for A:

Theorem 6. Fix 1 ≤ r ≤ d, ρ ∈]0, 1[, q ≥ 1 and z ∈ Sd−1

and κz defined in (15). Suppose that A : Hd → Rm contains

m ≥ C1

ρ2 κ2
zrd log(2d)

projectors onto randomly selected elements of the Clifford or-

bit Oz. Then, with probability at least 1 − e
− C̃2m

κ2
z , this A

obeys the r/`q-NSP from Definition 1 with paramters

ρ and τ =
C3κz

√
(d + 1)d

m
1
q

.

Here, C1, C̃2, C3 denote constants of sufficient size.
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C. Algorithmic Implications and proof of Theorem 3

If Corollary 2 is valid, it has profound algorithmic im-
plications for recovering psd matrices with low rank [11]
(see also [13] for similar approach to compressed sens-
ing). If we fix ρ ∈

]
0, 1

2

[
and 1 ≤ r ≤ d, a combination of

said statement with Theorem 6 assures thatA consisting
of m = C1κzrd log(2d) random Clifford measurements
obeys

‖X− Z‖2

≤ C̃ρ√
r
‖X1‖1 + D̃ρ

(
d

m
1
q
+ τ

)
‖A(X− Z)‖`q

≤ C̃ρ√
r
‖X1‖1 + D̃ρ

(
d

m
1
q
+

C3κz
√
(d + 1)d

m
1
q

)
‖A(X− Z)‖`q

≤ C̃ρ√
r
‖X1‖1 +

2C3D̃ρ

m
1
q

κz

√
(d + 1)d ‖A(X− Z)‖`q

∀X, Z psd

(43)

with probability of failure bounded by

de−
C4m
d+1 + e

− C̃2m
κ2

z ≤ (d + 1)e
− min{C4,C̃2}

max{κ2
z ,d+1} ≤ de

− C2m

max{κ2
z ,d}
(44)

according to the union bound. Once more, C2 is a con-
stant.

If we now aim at recover a psd target matrix X from
noisy measurements of the form

A(X) = y + e

(see (5)), this sampling process implies

‖A(X−Z)‖`q = ‖A(Z)−y− e‖`q ≤ ‖A(Z)−y‖`q + ‖e‖`q

for any psd Z. Fixing the target matrix X and inserting
this bound into (43) assures

‖X− Z‖`q

≤ C̃ρ√
r
‖Xc‖1 +

2C3D̃ρ

m
1
q

κz

(
‖A(Z)− y‖`q + ‖e‖`q

)
∀Z psd.

(45)

In order to obtain a good estimate, it thus makes sense to
minimize the r.h.s. of this bound over the free parameter
Z:

Z] = arg min
Z psd

‖A(X)− y‖`q .

This is the psd least squares regression advertised in
(14). Crucially, this program does only depend onA and
the data y. It does not require any a priori assumptions
on the noise term e. Also, Z = X is a feasible point of
this optimization, and so

‖A(Z])− y‖`q ≤ ‖A(X)− y‖`q = ‖e‖`q .

From this and (45) we thus may conclude

‖X− Z]‖`q ≤
C̃ρ√

r
‖Xc‖1 +

4C3D̃ρ

m
1
q

κz‖e‖`q .

Setting

C3(ρ) =C̃ρ = 4
(1 + 2ρ)2

1− 2ρ
and (46)

C4(ρ) =4C3D̃ρ = 8C3
3 + 2ρ

1− 2ρ
(47)

yields the main assertation of Theorem 3. The expres-
sion in (44) bounds the probability of this conclusion
failing and the proof of Theorem 3 is complete.

D. Proof of Lemma 2

The first statement follows directly from the fact that,
endowed with uniform weights, every Clifford orbit
forms a 2-design – equation (11). For any Z ∈ Hd this
implies

E
[
〈a, Za〉2

]
=tr

(
E
[
Ten2(aa∗)

]
Ten2(Z)

)

=

(
d + 1

2

)−1
tr
(

PSym2 Ten2(Z)
)

=
tr
(
Z2)+ tr (Z)2

(d + 1)d
,

where the last line e.g. follows from [10, Lemma 17].
Equation (11) is equivalent to this statement, because ev-
ery Z ∈ Tρ,r obeys tr(Z2) = ‖Z‖2

2 = 1.
For the second bound, we heavily rely on Theorem 1.

Said statement assures that choosing a uniformly from a
Clifford orbit Oz with z ∈ Sd−1 assures

1
d

(
d + 2

3

)
E
[
〈a, Za〉4

]

=
1
d

(
d + 2

3

)(
E
[
Ten4 (aa∗)

]
, Ten4(Z)

)

=α1(z)
(

P1, Ten4(Z)
)
+ α2(z)

(
P2, Ten4(Z)

)
, (48)

for any Z ∈ Hd. Recall that α1(z), α2(z), as well as P1
and P2 were introduced in said theorem. For the first
inner product we may conclude
∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤

(
P1,
∣∣∣Ten4(Z)

∣∣∣
)
≤
(

Q, Ten4 (|Z|)
)

=
d2

∑
k=1

(
Ten4(Wk), Ten4(|Z|)

)

=
d

∑
k=1

(Wk, |Z|)4 = ‖w(|Z|)‖4
`4

, (49)
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using several inequalities valid for positive-semidefinite
matrices, as well as P1 ≤ Q = ∑d2

k=1 Ten4(Wk). The fol-
lowing Lemma allows us to relate ‖w(|Z|)‖4

`4
to the “ef-

fective rank” of Z.

Lemma 3. Any Z ∈ Hd with ‖Z‖2 = 1 obeys

‖w(Z)‖4
`p
≤ 1

d
‖Z‖2

1.

Proof. Fix Z ∈ Hd. Then w(Z) is a vector in Rd2
which

in particular obeys

‖w(Z)‖4
`4
≤ ‖w(Z)‖2

`2
‖w(Z)‖2

`∞
.

Since w : Hd → Rd2
is an isometry, we have ‖w(Z)‖2

`2
=

‖Z‖2
2. Also, Matrix Hoelder assures

‖w(Z)‖2
`∞

= max
1≤k≤d2

(Wk, Z)2 ≤ ‖Wk‖2
∞‖Z‖2

1 ≤
1
d
‖Z‖2

2,

and the claim follows.

We note in passing that this bound also assures

κz =
1
ρ

max
{

1, ‖w(zz)∗‖4
`4

}
≤ r

ρ
∀z ∈ Sd−1,

because ‖zz∗‖1 = ‖zz∗‖2 = 1.
At this point the restriction Z ∈ Tρ,r becomes im-

portant. Under this assumption, a combination of (49),
Lemma 3 and Lemma 1 assures

∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤ 1

d
‖|Z‖2

1 =
1
d
‖Z‖2

1 ≤
2r
ρd

(50)

for any Z ∈ Tρ,r.
Let us now move on to bound the second inner prod-

uct in (48). Using P2 = PSym4 − P1 and (50) allows us to
conclude
∣∣∣
(

P2, Ten4(Z)
)∣∣∣ ≤

∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣+

∣∣∣
(

P1, Ten4(Z)
)∣∣∣

≤
∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣+ 2r

ρd
.

The remaining inner product is a standard expression
in multilinear algebra and can for instance be computed
using [10, Lemma 17]. Further bounding the resulting
expressions results in
∣∣∣
(

PSym4 , Ten4(Z)
)∣∣∣ ≤ max

{
‖Z‖4

2, tr(Z)4
}
∀Z ∈ Hd

as is shown, for instance, in [10, Proof of Proposition 12].
Employing the trivial bound r ≤ d, as well as ‖Z‖2 = 1
allows us to conclude

∣∣∣
(

P1, Ten4(Z)
)∣∣∣ ≤max

{
1, tr(Z)4

}
+

2r
ρd

≤3
ρ

(
1 + tr(Z)2

)2
∀Z ∈ Tρ,r.

Finally, let us turn to the constants featuring in (48).
Lemma 3 assures

0 ≤ α2(z) =4
1− ‖w(zz∗)‖4

`4

(d + 4)(d− 1)
≤ 4

(d + 4)(d− 1)
.

Fixing Z ∈ Tρ,r and putting together all these individual
bounds yields

E
[
〈a, Za〉4

]
≤
(

d + 2
3

)−1
dα1(z)

∣∣∣
(

P1, Ten4(Z)
)∣∣∣+

(
d + 2

3

)
dα2(z)

∣∣∣
(

P2, Ten4(Z)
)∣∣∣

≤
(

d + 2
3

)−1
(

2rd‖w(zz∗)‖4
`4

dρ
+

12d
(
1 + tr(Z)2)2

(d + 4)(d− 1)ρ

)

≤84
ρ

max
{

1, rd‖w(zz∗)‖4
`4

}(1 + tr(Z)2

(d + 1)d

)2

= 84κzE
[
〈a, Za〉2

]2
,

where the last equality is due to (39).
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Helstrom’s Theorem assert that the maximal probability of correctly distinguishing two quantum
states is proportional to their trace distance. However, achieving this bound requires one to be able
to perform arbitrary measurements that depend on the particular choice of state.

Following Matthews et al. [1], we consider the task of distingushing arbitrary quantum states via a
fixed measurement. In particular, we focus on multi-qubit dimensions and POVMs that correspond
to orbits of the Clifford group. We show that the distinguishing capabilities of such measurements
depend on the rank of the states to be distinguished: if both states are approximately pure, Clifford
orbits perform essentially optimally. However, if the states are close to maximally mixed, the maximal
bias achievable becomes considerably worse.

I. INTRODUCTION

A. Distinguishing quantum states

On the space of d-dimensional quantum states Sd, the
trace distance

d (ρ, σ) =
1
2
‖ρ− σ‖1

constitutes a very prominent and meaningful distance
measure. It features prominently in Helstrom’s Theorem
[2]. Seid theorem asserts that the maximal probability
of correctly identifying one out of two known quantum
states ρ, σ ∈ Sd with a single measurement (“single-
shot”) amounts to

PrHelstrom =
1
2
+ d

(
1
2

ρ,
1
2

σ

)
, (1)

provided that both ρ and σ appear with equal proba-
bility. A slight generalization of this statement takes
into account the possibility that ρ occurs with probal-
ity τ ∈ [0, 1] and σ with probability 1− τ. The optimal
success probability then becomes

PrHelstrom =
1
2
+ d (τρ, (1− τ)σ) ,

which reduces to (1), if τ = 1
2 . This corresponds to a

maximal bias

βHelstrom(ρ, σ, τ) = d (τρ, (1− τ)σ) ≤ 1

towards correctly identifying the state. If τ ∈ [0, 1] and
ρ, σ ∈ S

(
Sd
)

are known, this maximal bias is achiev-
able by an optimal strategy involving a two-outcome
projective measurement[16]. However, such a measure-
ment is optimized to distinguish ρ from σ and may per-
form considerably worse (or even fail completely) at dis-
tinguishing other pairs of states.

Addressing this lack of universality, Matthews,
Wehner and Winter [1] turned this problem around: in-
stead of fixing the state pair ρ, σ and varying the mea-
surement, they consider a fixed POVM measurement —

i.e. a family of positive semidefinite operators {Mk}N
k=1

that sum up to unity: ∑N
k=1 Mk = I — and analyze its

performance at distinguishing all possible pairs of states
ρ, σ ∈ S

(
Cd
)

. Born’s rule asserts that such a POVM
maps any state ρ ∈ Sd to a discrete probability vector

pρ =M(ρ) =
N

∑
k=1
|ek〉tr (Mkρ) ∈ RN

which encompasses all the classical information about
ρ that is accessible to us. So, distinguishing ρ from σ
necessarily reduces to the task of distinguishing pρ from
pσ. If ρ and σ are equiprobable, the optimal decision rule
for doing so is the maximum likelihood rule[17]. It results
in a bias proportional to the total variational distance of
pρ and pσ:

βM

(
ρ, σ,

1
2

)
=

1
4

∥∥pρ − pσ

∥∥
`1
=

∥∥∥∥M
(

1
2

ρ− 1
2

σ

)∥∥∥∥
`1

.

If ρ occurs instead with probability τ 6= 1
2 this bias gen-

eralizes to

βM (ρ, σ, τ) = ‖M (τρ− (1− τ)σ)‖`1
.

Helstrom’s Theorem demands

βM (ρ, σ, τ) ≤ βHelstrom(ρ, σ, τ)

for all ρ, σ ∈ Sd and any τ ∈ [0, 1]. On the contrary, ifM
is informationally completete,

βM (ρ, σ, τ) > 0 ∀ρ, σ ∈ Sd, ∀τ ∈ [0, 1]

follows by definition. What is more, informational com-
pleteness ofM assures that

‖ · ‖M = ‖M (·)‖`1

does consitute a norm on Hd — the vector space of all
hermitian d× d-matrices. Since all norms are equivalent
on finite dimensional Hilbert spaces, there is a constant
λM such that

λM‖X‖1 ≤ ‖X‖M ∀X ∈ Hd.
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This constant λM allows us to relate the optimal distin-
guishability bias achievable by the fixed measurement
M to Helstrom’s optimal one:

βM(ρ, σ, τ) ≥ λM βHelstrom(ρ, σ, τ) (2)

for any ρ, σ ∈ Sd and any τ ∈ [0, 1]. Matthews et al. then
moved on to derive sharp bounds on λM for different
families of informationally complete POVMsM : Hd →
RN [1]. While these bounds have the advantage of being
universal, they may be too pessimistic, if the states ρ, σ ∈
Sd have additional structure. We will come back to this
in section II.

B. Complex projective designs

A natural candidate for a single POVM that should
perform well at distinguishing quantum states is the
uniform POVM Munif consisting of all projectors onto
elements of the complex unit sphere in Cd. The asso-
ciated distinguishability norm of this POVM obeys [1,
Theorem 8]

‖ρ−σ‖Munif
≥ 1√

d

(√
2
π
− o(1)

)
‖ρ−σ‖1 ∀ρ, σ ∈ Sd

This in turn implies λMunif
= O

(
d−

1
2

)
for the constant

defined in (2), provided that τ = 1
2 .

While the uniform POVM is excellent to provide a
benchmark for the capability of distinguishing quantum
states by means of a fixed quantum measurement, the
POVM is far too big for all practical purposes. Natural
candidates for “coarse-graining” the uniform POVM are
complex projective t-designs [3–5]. A t-design POVM
may be viewed as a subset of the uniform POVM that
“evenly” approximates the latter up to a certain degree:

Definition 1 (Complex projective design). A (proper)
complex projective t-design is a set of unit vectors
{|xk〉}N

k=1 ⊂ Cd whose outer products obey

1
N

N

∑
k=1
|xk〉〈xk|⊗t =

∫

‖v‖`2=1
dv|v〉〈v|⊗t, (3)

where integration on the r.h.s. is taken with respect to the
uniform measure on the complex unit sphere. Likewise, we

call the set
{

d
N |xk〉〈xk|

}N

k=1
a t-design POVM.

Ambainis and Emerson [4] observed that 4-design
POVMs already essentially match the distinguishability
capacity of the uniform POVM, see also [1, Eq. (15)].
Our first contribution consists of a slight generalization
of these results:

Theorem 1 (Performance of 4-designs). LetM4D be a 4-
design POVM. Then

‖X‖M4D >
0.32√

rank(X)
‖X‖1 ∀X ∈ Hd. (4)

This in particular implies that the distinguishability constant
(2) obeys λM4D >

0.32√
d

. If X has rank 2, then

‖X‖M4D >
1√

12.2 rank(X)
‖X‖1. (5)

If X has rank 2 and is traceless, then

‖X‖M4D >
1√

12 rank(X)
‖X‖1. (6)

The original statements in [1, 4] require X to be trace-
less, which is not the case here. This generalization
comes at the prize of a sligthly smaller constant in (4)
(0.32 vs. 1

3 for traceless matrices).
In stark contrast to this almost optimal behaviour of

4-designs, 2-design POVMs perform remarkably bad at
distinguishing quantum states:

Theorem 2 (Theorem 12 in [1]). Let M2D be a 2-design
POVM. Then

‖X‖M2D ≥
1

2(d + 1)
‖X‖1 (7)

for any traceless operator X ∈ Hd which in turn implies
λM2D ≥ 1

2(d+1) , provided that τ = 1
2 in (2).

The factor 1
d+1 in (7) is unavoidable without further

assumptions on the 2-design POVM [1, Section 2.C].

II. MAIN RESULTS

Very little is known about the distinguishability qual-
ity of POVMs in the intermediate regime between 2- and
4-designs. The main scope of this work is to fill this gap.

To this end we consider POVMs that correspond to
orbits of the multi-qubit Clifford group (d = 2n). The
Clifford group plays a fundamental role in many areas
of quantum information science, such as quantum com-
puting, quantum error correction, tomography and ran-
domized benchmarking. In qubit dimensions d = 2n,
the Clifford group C(d) ⊂ U(d) corresponds to the nor-
malizer of the Pauli group — i.e. up to global phases
every C ∈ C(d) maps Pauli operators onto Pauli opera-
tors under conjugation.

Definition 2 (Clifford POVM). Set d = 2n and fix |z〉 ∈
Cd with unit length. Let {Ck|z〉 : Ck ∈ C(d)} denote the
orbit of z under the Clifford group and N its cardinality. We
then define the asociated Clifford POVM (anchored at |z〉)
to be

MC,z =

{
d
N

Ck|z〉〈z|C†
k : Ck ∈ C(d)

}
.
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The multi-qubit Clifford group has a very rich struc-
ture. Among other things it forms a unitary 3-design
[6, 7]. Unitary t-design are a generalization of the
complex projective t-design concept to unitary matri-
ces [8, 9]. They have the particular property that ev-
ery orbit of a unitary t-design is proportional to a com-
plex projective t-design. This in turn implies that every
Clifford POVM is also a 3-design POVM (provided that
d = 2n). Multiqubit stabilizer states—arguably the most
prominent Clifford orbit which arises e.g. from choos-
ing z to be any vector in the (extended) computational
basis)—are a particularly prominent example. For this
particular orbit, the 3-design property was established
independently [10].

A. Main technical results

In a recent survey we have analyzed the fourth mo-
ments of the multiqubit Clifford group [11] from a rep-
resentation theoretic perspective. It turns out that these
moments are very similar to the corresponding mo-
ments of the full unitary group, although the group does
not constitute a unitary 4-design [6]. In turn, this insight
allows us to compute the first four moments of Clifford
orbits. They behave very similarly to the corresponding
moments of a complex projective 4-design—see Theo-
rem 6 below. This information allows us to adapt the
proof technique from Theorem 1 [1, 4] and prove a cor-
responding statement for Clifford orbits. Interestingly,
the capacity for distinguishing different states depends
on the choice of the Clifford orbit’s fiducial z. Recall
that the characteristic function of a quantum state ρ ∈ Sd
amounts to

w(ρ) =
1√
d

d2

∑
k=1

tr (Wkρ) |ek〉 ∈ Rd2
, (8)

where W1, . . . , Wd2 ∈ Hd denote the d-dimensional Pauli
matrices (d = 2n) and |e1〉, . . . , |ed2〉 is the standard basis
of Rd2

. Our main technical result reads as follows:

Theorem 3. Fix d = 2n and letMC,z be a Clifford POVM
resulting from a unit-length fiducial |z〉 ∈ Cd. Then

‖X‖MC,z ≥
‖X‖1√

[6d‖w(|z〉〈z|)‖4
`4

rank(X) + 10] rank(X)

for any X ∈ Hd. Here the constant 10 may be replaced by 9
if X is traceless.

According to the theorem,

‖X‖MC,z ≥
‖X‖1

4
√

rank(X)
(9)

for any X ∈ Hd obeying rank(X) ≤ 1/(d‖w(|z〉〈z|)‖4
`4
)

and

‖X‖MC,z ≥
‖X‖1

4
√

d‖w(|z〉〈z|)‖2
`4

rank(X)
(10)

otherwise.
For a typical Clifford orbit, the value of ‖w(|z〉〈z|)‖4

`4

is usually very close to ‖4
`4
≤ 4/(d(d + 3)) [11]. Such

orbits behavior almost exactly as 4-designs according to
the following theorem.

Theorem 4. Fix d = 2n and letMC,z be a Clifford POVM
resulting from a unit-length fiducial |z〉 ∈ Cd which obeys
‖w(|z〉〈z|)‖4

`4
≤ 6/(d(d + 3)). Then

‖X‖MC,z ≥
‖X‖1√

22 rank(X)

for any X ∈ Hd. Here the constant 22 may be replaced by 21
if X is traceless.

It is worthwhile to point out that, unlike its counter-
parts Theorem 1 for 4- and 2-design POVMs (Theorem 1
and Theorem 2), the statement in Theorem 3 is very sen-
sible towards the rank of the matrix X considered. If
rank(X) is below a certain threshold (which depends
on the choice of fiducial), the favourable bound (9) ap-
plies. Such a situation is comparable to the 4-design
case. However, above this threshold one needs to resort
to the much weaker bound (10) whose scaling is com-
parable to the 2-design case, provided that rank(X) ap-
proaches d.

The following converse statement shows that such a
behavior is essentially unavoidable

Theorem 5. Fix d = 2n, letMC,z denote a Clifford POVM
with fiducial |z〉 ∈ Cd and fix W ∈ Hd to be any Pauli matrix
(W 6= I). Then

‖W‖MC,z =

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

‖W‖1. (11)

The coefficient in the theorem satisfies

1
d + 1

≤
√

d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

≤ 1√
d + 1

, (12)

which follows from the property of the characteristic
function for a pure state. Here the lower bound is sat-
uratd if and only z is a stabilizer state, and the upper
bound is saturated iff

|〈z|Wk|z〉| =
1√

d + 1
, ∀2 ≤ k ≤ d2, (13)

in which case the orbit of z under the action of the
Pauli group forms a symmetric informationally com-
plete POVMs []. The lower bound in (12) can be im-
proved if ‖w(|z〉〈z|)‖`4 is known,

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

≥

√
d

‖w(|z〉〈z|)‖2
`4

− 1

(d + 1)(d− 1)
(14)
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which follows from the equation below,

‖w(|z〉〈z|)‖`1 ≥

√√√√‖w(|z〉〈z|)‖6
`2

‖w(|z〉〈z|)‖4
`4

=
1

‖w(|z〉〈z|)‖2
`4

. (15)

We now move on to discussing the implications of our
findings for three different Clifford orbits:

(i) Stabilizer states: multi-qubit stabilizer states form a
particular Clifford orbit with N = 2n ∏n

j=1
(
2j + 1

)

elements. The characteristic function of any sta-
bilizer state has precisely d non-vanishing compo-
nents with constant modulus 1√

d
—see section III G

below. This in turn implies d‖w(|z〉〈z|)‖4
`4

= 1
for any stabilizer state fiducial |z〉 ∈ Cd. Conse-
quently, (9) is only valid for rank-one matrices X,
where

√
rank(X) and rank(X) coincide. In turn

we need to conclude

‖X‖Mstab
≥ 1

4rank(X)
‖X‖1, (16)

for any X ∈ Hd. This is a worst case behav-
ior for any Clifford orbit. However, Theorem 5
assures that such a scaling is unavoidable: the
characteristic function of any stabilizer state obeys
‖w(|z〉〈z|)‖`1 =

√
d and inserting this into (11) re-

veals

‖W‖Mstab
=

d
d + 1

‖W‖1

rank(W)
(17)

for any Pauli matrix W 6= I. This equation implies
that (16) is actually tight up to multiplicative con-
stants.

(ii) Magic state fiducial: Let |z〉〈z| = ρ⊗n
magic be the n-fold

tensor product of a the single qubit “magic state”

ρmagic =
1
2

(
I +

1√
3
(W1 + W2 + W3)

)
∈ S2.

Such a fiducial obeys d‖w (|z〉〈z|) ‖4
`4
= ( 2

3 )
n < 1√

d
(see Eq. (38) below). This is considerably smaller
than the analogous quantity for stabilizer states. In
turn, Theorem 3 implies that Clifford orbit POVMs
with a magic state fiducial obey

‖X‖MC,magic ≥
1

4
√

rank(X)
‖X‖1

for any X ∈ Hd with rank(X) ≤ ( 3
2 )

n. For matri-
ces X whose rank exceeds ( 3

2 )
n, (10) still assures

‖X‖MC,magic ≥
( 3

2 )
n/2‖X‖1

4rank(X)
>

d0.29‖X‖1

4rank(X)
(18)

which outperforms the analogous bound for stabi-
lizer states by a factor of d0.29. Conversely, Theo-
rem 5 assures

‖W‖C,magic ≤
d0.45‖W‖1

rank(W)
,

because
√

d‖w(|z〉〈z|)‖`1 = (1 +
√

3)n ≤ d1.45 (see
Eq. (39) below). Unlike before, this bound is to
weak to assure tightness of (18) (up to multiplica-
tive constants). However, asymptotically it does
rule out the possibility of an (optimal) 4-design
scaling for this type of Clifford orbits.

(iii) 4-design fiducial: As pointed out in [11], particu-
lar choices of fiducials |z〉 ∈ Cd result in Clifford
orbits that actually form a complex projective 4-
design. The necessary and sufficient requirement
for such fiducials is ‖w(|z〉〈z|)‖4

`4
= 4

d(d+3) . Ac-
cording to Theorem 1,

‖X‖MC,4D ≥
0.32√

rank(X)
‖X‖1 ∀X ∈ Hd.

This bound is optimal up to a small multiplicative
constant since

‖W‖MC,4D ≤
1√

d + 1
‖W‖1 <

1√
rank(W)

‖W‖1

for any Pauli matrix W that is not proportional to
the identity, according to Theorem 5 and (12).

B. Implications for distinguishing quantum states

Let us now turn back our attention to the task of dis-
tinguishing different quantum states in the single shot
limit. Matthews et al. introduced the proportionality
constant λM (2) to compare the performance of a fixed
POVMM directly to Helstrom’s optimal strategy. With-
out putting further restrictions on the states ρ, σ ∈ Sd to
be distinguished, Theorem 3 only allows us to infer

λMC,z ≥
1√

d[6d2‖w(|z〉〈z|)‖4
`4
+ 10]

(19)

When ‖w(|z〉〈z|)‖4
`4
≤ 6/(d(d + 3)), Theorem 4 implies

that

λMC,z ≥
1√
22d

. (20)

For Clifford POVMs with fiducial |z〉 ∈ Cd. For the
particular case of multi-qubit stabilizer states, we have

1√
6d
≤ λMstab

≤ 1
d + 1

. (21)
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Here the lower bound is derived in section III; the upper
bound follows from (17)[18] and is strictly speaking only
valid for τ = 1

2 . This highlights that the constant λMstab
scales like λM2D from Theorem 2—despite the fact that
multi-qubit stabilizer form in fact a 3-design.

For Clifford orbits with a magic state fiducial we ob-
tain

1
4d0.71 ≤ λMC,magic ≤

1
d0.55 .

This bound is more reassuring. Qualitatively, it as-
sures that the capacity of such POVMs to distinguish
quantum states is at least “half way” between the ex-
isting 2-design (λ2d ≥ 1

2(d+1) ) and 4-design guarantees

(λ4d ≥ 1
4
√

d
). Naively, one may expect precisely such a

behavior for 3-designs.
We emphasize that the constant λM is a worst case

promise for correctly distinguishing any pair of states
ρ, σ ∈ Sd. In particular, it may be too pessimistic for
more concrete scenarios where additional structure is
present. One model assumption, which is often met
in practice, is approximate purity. In the extreme case,
where both ρ and σ are assumed to be pure, Theorem 3
assures λMC,z |ρ,σ pure ≥ 1/

√
44 for any Clifford orbit,

including stabilizer states. A slightly better bound is de-
rived in section III,

λMC,z |ρ,σ pure ≥
1
6

. (22)

Up to a multiplicative constant, this reproduces the 4-
design behavior. It is worthwhile to point out that 2-
design POVMs do not allow for exploiting purity at all.
Matthews et al. [1, Section 2.C] the following bound
showed

λM2D |ρ,σ pure ≤
1

d + 1
without further assumptions on the 2-design POVM.
Similar conclusions may be drawn if we relax the model
assumption of purity to low rank. As the rank constraint
r increases, the bounds on λMC,z |ρ,σ rank r become grad-
ually weaker until they approach (19) for r = d.

Finally, we point out that the rank(X)-parameter in

Theorem 3 may be replaced by ‖X‖
2
1

‖X‖2
2
—see (34) and (36)

below. This ratio may be viewed as a robust measure for
“effective rank”. One particular scenario, where such a
generalization is useful is the task of deciding whether
a pure state ρ = |φ〉〈φ|, or the maximally mixed state 1

d I

was prepared under the assumption of equiprobability
(τ = 1

2 ). Lemma 1 below assures that X = 1
2 φ− 1

2d I has
“effective rank” less than 4 and consequently

βMC,z

(
ρ,

1
d

I,
1
2

)
≥ 1

12
βHelstrom

(
ρ,

1
d

I,
1
2

)

for any Clifford orbit. This means that the optimal bias
achievable with such a POVM measurement is directly
comparable to Helstrom’s optimal one.

III. PROOFS

A. Mathematical preliminaries

Throughout this work we will exclusively consider
multi-qubit dimensions d = 2n. Let W1, . . . , Wd2 ∈ Hd
denote the d2 Pauli operators and w(·) the associated
characteristic function introduced in (8). Also, note that
d = 2n assures that every Wk is actually a tensor prod-
uct Wk = ⊗σk1 ⊗ · · · ⊗ σkn of single qubit Pauli matrices
σ0, σ1, σ2, σ3 ∈ H2.

We endow the vector spaces Cd′ and Rd′ with the
usual `p-norms among which the `4-norm of the char-
acteristic function (8) will be the most prominent:

‖w(ρ)‖4
`4
=

1
d2

d2

∑
k=1

tr (Wkρ)4

On the level of hermitian matrices X ∈ Hd, let |X| =√
XX† denote the matrix absolute value. We then de-

fine the Schatten-p-norms to be ‖X‖p = (tr (|X|p))1/p.
These are related via ‖X‖q ≤ ‖X‖p for all X ∈ Hd and
p ≤ q. Moreover, the trace norm (p = 1) and the Hilbert-
Schmidt norm (p = 2) obey the following converse rela-
tion: ‖X‖1 ≤

√
rank(X)‖X‖2 ∀X ∈ Hd.

The main technical prerequisite for Theorem 3 is the
following statement.

Theorem 6 ( from [11]). Fix d = 2n and let MC,z =

{|xk〉 : xk = Ckz, Ck ∈ C(d)} ⊆ Cd be a Clifford orbit with
fiducial z ∈ Cd and N elements. Then

1
N

N

∑
k=1

(|xk〉〈xk|)⊗4 = d
(

d + 2
3

)−1

(α1(z)P1 + α2(z)P2) ,

where P1, P2 are orthogonal projections obeying P1 + P2 =
PSym4 —the projector onto the totally symmetric subspace of

H⊗4
d . Defining Q = 1

d2 ∑d2

k=1 W⊗4
k allows to characterize

them explicitly by

P1 = PSym4 Q and P2 = PSym4 (I−Q)

and the coefficients amount to

α1(z) = ‖w(|z〉〈z|)‖4
`4

, α2(z) = 4
1− ‖w(|z〉〈z|)‖4

`4

(d + 4)(d− 1)
.

According to [11], the coefficient α1(z) satisfies

2
d(d + 1)

≤ α1(z) ≤
1
d

, (23)

which implies that

4
d(d + 4)

≤ α2(z) ≤
4(d + 2)

d(d + 1)(d + 4)
,

− 2
d(d + 1)

≤ α1(z)− α2(z) ≤
1

d + 4
,

− d
d + 4

≤ α1(z)− α2(z)
α1(z)

≤ 4
d + 4

.

(24)
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It is insightful to compare this statement to the defin-
ing property (3) of a complex projective 4-design:

1
N

n

∑
k=1

(|xk〉〈xk|)⊗4 =
∫

‖v‖`2=1
dw (|w〉〈w|)⊗4 (25)

=

(
d + 3

4

)−1
PSym4 .

The last equality is a consequence of Schur’s Lemma
well known in quantum information science—see e.g.
[3, Lemma 1].

From such a comparison it becomes apparent that
Clifford orbit fiducials |z〉 ∈ Cd result in a complex pro-
jective 4-design, precisely if ‖w(|z〉〈z|)‖4

`4
= 4

d(d+3) . In-

deed, such a choice assures α1(z) = α2(z) = 4
d(d+3) for

the constants occurring in Theorem 6 which in turn im-
plies the defining property (25) of a 4-design.

However, Theorem 6 also implies that Clifford orbits
in general do not have this very particular behavior and
consequently fall short of being complex projective 4-
designs. Fortunately, the deviation from this ideal be-
havior is benign: the fourth moment average decom-
poses into exactly two projectors P1, P2 instead of just
PSym4 . As we shall see in the next subsection, this devi-
ation is mild enough to adapt the proof technique from
Theorem 1 by Ambainis and Emerson [4] (see also [1,
Section 2.B] to Clifford orbits.

B. Proof of Theorem 1

At the heart of the proof of Theorem 1 (see [1, 4]) is the
following moment inequality by Berger [12]:

E [|S|] ≥
√

E [S2]
3

E [S4]
(26)

is true for any real valued random variable S.

Now, let M4D =
{

d
N |xk〉〈xk|

}N

k=1
be a 4-design

POVM, fix X ∈ Hd arbitrary and define the N-variate
random variable

SX = 〈xk|X|xk〉 with probability
1
N

. (27)

Accordingly,

‖X‖M4d
=

d
N

N

∑
k=1
|〈xk|X|xk〉| = dE [|SX |] ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] .

(28)

Accordingly, it suffices to bound the moments E
[
S2

X
]
,

as well as E
[
S4

X
]

appropriately. Since any complex pro-
jective 4-design in particular also constitutes a 2-design,

the first quantity amounts to

E
[
S2

X

]
=

1
N

N

∑
k=1

tr (|xk〉〈xk|X)2

=tr

(
1
N

N

∑
k=1

(|xk〉〈xk|)⊗2 X⊗2

)

=

(
d + 1

2

)−1
tr
(

PSym2 X⊗2
)

=
tr
(
X2)+ tr(X)2

(d + 1)d
, (29)

where the last equation follows from PSym2 = 1
2 (I + F)

with F denoting the Flip-operator on a bi-partite system
(see e.g. [13, Lemma 6], or [14, Lemma 17]).

For a corresponding bound of E
[
S4] the 4-design

property of the POVM is of crucial importance. With-
out requiring further assumptions (25) assures

E
[
S4

X

]
=tr

(
1
N

N

∑
k=1

(|xk〉〈xk|)⊗4 X⊗4

)

=

(
d + 3

4

)−1
tr
(

PSym4 X⊗4
)

≤ 10.1
d(d + 1)(d + 2)(d + 3)

[
tr
(

X2
)
+ tr(X)2

]

=
10.1d(d + 1)
(d + 2)(d + 3)

E
[
S2
]2

, (30)

where the inequality follows from Lemma 2 in the ap-
pendix. Here we content ourselves to state that [14,
Lemma 17] allows for evaluating tr

(
PSym4 X⊗4

)
explic-

itly without requiring X to have vanishing tace. Ambai-
nis and Emerson [4], as well as Matthews, Wehner and
Winter [1] made this assumption (tr(X) = 0) to consid-
erably simplify evaluating this fourth moment bound
and obtain a slightly better constant ( 1

3 vs 1
5 obtained

here). Inserting these bounds into (28) reveals

‖X‖M4d
≥ d

√
E [S2]

3

E [S4]

=

√√√√ (d + 2)(d + 3)
(d + 1)2

(‖X‖2
2 + tr(X)2)3

24‖X‖2
2tr(PSym4 X⊗4)

‖X‖2

≥
√√√√ (‖X‖2

2 + tr(X)2)3

24‖X‖2
2tr(PSym4 X⊗4)

‖X‖2

≥ 1√
9.673

‖X‖2 >
0.32√

rank(X)
‖X‖1,

where the third inequality follows from Lemma 3 in the
appendix. Since the choice of X ∈ Hd is arbitrary, (4) in
Theorem 1 readily follows.
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To derive (5) and (6) in Theorem 1, note that

‖X‖M4d
≥
√√√√ (‖X‖2

2 + tr(X)2)3

24‖X‖2
1tr(PSym4 X⊗4)

‖X‖1

≥ 1√
12.12

‖X‖1 > 0.287‖X‖1,

where the second inequality follows from Lemma 4
given that X has rank 2. This equation confirms (5). If in
addition X is traceless, then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= 12. (31)

according to Lemma 4 in the appendix, from which (6)
follows.

C. Proof of Theorem 4 and Theorem 3

Now let us move on to prove Theorem 3—a simi-
lar statement for Clifford POVMs. Fix d = 2n and let
MC,z =

{
d
N |xk〉〈xk|

}N

k=1
be a Clifford orbit POVM with

fiducial |z〉 ∈ Cd (i.e. |x1〉 = |z〉, |xk〉 = Ck|z〉, . . . with
Ck ∈ C(d)). We fix X ∈ Hd and define define the ran-
dom variable SX in analogy to (27). Doing so assures

‖X‖MC,z = E [|SX |] ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
]

via Berger’s inequality.
As already pointed out in section II, any Clifford or-

bit does constitute a complex projective 3-design. This
in turn implies that (29) remains valid, because said
derivation just requires a 2-design structure:

E
[
S2

X

]
=
‖X‖2

2 + tr(X)2

(d + 1)d
.

However, deriving a corresponding bound for E
[
S4

X
]

is considerably more challenging, because Clifford or-
bits in general fall short of being a complex projective

4-design. Instead, we restort to Theorem 6 which im-
plies

E
[
S4

X

]
= tr

(
1
N

(|xk〉〈xk|)⊗4 X⊗4
)

= d
(

d + 2
3

)−1 (
α1(z)tr

(
P1X⊗4

)
+ α2tr

(
P2X⊗2

))
,

(32)

where P1, P2 ∈ H⊗4
d and α1(z), α2(z) were introduced in

said theorem.
We bound the two occurring terms individually. For

the first term, we obtain

tr(P1X⊗4) =tr
(

P1

∣∣∣X⊗4
∣∣∣
)
= tr

(
PSymQ|X|⊗4

)

≤tr
(

Q|X|⊗4
)
=

1
d2

d2

∑
k=1

tr
(

W⊗4
k |X|⊗4

)

=
1
d2

d2

∑
k=1

tr (Wk|X|)4

by invoking some standard trace inequalities. Hoelder’s
inequality together with the fact that the characteristic
function (8) is an isometry allows us to simplify further:

tr(P1X⊗4) ≤ 1
d2

d2

∑
k=1

tr (Wk|X|)4

≤ 1
d2

d2

∑
k=1
‖X‖2

1‖WK‖2
∞tr (Wk|X|)2

=
‖X‖2

1
d
‖w(|X|)‖2

`2
=
‖X‖2

1‖X‖2
2

d
. (33)

The last equation is due to the fact that the Schatten-
p norms of X and |X| coincide by definition. Together
with (24) and (32), this equation implies

E
[
S4

X

]
= tr

(
1
N

(|xk〉〈xk|)⊗4 X⊗4
)
= d

(
d + 2

3

)−1 (
(α1(z)− α2(z))tr

(
P1X⊗4

)
+ α2tr

(
PSym4 X⊗4

))
,

≤
(

d + 2
3

)−1
|α1(z)− α2(z)|‖X‖2

1‖X‖2
2 +

24
d(d + 1)2(d + 4)

tr
(

PSym4 X⊗4
)

.
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Consequently,

‖X‖MC,z ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] ≥ ‖X‖2√

κ(X, z)
≥ ‖X‖1√

κ(X, z) rank(X)
, (34)

where

κ(X, z) =
6(d+1)2

d+2 |α1(z)− α2(z)|‖X‖2
1‖X‖4

2 +
24(d+1)

d+4 ‖X‖2
2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤
6d(d+1)2

(d+2)(d+4)α1(z)‖X‖2
1‖X‖4

2 +
24(d+1)

d+4 ‖X‖2
2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ d + 1
d + 4

(
6dα1(z)

‖X‖2
1

‖X‖2
2
+ 9.673

)

≤6dα1(z)
‖X‖2

1
‖X‖2

2
+ 10 ≤ 6dα1(z) rank(X) + 10 = 6d‖w(|z〉〈z|)‖4

`4
rank(X) + 10. (35)

Here the second inequality in (36) follows from Lemma 3 in the appendix. The above two equations confirm Theo-
rem 3. If X is traceless, the bound on K(X, z) can be improved slightly,

κ(X, z) =≤ d + 1
d + 4

(
6dα1(z)

‖X‖2
1

‖X‖2
2
+ 9

)
≤ 6dα1(z)

‖X‖2
1

‖X‖2
2
+ 9 ≤ 6dα1(z) rank(X) + 9. (36)

If ‖w(|z〉〈z|)‖4
`4
= α1(z) ≤ 6/(d(d + 3)), then

− 2
d(d + 1)

≤ α1(z)− α2(z) ≤
2

(d− 1)(d + 4)
. (37)

Therefore,

κ(X, z) ≤
12‖X‖2

1
d‖X‖2

2
‖X‖6

2 + 24‖X‖2
2tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 12‖X‖2
1

d‖X‖2
2
+ 10 ≤ 12 rank(X)

d
+ 10 ≤ 22,

from which Theorem 4 follows. If X is traceless, the bound on K(X, z) can be improved slightly,

κ(X, z) ≤ 12‖X‖2
1

d‖X‖2
2
+ 9 ≤ 12 rank(X)

d
+ 9 ≤ 21.

D. Proof of (21) and (22)

If z is a stabilizer state, then dα1(z) = 1, so that

κ(X, z) ≤ d + 1
d + 4

(6d + 10) ≤ 6d,

‖X‖MC,z ≥
‖X‖1√

κ(X, z) rank(X)
≥ ‖X‖1√

6d
.

This equation confirms the lower bound in (21); the upper bound follows from (17) as mentioned before.
According to the same reasoning that leads to (34),

‖X‖MC,z ≥ d

√√√√E
[
S2

X
]3

E
[
S4

X
] ≥ ‖X‖1√

µ(X, z)
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where

µ(X, z) =
6(d+1)2

d+2 |α1(z)− α2(z)|‖X‖4
1‖X‖2

2 +
24(d+1)

d+4 ‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤
6‖X‖2

1‖X‖4
2 + 24‖X‖2

1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤36.

Here the second inequality follows from Lemma 5 in the appendix given that X has rank 2. As an immediate
consequence, ‖X‖MC,z ≥ ‖X‖1/6, from which (22) follows.

E. Proof of Theorem 5

At the heart of this proof is the fact that by definition
the multi-qubit Clifford group is the normalizer of the

Pauli group P(d) = {±Wk,±iWk}d2

k=1 and it acts tran-
sitively on Pauli operators up to overall phase factors.
This fact in particular implies that

‖W‖MC,z =
d

|C(d)|
|C(d)|
∑
j=1

∣∣〈Cjz|W|Cjz〉
∣∣

=
d

|C(d)|
|C(d)|
∑
j=1

∣∣∣〈z|C†
j WCj|z〉

∣∣∣

=
d

d2 − 1

d2

∑
k=2
|〈z|Wk|z〉| .

Using 〈z|W1|z〉 = 〈z|z〉 = 1 and the definition (8) of the
characteristic function this expression amounts to

‖W‖MC,z =
d(∑d2

k=1 |tr (W|z〉〈z|)| − 1)
d2 − 1

=
d
(√

d‖w(|z〉〈z|)‖`1 − 1
)

d2 − 1

=

√
d‖w(|z〉〈z|)‖`1 − 1
(d + 1)(d− 1)

‖W‖1,

because ‖W‖1 = d for any Pauli matrix.

F. Proof of the certainty relation for stabilizer bases

Our derivation closely resembles a similar analysis
for 2-designs presented in [1]. Fix d = 2n and let
B(k)stab =

{
b(k)1 , . . . , b(k)d

}
denote the M = ∏n

j=1
(
dj + 1

)

different multi-qubit stabilizer bases. Note that this im-
plies that there are N = dM different stabilizer states
in total. Now, we fix φ = |φ〉〈φ| and apply Jensen’s in-

equality to conclude

1
M

M

∑
k=1

S2

(
B(k)stab(φ)

)
=

1
M

M

∑
k=1
− log

(
d

∑
j=1

∣∣∣〈b(k)j |φ〉
∣∣∣
4
)

≤− log

(
1
M

M

∑
k=1

d

∑
j=1

∣∣∣〈b(k)j |φ〉
∣∣∣
4
)

=− log

(
d
N

N

∑
k=1

∣∣〈xj|φ〉
∣∣4
)

G. Characteristic function of different fiducial vectors

The characteristic functions of stabilizer states is well-
known. Nonetheless, we shall also derive them here for
the sake completeness. In qubit dimensions d = 2n, ev-
ery stabilizer state |z〉 ∈ Cd is defined to be the unique
common eigenvector of d commuting elements of the
Pauli group P(d) = {±Wk,±iWk}d

k=1 that must not con-
tain−I. This in turn implies (see e.g. [15, Exercise 10.34])

|z〉〈z| = 1
d ∑

k∈S
φkWk φk ∈ {±1} .

Here S ⊂
{

1, . . . , d2} denotes a subset of cardinality
|S| = d. Mutual orthogonality of the Pauli matrices with
respect to the Hilbert-Schmidt inner product then im-
plies

w(|z〉〈z|) = 1√
d

d2

∑
j=1

tr

(
Wj

1
d ∑

k∈S
φkWk

)
|ej〉

=d−
3
2

d2

∑
j=1

∑
k∈S

φktr
(
WkWj

)
|ej〉

= ∑
k∈S

φk√
d
|ek〉.

Accordingly,

‖w(|z〉〈z|)‖p
`p

= ∑
k∈S

∣∣∣∣
φk√

d

∣∣∣∣
p
= d1− p

2

for any 1 ≤ p < ∞.
Let us now turn our attention to the characteristic

function of the “magic product state” |z〉〈z| = ρ⊗n ∈
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H2n with ρ = 1
2

(
σ + 1√

3
(σ1 + σ2 + σ3)

)
∈ Hd. Here

σ0, . . . , σ3 ∈ H2 denote the single qubit Pauli matrices
with the convention σ0 = I. We will content ourselves
with directly computing `p norms of the characteristic
function. To this end, we use the fact that every d = 2n-
dimensional Pauli matrix admits a tensor product de-
composition

Wk = σk1 ⊗ · · · ⊗ σkn k j ∈ {0, 1, 2, 3}

into single qubit Pauli’s. Doing so implies

‖w(ρ⊗n)‖p
`p

=d−
p
2

3

∑
k1,...,kn=0

∣∣tr
(
Wk1 ⊗ · · · ⊗Wkn ρ⊗n)∣∣p

=d−
p
2

3

∑
k1,...,kn=0

∣∣tr
(
Wk1 ρ

)
· · · tr (Wkn ρ)

∣∣p

=d−
p
2

n

∏
j=1

3

∑
kj=0

∣∣∣tr
(

Wkj
ρ
)∣∣∣

p

=d−
p
2

n

∏
j=1

(
1 + 3

(
1√
3

)p)

=d−
p
2

(
1 + 3

(
1√
3

)p)n

,

where the last line is due to “magic state’s” particular
structure. For p = 4 we thus obtain

‖w(|z〉〈z|)‖4
`4
=

1
d2

(
1 +

3
9

)n
=

4n

22n3n

=
1
3n =

(
1
9

) n
2
<

(
1
8

) n
2
= d−

3
2 . (38)

Similarly:

√
d‖w(|z〉〈z|)‖`1 =

(
1 +
√

3
)n

< d1.45. (39)

H. Entropic uncertainty and certainty relations for
stabilizer bases

Lemma 1. Let ρ ∈ Sd be quantum state with rank(ρ) = r.
Then the “effective rank” of X = ρ− 1

d I amounts to

reff(X) :=
‖X‖2

1
‖X‖2

2
≤ 4rank(ρ)(d− rank(ρ))

d

≤4 max {r, d− r} .

The first bound is saturated by quantum states ρ that are max-
imally mixed on an r-dimensional subspace, while the second
bound is saturated, if ρ is pure.

We provide a proof of this elementary statement in the
appendix.
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Appendix

I. Derivation of the 4-design bound presented in (4)

Previous derivations [1, 4] of the fourth moment
bound presented in (4) have assumed X to be traceless.
This additional assumption considerably simplifies the
task at hand. Here, we prove a similar bound valid for
arbitrary X ∈ Hd at the cost of a slightly larger multi-
plicative constant. At the heart of this derivation is [14,
Lemma 17] which provides a closed-form expression for
the object at hand:

Lemma 2. Suppose X is a nonzero Hermitian operator and y = |tr(X)|/‖X‖2. Then

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 ≤ 3 +

6 + 8y− 2y4

(1 + y2)2 ≤ 3
5
(7 + 4 · 21/3 + 3 · 22/3) ≈ 10.08113. (40)

Here the second inequality is saturated iff y = 21/3 − 1; the first one cannot be saturated except when y = 1 and X has rank 1,
but it can be approached with arbitrarily small gap.

When X is trace less, Lemma 2 implies that

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 < 9, (41)

where the upper bound can be approached with arbitrarily small gap.

Proof. According to [14, Lemma 17],

24tr
(

PSym4 X⊗4
)
=
(

tr(X)4 + 8tr(X)tr(X3) + 3tr(X2)2 + 6tr(X)2tr(X2) + 6tr(X4)
)

=3
(

tr(X2) + tr(X)2
)2

+ 8tr(X)tr(X3) + 6tr(X4)− 2tr(X)4

≤3
(
‖X‖2

2 + tr(X)2
)2

+ 8|tr(X)|‖X‖3
3 + 6‖X‖4

4 − 2tr(X)4

≤3
(
‖X‖2

2 + tr(X)2
)2

+ 8|tr(X)|‖X‖3
2 + 6‖X‖4

2 − 2tr(X)4, (42)

where the first inequality is saturated iff X ≥ 0 or X ≤ 0, and the second one is saturated iff ‖X‖4 = ‖X‖3 = ‖X‖2,
that is, X has rank 1. Consequently,

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 ≤ 3 +

8|tr(X)|‖X‖3
2 + 6‖X‖4

2 − 2tr(X)4

(
‖X‖2

2 + tr(X)2
)2 = f (y) := 3 +

6 + 8y− 2y4

(1 + y2)2

≤ 3
5
(7 + 4 · 21/3 + 3 · 22/3) ≈ 10.08113. (43)

Here the first inequality is saturated iff X has rank 1 (in which case y = 1). To derive the second inequality, note that

f ′(y) =
8(1− 3y− 3y2 − y3)

(1 + y2)3 , (44)

which is positive when 0 ≤ y < 21/3 − 1 and negative when y > 21/3 − 1. So the maximum of f (y) for y ≥ 0 is
attained when y = 21/3 − 1, in which case

f (21/3 − 1) =
3
5
(7 + 4 · 21/3 + 3 · 22/3). (45)
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Although the first inequality in 41 can not be saturated except when y = 1, the bound can be approached arbitrarily
close if we do not impose any restriction on the rank of X. To show this point, suppose X = diag(ak,−1,−1, . . . ,−1)
has rank k + 1, where a is a real constant to be determined later. Then

tr(X) = k(a− 1), ‖X‖2
2 = a2k2 + k, tr(X3) = a3k3 − k ‖X‖4

4 = a4k4 + k. (46)

Assuming y ≥ 0, y 6= 1, k ≥ y2, and let

a =
k +

√
ky2(1 + k− y2)

k(1− y2)
. (47)

Then tr(X)tr(X3) ≥ 0, |tr(X)|/‖X‖2 = y,

lim
k→∞

a =
1

1− y
, lim

k→∞

|tr(X3)|
‖X‖3

2
= 1, lim

k→∞

‖X‖4

‖X‖2
= 1, (48)

which implies that

lim
k→∞

24tr
(

PSym4 X⊗4
)

(tr(X2) + tr(X)2)
2 = 3 +

6 + 8y− 2y4

(1 + y2)2 . (49)

Lemma 3. Suppose X is a nonzero Hermitian operator and y = |tr(X)|/‖X‖2. Then

24tr
(

PSym4 X⊗4
)

tr(X2)

(tr(X2) + tr(X)2)
2 ≤ 3(1 + y2)2 + 6 + 8y− 2y4

(1 + y2)3 < 9.673. (50)

Here the first inequality cannot be saturated except when y = 1 and X has rank 1, but it can be approached with arbitrarily
small gap.

Proof. The lemma follows from Lemma 2 except for the second inequality in Equation 50. To derive this inequality,
let

f (y) =
3(1 + y2)2 + 6 + 8y− 2y4

(1 + y2)3 ; (51)

then

f ′(y) = −2(−4 + 21y + 20y2 + 10y3 + y5)

(1 + y2)4 . (52)

Note that (1 + y2)4 f ′(y) is monotonic decreasing with y when y ≥ 0 and has a unique real root y0 > 0. Therefore,
the maximum of f (y) is attained when y = y0. Now it is straightforward to verify that f (y0) < 9.673. Calculation
shows that

y0 ≈ 0.163078, f (y0) ≈ 9.67249. (53)

Lemma 4. Suppose X is a rank-2 Hermitian operator. Then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 5
81

(95 + 32
√

10) ≈ 12.1107. (54)

If X is in addition traceless, then

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= 12. (55)
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Proof. Note that the left hand side of (60) is invariant when X is multiplied by any nonzero real constant. Without
loss of generality, we may assume that the two nonzero eigenvalues of X are equal to 1, x with −1 ≤ x ≤ 1. Then

‖X‖1 = 1 + |x|, ‖X‖2 = 1 + x2, tr
(

PSym4 X⊗4
)
= 1 + x + x2 + x3 + x4, (56)

so that

24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= f (x) :=
3(1 + |x|)2(1 + x + x2 + x3 + x4)

(1 + x + x2)3 . (57)

If x ≥ 0, then f (x) ≤ 3 according to the following equation,

(1 + |x|)2(1 + x + x2 + x3 + x4)− (1 + x + x2)3 = −x2(2 + 3x + 2x2) ≤ 0. (58)

If −1 ≤ x < 0, then

f (x) :=
3(1− x)2(1 + x + x2 + x3 + x4)

(1 + x + x2)3 , f ′(x) =
3(−1 + x)(1 + x)(4 + 4x− x2 + 4x3 + 4x4)

(1 + x + x2)4 .

Let x0 be the unique real root of 4 + 4x− x2 + 4x3 + 4x4 which lies between −1 and 0, then f ′(x) ≥ 0 if −1 ≤ x ≤ x0
and f ′(x) ≤ 0 if x0 ≤ x ≤ 0. Therefore, the maximum of f (x) is attained when x = x0, in which case

f (x0) =
5

81
(95 + 32

√
10). (59)

If X is in addition traceless, then x = −1, so (55) follows from Equation 57.

Lemma 5. Suppose X is a rank-2 Hermitian operator. Then

6‖X‖4
1‖X‖2

2 + 24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

≤ 36, (60)

where the upper bound is saturated iff X is traceless.

Proof. As in the proof of Lemma 4, we may assume that the two nonzero eigenvalues of X are equal to 1, x with
−1 ≤ x ≤ 1. Then

6‖X‖4
1‖X‖2

2 + 24‖X‖2
1tr
(

PSym4 X⊗4
)

[‖X‖2
2 + tr(X)2]3

= f (x) :=
6(1 + |x|)4(1 + x2) + 24(1 + |x|)2(1 + x + x2 + x3 + x4)

8(1 + x + x2)3 .

When x ≥ 0, it is straightforward to verify that f (x) ≤ 9. When −1 ≤ x < 0,

f (x) =
6(1− x)4(1 + x2) + 24(1 + x + x2 + x3 + x4)

8(1 + x + x2)3 =
3(1− x)2(5 + 2x + 6x2 + 2x3 + 5x4)

4(1 + x + x2)3 ,

whose derivative is given by

f ′(x) =
3(−23 + 9x2 − 9x4 + 23x6)

4(1 + x + x2)4 ≤ 0,

Therefore, f (x) ≤ f (−1) = 36, and the upper boud is saturated iff x = −1, in which case X is traceless.

J. Proof of Lemma 1

We start by computing the Hilbert-Schmidt norm of
X = ρ

−
1
d I:

‖X‖2
2 =tr

(
ρ2
)
+

1
d2 tr(I) = tr

(
ρ2
)
− 1

d
.

Recall that the minimal purity of any rank-r state is 1
r

which in turn impies

‖X‖2
2 ≥

d− r
dr

. (61)
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For computing the trace norm, we employ an eigen-
value decomposition ρ = ∑r

k=1 λk|k〉〈k| of ρ and in turn
write I = ∑d

k=1 |k〉〈k|. Consequently

‖X‖1 =
r

∑
k=1

∣∣∣∣λk −
1
d

∣∣∣∣+
d

∑
k=r+1

1
d

≤

√√√√r
r

∑
k=1

(
λk −

1
d

)2
+

d + r
d

,

because ‖x‖`1 ≤
√

r‖x‖`2 for any x ∈ Cr. Applying
∑r

k=1 λ2
k = tr(ρ2), ∑r

k=1 λk = tr(ρ) = 1 and resorting to
(61) we obtain

‖X‖1 ≤

√√√√r
r

∑
k=1

(
λk −

1
d

)2
+

d + r
d

=

√
r
(

tr(ρ2)− 1
d
− d− r

d

)
+

d− r
d2

=

√
r
(
‖X‖2

2 −
r
d

d− r
rd

)
+
√

r

√
d− r

d

√
d− r

dr

≤
√

r
(

1− r
d

)
‖X‖2

2 +

√
r

d− r
d
‖X‖2

=2

√
r

d− r
d
‖X‖2.

Combining these two relations implies

reff(X) =
‖X‖2

1
‖X‖2

2
=

4r(d− r)
d

,

as claimed. The second bound follows from the fact that
max {r, d− r} ≤ d−1

d ≤ d− 1 for any 1 ≤ r ≤ d− 1 (the
case r = d is trivial, because it implies X = 0). Conse-
quently:

4r(d− r)
d

=
4
d

max {r, d− r}min {r, d− r}

≤4
d− 1

d
min {r, d− r} .

The fact that both bounds are saturated, follows from
a straightforward computation for ρ = ∑r

k=1 |k〉〈k| (first
bound) and then setting r = 1 and r = d − 1, respec-
tively (second bound).
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4.1 Summary

Convex signal reconstruction combines techniques from linear algebra, convex optimization
and probability theory. The aim is to solve ill-posed inverse problems via convex optimization.
In many instances, rigorous mathematical performance guarantees can be obtained for such
procedures.

The most prominent examples are Compressed sensing and low rank matrix reconstruc-
tion. Strong reconstruction guarantees typically require “generic cases”, for example situations
where the measurements correspond to random Gaussian vectors and matrices, respectively.
See for instance [BDDW08; RFP10]. In addition, proofs of convergence can be obtained for
more restricted sets of measurements, if the obey particular properties, such as incoherence and
isotropy. Examples include discrete Fourier vectors in compressed sensing [CRT06] and Pauli
matrices in matrix reconstruction [Gro11; Liu11].

The main objective of this thesis was to devise novel proof techniques that are able to handle
further structural restrictions on the measurement process.

An important special case, where this is necessary, is phase retrieval. This is the task of
reconstructing a complex vector x ∈ Cn from quadratic measurements that are ignorant to-
wards phase information. This problem is ubiquitous in many scientific disciplines, including
X-ray crystallography, astronomy and quantum mechanics. As pointed out by Candès et al.
[CESV15], this quadratic inverse problem can be re-cast as a particular instance of low rank
matrix reconstruction: Both, the signal and the measurements are proportional to rank-one pro-
jectors. Measurements of this type fail to obey incoherence and isotropy. These issues may
be overcome for Gaussian measurement vectors, or vectors chosen uniformly from the com-
plex unit sphere Sn−1. It turns out that strict isotropy is not a necessary requirement, and such
“generic instances” guarantee a strong notion of probabilistic incoherence. This in turn allowed
Candès and Li to prove phaseless reconstruction guarantees that scale linearly in the dimension
n [CL14].

In order to partially derandomize this result, Gross, myself and Krahmer have introduced
the notion of spherical t-designs [GKK15a; KGK15]. These amount to finite configurations
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of vectors that are “evenly distributed” in the sense that they reproduce the first 2t moments
of the uniform distribution over Sn−1. In turn, we could relate a relaxed notion of isotropy to
the defining property of a spherical 2-design [GKK15a]. The structure of a spherical 2-design
alone, however, is insufficient for strong constructive results. Complementing this no-go result,
we could prove that spherical 4-designs already enable optimal reconstruction [KRT15]. This
leaves the case t = 3 as an intriguing open case. In [KG15], we could identify a particular
instance of a spherical 3-design: stabilizer states in power-of-two dimensions. This family of
vectors has several descriptions:

(i) They may be viewed as a generalization of standard and discrete Fourier basis.

(ii) In quantum information theory, stabilizer states arise naturally as the joint eigenvectors
of n commuting Pauli matrices.

(iii) They form the smallest orbit of a prominent symmetry group. This group is known as
Clifford group in quantum information, the oscillator group in finite Weyl-Heisenberg
analysis and the metaplectic representation of Sp(F2, 2n) in mathematical physics.

In an ongoing collaboration with Zhu, Gross and Grassl we could prove close-to-optimal
convex reconstruction guarantees for phase retrieval from random stabilizer states [KZG16b;
ZKGG16].

Shifting focus more towards practical applicability of PhaseLift, Gross, Krahmer and myself
considered random diffraction patterns. Introduced Candès, Li and Soltanolkotabi [CLS15],
this structured measurement setup mimics diffraction imaging experiments that utilize “masks”.
These authors then proved that C log4(n) randomly chosen diffraction patterns (each of which
contains n correlated measurement vectors) suffice w.h.p. to recover a given vector x ∈ Cn

via PhaseLift. Gross, Krahmer and myself improved on this result by showing that already
C log2(n) such patterns suffice to derive an analogous statement [GKK15b]. This improve-
ment is a single log-factor away from the information theoretic lower bound for such types of
measurements.

Our occupation with the particular aspects of phase retrieval has led to further insights within
the field of convex signal reconstruction. These results include reconstruction proofs applicable
to compressed sensing from anisotropic measurements [KG14], an improved noise-robustness
for compressed sensing of non-negative vectors [KJ16], and identifying the diamond norm as
an improved regularizer for certain low rank matrix reconstruction problems [KKEG15].

The mathematical techniques that are typically employed in convex signal reconstruction
lend themselves to tackling a great variety of different problems in many scientific disciplines.
Being a physicist by training, I have focused on several open problems in quantum information
theory. By applying techniques from convex optimization, I could contribute novel insights to
the study of Bell inequalities [CKBG15], the task of comparing experiments to the Threshold
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theorem in quantum error correction [KLDF15], quantum state discrimination from stabilizer
state measurements [KZG16a] and a novel benchmark for fidelity optimization in Bayesian
quantum estimation [KF15].

4.2 Outlook

We conclude this work by mentioning several observations and research directions that may
merit further attention.

4.2.1 Sparse reconstruction of positive vectors

Positivity constraints can have profound impacts on compressed sensing, see e.g. [BEZ08;
DT05; SH+13]. Bruckstein et al. for instance showed that positivity renders `1-minimization
superfluous, if the row span of the measurement matrix A intersects the positive orthant
[BEZ08]. It is phrased for noiseless measurements and we generalize it to the noisy case
[KJ16]. We prove that

minimize
z≥0

‖Az− y‖`2
. (4.1)

is able to reconstruct any positive s-sparse vector, if the measurement matrix A obeys a NSP
and its row span intersects the positive orthant. An analogous statement holds true for positive
semidefinite matrix reconstruction [KKRT15].

Unlike constrained `1-norm minimization, such a constrained least-squares regression does
not require an a-priori noise bound η ≥ ‖ε‖`2

. Moreover, the minimal function value f (z]) =∥∥Az] − t
∥∥
`2

always provides a lower bound on the noise strength:

f (z]) ≤ ‖ε‖`2
. (4.2)

This already provides some information about the noise present in the sampling process.

A converse bound
f (z]) ≥ c ‖ε‖`2

(4.3)

would be considerably more desirable. Such a relation would allow for inferring an upper noise
bound η := f (z])

c directly from the reconstruction algorithm (4.2). In turn, this would allow for
inferring a “confidence region”: If the measurement matrix A admits a strong notion of the NSP,
the original vector x is contained in B =

{
z ∈ Cn :

∥∥z− s]
∥∥
`2
≤ C′

c f (z])
}

. Importantly, this
region B would be completely specified by the solution of (4.2).

Clearly, the desired relation (4.3) cannot hold in full generality. It is possible to violate it
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by choosing ε adversely with respect to A and x. However, numerical experiments conducted
with i.i.d. Gaussian noise suggest that (4.3) holds w.h.p. for stochastic noise. I believe that
the prospect of a “self certifying” compressed sensing protocol, in the sense of the previous
paragraph, merits further attention.

4.2.2 Tensor reconstruction

Our original motivation for [KKEG15] was the “seemingly tensorial nature” of the diamond
norm. The diamond norm is defined for linear mapsM : Mn → Mm that map square matrices
onto square matrices:

‖M‖� = sup
N≥0

sup
X∈Mn⊗MN

‖M⊗ IN(X)‖1
‖X‖1

(4.4)

Here, IN : Z → Z denotes the identity on MN . This is a “stabilized” version of the induced
nuclear norm. Among other things, this stabilization is responsible for the fact that the diamond
norm can be evaluated by means of a semidefinite program (SDP). Our working definition as
a particular matrix norm, results from choosing an appropriate matrix representation ofM. In
turn, we have focused on the implications of such a norm for matrix reconstruction [KKEG15].
Alternatively, the diamond norm (4.4) may be viewed as a norm for mapsM with an order-4
tensorial structure. It would be interesting to explore this aspect of the diamond norm in the
future.

Another promising objective is to consider tensor reconstruction of highly structured tensor
families. Permutation invariant tensors, i.e. elements of H⊗N

n (where N is much larger than n)
that are invariant under any permutation of the individual matrix spaces Hn, are highly promis-
ing. In quantum mechanics, such tensors describe bosonic systems. Classically, they stand in
one-one correspondence to homogeneous polynomials of degree N in n variables. One strong
indication that this special case is considerably simpler to treat than the general problem is
given by the fact that the dimension of the totally symmetric space grows only polynomially in
N, as opposed to exponential. Results might shed light onto conceptual problems like the rela-
tion between “rank” and “symmetric rank” of symmetric tensors, and might have applications
for relevant problems such as learning polynomial functions.

4.2.3 Entropic uncertainty relations for stabilizer states

Heisenberg’s uncertainty relation is one of the most famous aspects of quantum mechanics.
Roughly speaking, it show that it is impossible to prepare quantum systems with sharply defined
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position and momentum (“preparation uncertainty”):

∆P∆Q ≥ h̄
2

.

Here, ∆P and ∆Q denote the standard deviations of momentum and position, respectively.
Subsequently, Robertson [Rob29] generalized this relation to arbitrary observables A, B and
pure quantum states ψψ∗:

∆A∆B ≥ |〈ψ, [A, B]ψ〉| . (4.5)

Here [·, ·] denotes the commutator. Importantly, this relation depends on the quantum state. In
fact, for finite dimensional quantum systems (ψ ∈ Cn, A, B ∈ Hn) it is always possible to
choose ψ such that that (4.5) becomes trivial [Deu83].

One way to overcome this drawback is to use entropies as a quantitative measure of un-
certainty, rather than standard deviations. This approach has become increasingly popular in
quantum information science, see for instance [CBTW15], and plays a key role in quantum
cryptography.

A particularly strong entropic uncertainty relation is true for two measurements E and F
which correspond to the standard and Fourier basis of Cn, respectively. Born’s rule implies
that performing such measurements on a quantum state ρ ∈ Hn results in n-variate prob-
ability distributions, e.g. p(E, ρ) = (〈e1, ρe1〉, . . . , 〈en, ρen〉)T. If we quantify the uncer-
tainty associated with such outcome probability distributions by means of the Shannon entropy:
H(p) = −∑n

k=1 pk log2(pk) these two measurements obey

H (E, ρ) + H (F, ρ) ≥ 1
2

log(n) ∀ρ.

This is an extreme case of a more general entropic uncertainty relation by Maassen and Uffink
[MU88]. It is a consequence of minimal coherence (1.17) between standard and Fourier ba-
sis and, in some sense, highlights the validity of incoherence as a structural requirement for
compressed sensing.

Entropic uncertainty relations may be phrased for more than two basis measurements. For
instance, a complete set of (n + 1) mutually unbiased bases M1, . . . , Mn+1 ⊂ Cn obey

1
n + 1

n+1

∑
k=1

H (Mk, ρ) ≥ log2(n + 1)− 1 ∀ρ. (4.6)

This is a very strong bound, since the individual entropic terms on the left hand side are upper-
bounded by log2(n). Interestingly, this relation can be derived by exploiting the fact that a
complete set of mutually unbiased forms a spherical 2-design, see e.g. [WW].

In prime power dimensions n = ad, stabilizer states form another prominent set of N =
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∏n
j=1
(
aj + 1

)
orthonormal bases Sk whose union is a spherical 2-design. In analogy to (4.6)

one can prove
1
N

N

∑
k=1

H (Sk, ρ) ≥ log2(n + 1)− 1 ∀ρ. (4.7)

In [KG15], we could show that, in power of two dimensions (a = 2), stabilizer states actually
constitute a spherical 3-design. Moreover, the results presented in chapter 3 exactly characterize
the fourth moment of such an ensemble. This additional information may be sufficient for
further improving the already strong entropic uncertainty relation (4.7).

4.2.4 Clustering

Clustering is a prominent problem in unsupervised learning theory. Given a finite set of points
the task is to partition it into k disjoint subsets such that an a priori chosen dissimilarity function
is minimized. A particularly illustrative example for such a task is Euclidean clustering: All
points are elements of Rn and their similarity is mediated by the Euclidean distance. A popular
choice for the dissimilarity function is then minimizing the squared pairwise distances between
points within a cluster. This problem is NP hard in general, but Lloyd’s algorithm provides
a popular heuristic for solving it. The undesirable fact that this computationally fast heuristic
tends to not always converge to the true solution has prompted further investigation. Recently,
LP and SDP relaxations of the k-means problem have been proposed [Awa+15; IMPV15]. For
certain distributions of the data points – the stochastic ball model – these methods provably re-
cover the underlying cluster structure w.h.p., provided that the individual balls admit a minimal
separation distance. The minimal required distances put forth in [Awa+15] and [IMPV15], re-
spectably, differ from each other and neither seems to be optimal. It is plausible that employing
more sophisticated proof techniques—most notably the “golfing scheme” for constructing ap-
proximate dual certificates (see e.g. [GKK15a; GKK15b])—would allow for further tightening
this separation criterion.
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5.2 Abstract

Convex signal reconstruction is the art of solving ill-posed inverse problems via convex op-
timization. It is applicable to a great number of problems from engineering, signal analysis,
quantum mechanics and many more. The most prominent example is compressed sensing,
where one aims at reconstructing sparse vectors from an under-determined set of linear mea-
surements. In many cases, one can prove rigorous performance guarantees for these convex
algorithms. The combination of practical importance and theoretical tractability has directed a
significant amount of attention to this young field of applied mathematics.

However, rigorous proofs are usually only available for certain “generic cases”—for instance
situations, where all measurements are represented by random Gaussian vectors. The focus
of this thesis is to overcome this drawback by devising mathematical proof techniques can
be applied to more “structured” measurements. Here, structure can have various meanings.
E.g. it could refer to the type of measurements that occur in a given concrete application. Or,
more abstractly, structure in the sense that a measurement ensemble is small and exhibits rich
geometric features.

The main focus of this thesis is phase retrieval: The problem of inferring phase informa-
tion from amplitude measurements. This task is ubiquitous in, for instance, in crystallography,
astronomy and diffraction imaging. Throughout this project, a series of increasingly better con-
vex reconstruction guarantees have been established. On the one hand, we improved results for
certain measurement models that mimic typical experimental setups in diffraction imaging. On
the other hand, we identified spherical t-designs as a general purpose tool for the derandomiza-
tion of data recovery schemes. Loosely speaking, a t-design is a finite configuration of vectors
that is ”evenly distributed” in the sense that it reproduces the first 2t moments of the uniform
measure. Such configurations have been studied, for instance, in algebraic combinatorics, cod-
ing theory, and quantum information. We have shown that already spherical 4-designs allow
for proving close-to-optimal convex reconstruction guarantees for phase retrieval.

The success of this program depends on explicit constructions of spherical t-designs. In this
regard, we have studied the design properties of stabilizer states. These are configurations of
vectors that feature prominently in quantum information theory. Mathematically, they can be
related to objects in discrete symplectic vector spaces—a structure we use heavily. We have
shown that these vectors form a spherical 3-design and are, in some sense, close to a spherical
4-design. Putting these efforts together, we establish tight bounds on phase retrieval from
stabilizer measurements.

While working on the derandomization of phase retrieval, I obtained a number of results
on other convex signal reconstruction problems. These include compressed sensing from
anisotropic measurements, non-negative compressed sensing in the presence of noise and iden-

366



5.2 Abstract

tifying improved convex regularizers for low rank matrix reconstruction. Going even further,
the mathematical methods I used to tackle ill-posed inverse problems can be applied to a
plethora of problems from quantum information theory. In particular, the causal structure
behind Bell inequalities, new ways to compare experiments to fault-tolerance thresholds in
quantum error correction, a novel benchmark for quantum state tomography via Bayesian
estimation, and the task of distinguishing quantum states.
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5.3 Kurzzusammenfassung

Konvexe Signalrekonstruktion ist die Kunst des Lösens schlecht gestellter inverser Probleme
mittels konvexer Optimierung. Sie ist auf eine große Anzahl von Problemen im Ingenieur-
wesen, der Signalanalyse, der Quantenmechanik und vielen weiteren anwendbar. Der bekan-
nteste Anwendungsfall ist Compressed Sensing, dessen Ziel es ist, dünnbesetzte Vektoren
aus einer unterbestimmten Menge an linearen Messungen zu rekonstruieren. In vielen Fällen
ist es möglich, rigorose Leistungsgarantien für diese konvexen Algorithmen zu beweisen.
Die Kombination aus praktischer Bedeutung und theoretischer Beweisbarkeit hat zu einem
beträchtlichen Interesse an diesem jungen Teilgebiet der angewandten Mathematik geführt.

Nichtsdestotrotz, sind rigorose mathematische Beweise für gewöhnlich nur für gewisse
“generische Fälle” vorhanden—zum Beispiel Instanzen, wo alle Messungen zufälligen Gauss-
Vektoren entsprechen. Das Thema dieser Arbeit ist es diese Beeinträchtigung durch das
Entwickeln neuer mathematische Beweistechniken zu beheben, welche auf “strukturiertere”
Messinstanzen anwendbar sind. Wohlgemerkt, kann Struktur hier mannigfaltig ausgelegt wer-
den. Zum Beispiel könnte sie auf Messprozesse in konkreten Anwendungen hindeuten. Oder,
abstrakter, Struktur im Sinne eines kleinen Messensembles, welches besondere geometrische
Eigenschaften aufweist.

Ein wichtiger Aspekt dieser Arbeit ist Phase Retrieval. Darunter versteht man die Auf-
gabe komplexe Phaseninformation aus Amplitudenmessungen zu gewinnen. Dieses Problem
ist allgegenwärtig in vielen Disziplinen, zum Beispiel in Kristallographie, Astronomie und
“Diffraction Imaging”. Im Laufe dieses Projektes wurde eine Reihe stetig besser werdender
konvexer Rekonstruktionsgarantien hergeleitet. Auf der einen Seite haben wir bestehende Re-
sultate verbessert, welche für Messmodelle gelten die typische experimentelle Prozeduren in
“Diffraction Imaging” imitieren. Auf der anderen Seite, haben wir sphärische t-Designs als
Allzweck-Werkzeug für das Derandomisieren von Datenrekonstruktionsverfahren identifiziert.
Vereinfacht gesagt, ist ein t-Design eine Konfiguration endlich vieler Vektoren, welches “gle-
ichverteilt ist” in dem Sinn, dass sie die ersten 2t Momente der uniformen Verteilung auf der
Sphäre reproduziert. Derartige Konfigurationen wurden zum Beispiel im Rahmen der alge-
braischen Kombinatorik, der Coding-Theorie und in der Quanteninformationstheorie unter-
sucht. Wir haben gezeigt, dass bereits sphärische 4-Designs es erlauben, beinahe optimale
konvexe Rekonstruktionsgarantien für Phase Retrieval herzuleiten.

Der Erfolg eines solchen Programms hängt stark von expliziten Konstruktionen sphärischer
t-Designs ab. Um das zu erreichen, haben wir die Designeigenschaften von Stabilsatorzuständen
untersucht. Diese sind eine in der Quanteninformationstheorie sehr wichtige Vektorkonfigu-
ration. In mathematischer Hinsicht können sie mit diskreten symplektischen Vektorräumen in
Verbindung gebracht werden—Eine Struktur die wir stark ausnützen. Wir haben gezeigt, dass
diese Vektoren ein sphärisches 3-Design bilden, welche zudem einem 4-Design in gewisser
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Weise nahekommen. In dem wir diese Errungenschaften mit den Obengenannten verbinden,
leiten wir optimale Schranken für Phase Retrieval mittels Stabilisatorzuständen her.

Im Verlauf meiner Arbeit an der Derandomisierung von Phase Retrieval habe ich eine Anzahl
an weiteren Resultaten im Rahmen der konvexen Signalanalyse erarbeitet. Diese beinhalten
Compressed Sensing von anisotropen Messungen, verrauschtes nicht-negatives Compressed
Sensing, und das Identifizieren eines besseren konvexen Regularisierers für bestimmte Ma-
trixrekonstruktionsprobleme. Darüber hinaus, können die mathematischen Methoden, welche
ich zum Bearbeiten schlecht-gestellter inverser Probleme verwendet habe, auf eine Vielzahl
an Problemen der Quanteninformation angewendet werden. Konkret handelt es sich hierbei
um die kausale Struktur hinter Bellungleichungen, neue Möglichkeiten Experimente mit dem
“Fault-Tolerance Threshold” zu vergleichen, einen neuen Maßstab für Quantenzustandstomo-
graphie durch Bayes’sche Schätztheorie, und die Aufgabe Quantenzustände zu unterscheiden.
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