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Abstract

Quantum computing has entered an interesting transient regime. Current quantum computers are

becoming large and precise enough to outperform even the best conventional supercomputers at

certain tasks. But, at the same time, they are still too small and too noisy to execute prototypical

quantum algorithms. This era of near-term quantum computers comes with novel challenges, as

well as opportunities. Well-established scientific approaches do not necessarily apply anymore. For

instance, numerical simulations on conventional hardware have worked well for studying small

quantum architectures of the past. But, these simulations are becoming too demanding for today’s

devices. Conversely, an asymptotic runtime analysis may reveal a quantum advantage in the limit of

very large problem sizes. But near-term devices do not allow us to scale up to this far.

In this cumulative thesis, we showcase how to overcome near-term challenges and harness quantum

advantages based on mathematically rigorous theory. Our method-oriented approach leads to assertions

that are based on mathematical proofs (i.e. they are guaranteed to remain valid if we scale-up the

number of qubits), but also non-asymptotic (i.e. we typically obtain actual numbers that are small

enough to be meaningful for today’s quantum computers). It combines techniques from theoretical

computer science, mathematics, as well as (quantum) information theory. We showcase different

aspects of this general approach, as well as its broad range of their applicability, by means of four

exemplary research projects.
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Chapter 1

Introduction and summary of results

1.1 Motivation

Quantum computers are not the next generation of supercomputers. Rather, they are an entirely new

type of computing hardware based on the rules of quantum mechanics – the laws of nature that govern

physical systems at microscopic scales (e.g. on the level of individual atoms). And, although well-

understood, these rules are radically different from everyday experience. Concepts like superposition,

entanglement and, to some extent, true randomness occur naturally at these scales, but do not have

macroscopic counterparts. It is these effects that render quantum mechanical problems challenging;

both from a conceptual and a practical perspective. Many quantum-mechanical problems are notori-

ously difficult to solve, even for the largest supercomputers to date. Problems of paramount importance

in material science, chemistry and pharmaceutics fall into this category. Quantum computers attempt to

use quantum-mechanical effects in order to execute (certain) computations much faster than classical

hardware ever could. Nowadays, the underlying vision is attributed to R. Fenyman [Fey82], who said

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it

quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

This already hints at one of the most groundbreaking prospect of quantum computers: the accurate

simulation of microscopical systems, e.g. to finally construct high-temperature superconductors,

or ab initio quantum chemistry. In the 1990s (more than a decade after Feynman had shared his

vision) researchers started to discover that quantum computers might also be able to solve certain

combinatorial problems much faster than any known classical algorithms. These developments

culminated in Shor’s polynomial-time quantum algorithms for factoring and discrete logarithm [Sho94]

– two combinatorial problems for which the best known classical algorithms have runtime exponential

in system size. Polynomial-time algorithms for these particular problems could have far reaching

implications for security. Many widespread cryptographic protocols, like RSA encryption or the

Diffie-Hellman key exchange protocol, are built on the (conjectured) hardness of these number-

theoretic problems. Since then, about 65 problems have been identified for which quantum computers

do offer a noteworthy advantage. These are tabulated and explained in the Quantum Algorithm
1
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Zoo1. Other prominent quantum algorithms include Grover’s search algorithm in unstructured data-

bases [Gro97], as well as faster algorithms for solving linear systems of equations [HHL09] and convex

optimization [BS17, vAGGdW17a, BKF19].

For quite some time, these seminal insights were exclusively theoretical in nature and quantum

advantages have been identified via a thorough mathematical analysis of runtime and memory re-

quirements. But, the advent of ever larger and ever more accurate quantum hardware platforms is

starting to change the field [Pre18]. The quantum computing platforms of today and the near future,

so-called near-term devices, are becoming too large to simulate with conventional supercomputers.

Doing so would incur an exponential overhead in memory and/or runtime. Google’s sycamore chip,

for example, works with 53 qubits – the fundamental carriers of quantum information. This translates

into 453 ≈ 8.12×1031 classical degrees of freedom; an astronomical number that is too large for even

the largest supercomputers to handle. But, at the same time, these devices are still too small and too

noisy to actually run any of the quantum algorithms mentioned above. Although we know, in principle,

how to eventually build a fully-functional digital quantum computer (with negligible noise corruption),

such devices are not yet on the horizon.

Near-term quantum computers do, however, seem large and intricate enough to do interesting stuff.

Promising use cases are hybrid quantum-classical algorithms to heuristically solve the ground state

problem in quantum chemistry (the Variational Quantum Eigensolver aka VQE) [PMS+14, CAB+20],

nontrivial combinatorial problems (the Quantum Approximate Optimization Algorithm aka QAOA)

[FGG14] like finding the maximum cut in a graph, as well as approaches to simulate the behavior

of other quantum physical systems (quantum simulation), see e.g. [GAN14] and references therein.

But despite plenty of activity and enthusiasm, rigorous evidence for an actual quantum advantage

is very limited. Our understanding of hybrid quantum-classical algorithms is still in its infancy and

there is plenty of room for improvements. In this thesis, we collect several mathematically rigorous

contributions that address one or more of these challenges. We also put these results into a broader

context.

Roadmap: The rest of this introductory chapter is organized as follows. Sub. 1.2 introduces the

standard template for near-term (and far-term) quantum computers. Important challenges are identified

in Sub. 1.3, where we also discuss novel ways to overcome them. In Sub. 1.4, we switch gears and focus

on opportunities. We present rigorous theory contributions to quantum advantage (see also Chapter 4),

Variational Quantum Eigensolvers (see also Chapter 3 and Chapter 5) and quantum algorithms for

optimization (see also Chapter 6) and put them into context.

1.2 Hybrid quantum-classical computers

Understanding how a quantum computer actually works is not that easy. Although more successful

than any other physical theory, quantum mechanics does not have the reputation of being either simple,

1https://quantumalgorithmzoo.org

https://quantumalgorithmzoo.org
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CPU
Central Processing Unit

QPU
Quantum Processing Unit

readout problem

input problem

Figure 1.1: Schematic illustration of a hybrid quantum-classical computer: A conventional Central
Processing Unit (CPU) can outsource certain computational task to a Quantum Processing Unit (QPU).
The resulting hybrid architecture combines the strengths of both hardware platforms, but also suffers
from information-transmission bottlenecks (input problem and readout problem).

or intuitive. Some quantum mechanical effects are responsible for the astonishing power of quantum

computers, while other effects again limit their potential considerably. Balancing these blessings and

curses against each other to still obtain a net gain is surprisingly tricky. And, as a result, we actually do

not know that many problems for which quantum computers offer an unconditional (mathematically

rigorous) advantage.

In order to get a first intuition about quantum computers, a high-level comparison with conventional

hardware can be helpful. The core of most current computing devices is a central processing unit

(CPU). It can be tasked to carry out any possible set of instructions we throw at it, but is not necessarily

good at computing specific things (a jack of all trades, master of none). This is where alternative

processing units come in. One important example are graphical processing units (GPUs). They are

designed to solve specialized mathematical operations, in this case large matrix matrix multiplications,

much more efficiently than traditional CPUs. The original motivation for this setup is computer

graphics, but GPUs are also well-suited for training neural networks and simulating macroscopic

physical systems.

However, even GPUs struggle with the excessive number of mathematical operations that would

be required to accurately simulate physical and chemical processes beneath the nanoscale. Problems

of this type occur naturally in material science (e.g. the search for high-temperature superconductors),

pharmaceutics and chemistry (e.g. ab initio drug design) and fundamental physics (e.g. probing exotic

field theories or constructing time crystals). All these problems have on thing in common. They

adhere to the rules of quantum mechanics. And this renders them extremely difficult to handle with

classical (in the sense of macroscopic; not quantum mechanical) computations and hardware. Hence,
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it would be great if we had a different type of processing unit that is capable of handling these kind

of problems. This is the conceptual origin of quantum computers [Fey82], but the term Quantum

Processing Unit (QPUs) captures the intended purpose more accurately. QPUs are not designed to

supersede conventional hardware (like CPUs or GPUs), but are specialized processing units that can

further augment computing power. The result is a hybrid quantum-classical computer, schematically

illustrated in Figure 1.1. This combination produces a completely new and different type of computing

architecture that comes with novel opportunities, but also novel challenges. We refer to standard

textbooks [Wat18, NC00] or the lecture notes [Kue19] composed by the applicant for further reading.

1.3 Challenges for hybrid quantum-classical computers

A hybrid quantum-classical computer unifies two types of radically different hardware. The CPU,

on the one hand, uses registers comprised of bits encoded into electric currents. In turn, logical and

arithmetic operations are realized by utilizing the laws of classical electromagnetism. The QPU,

on the other hands, has registers comprised of qubits that are encoded into states of microscopic

systems. Computation is based on physical interactions between qubits that are engineered utilizing

the laws of quantum mechanics. This necessarily leads to information-transmission bottlenecks at the

interface between the two processing units. This section discusses two aspects of this problem that are

qualitatively very different.

1.3.1 The input problem

The CPU must be able to delegate computing tasks to the QPU. Since QPUs can only handle certain

types of computation, this may involve converting the original task into a compatible form (synthesis).

Subsequently, this standardized computation is decomposed into a sequence of more elementary

operations (mapping) which can then be executed on the actual quantum hardware. Needless to

say, conversion and decomposition should produce sequences of elementary quantum operations that

are as short and noise-resilient as possible. The proceedings [BKW21, GKFW21, HKMW21] and

preprints [CHKT20, FSK+21, BWK20], co-authored by the applicant, address different aspects of and

helpful subroutines for addressing these types of (input) problems.

We have chosen to introduce the input problem from a very practical, hardware-oriented, perspec-

tive. But there is also a conceptual dimension that is vital for quantum algorithm design. The precise

workings of information access and storage, e.g. oracle access to input parameters that specify a given

problem, can have a huge impact on the runtime of quantum algorithms. For instance, the development

of intricate classical data structures [Tan19, Tan18, GLT18] have recently nullified widely-believed ex-

ponential advantages promised by quantum algorithms for recommendation systems [KP20], principal

component analysis [LMR14] and clustering [LMR13], as well as stochastic regression [RSML18].

These aspects of the input problem also play an important role in Sub. 1.4.3 (see also Chapter 6), where
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we discuss a quantum algorithm for convex optimization with provable speed-ups over the best known

classical algorithms.

1.3.2 The readout problem

Once the QPU completes its task, the outcome of a quantum computation is stored within a register

comprised of qubits, not conventional bits. And the laws of quantum mechanics severely restrict access

to this type of quantum information. In order to retrieve any kind of actionable advice, measurements

must be performed on the microscopic constituents that make up the quantum register. Alas, quantum

mechanics dictates that informative measurements must be destructive (“collapse of the wavefunction”).

A typical measurement of an n-qubit register produces a string of n conventional outcome bits, but also

destroys the register in the process. What is more, these outcome bits themselves are random variables

and concrete realizations do not carry any information by themselves. Instead, the actual result of

the QPU computation is stored in the distribution over all possible outcome strings, not the actual

realizations (“god does play dice”). This, in turn, implies that many identical repetitions of a given

quantum computation are required to obtain sufficient statistics about this distribution of outcome bits

and the actual result encoded within. The readout problem is an actual bottleneck that severely restricts

the application range of hybrid quantum-classical computers. The number of repetitions required to

readout sufficiently accurate QPU solutions typically grows with QPU size and necessarily slows down

each quantum-classical cycle.

In Ref. [HKP20] we present and analyze a novel solution to this problem – the first of four journal

publications that form the main part of this thesis (see also Chapter 3). The key idea is to repeatedly use

randomized measurements to construct a succinct classical approximation of the underlying quantum

system. This classical shadow can then be used to efficiently approximate (up to) exponentially

many properties of the underlying quantum system – an exponential improvement over existing

methods that is optimal in the sense that it saturates fundamental bounds from information theory.

Further improvements are possible for readout problems with additional structure. We will discuss one

important example in Section 1.4.2 below.

1.3.3 Perspective

It can not be overstated that qubits, the fundamental carriers of quantum information, are extremely

delicate and hard to control. Stringent levels of precisions are required to correctly initialize a

QPU and, subsequently, execute nontrivial computations. Several powerful tools for certification

and characterization of quantum hardware have been developed to address these challenges, see

e.g. [EHW+20] for a recent overview which also discusses the journal articles [GKKT20, KLDF16,

KKEG19, RKK+18] co-authored by the applicant.

But accurate calibration can only go so far. The extremely fragile nature of qubits, as well as their

analog degrees of freedom, imply that a perfect QPU cannot exist under realistic conditions. Some

errors and noise fluctuations are inevitable. And, over the course of a long quantum computation, these
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errors add up until the accumulated noise overpowers the underlying quantum signal, rendering the

entire computation useless. Noise accumulation limits both the size and runtime of trustworthy QPU

computations and is the limiting factor for today’s hybrid quantum-classical computers [Pre18]. Fortu-

nately and crucially, there are proposals on how to eventually overcome these limitations. Quantum

error correcting codes distribute the state of individual logical qubits redundantly among a collection

of many physical qubits, see e.g. [NC00]. This allows for protecting the encoded quantum information

from essentially all kinds of errors, provided that each of them is sufficiently small (and they are not

correlated in a malicious fashion). Moreover, proposals exist on how to process quantum information

directly on the logical level, provided that the average error per elementary quantum operation is

below a certain threshold. This leads to fault-tolerant quantum computation, the key stepping stone to

construct fully scalable QPUs that are powerful enough to execute big, digital quantum algorithms like

Shor’s algorithms [Sho94] for factoring and discrete logarithm, as well as the HHL algorithm [HHL09]

for solving linear systems. It is these quantum algorithms that promise exponential runtime savings

over the best known existing algorithms, with far-reaching implications for security, data analysis

and optimization. Having said this, fault-tolerant quantum computing is still a rather distant dream

and years, perhaps even decades, of dedicated effort will be required to achieve the required level of

control, accuracy and correction. The quest for building a scalable, fully functional QPU is a marathon,

not a sprint.

1.4 Opportunities for near-term QPUs

We have seen that the quest for building large QPUs that are functional, as well as trustworthy, is

an extremely ambitious goal. In recent years, important milestones have been achieved and several

big tech companies (e.g. Amazon, Google, IBM), as well as startups (e.g. AlpineQuantum, IonQ,

PsiQuantum and Rigetti) have announced ambitious plans for the near future. Paralleling these

developments, fundamental research at academic institutions is also stronger than ever.

Still, scalable fault-tolerant quantum processors are unlikely to be available for years to come.

In turn, the most prominent use cases for quantum computing, like polynomial-time algorithms

for factoring and discrete logarithm [Sho94], quadratically faster search algorithms [Gro97] and

exponentially faster linear system solvers [HHL09], are also off the table, at least for the foreseeable

future. And this begs the question: what should we actually do with current and near-term quantum

architectures? This section collects mathematically rigorous evidence for three different use cases.

We first introduce the quantum circuit model which then allows us to discuss quantum advantage

(formerly also called quantum supremacy). For the first time, programmable QPUs are able to solve

certain problems much faster than the best conventional supercomputers available. We then move

on to discuss the Variational Quantum Eigensolver (VQE), a quantum-classical heuristic to solve

challenging ground state problems in material science, quantum chemistry and physics. And finally,

we present a hybrid quantum-classical algorithm for solving convex optimization problems more

efficiently than the best known classical solvers.
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1.4.1 Quantum circuits, quantum advantage and quantum complexity

The prevalent model for quantum computation is the quantum circuit model. It is a generalization of the

Boolean circuit model used in theoretical computer science and chip design, see e.g. [AB09, Chapter

6] and [HH13]. QPUs work with n-qubit registers (the fundamental carriers of information in a

conventional n-bit register are replaced by their quantum mechanical counterparts). In the quantum

circuit model, each qubit is visually represented by a horizontal line. A quantum computation is

a sequence of (elementary) quantum gates. These are reversible transformations that only affect

a constant number of qubits each. And we read these instructions from left to right. We refer to

Figure 1.2 for a visual illustration of a 15-qubit circuit comprised of, in total, 98 elementary 2-qubit

gates (blue boxes) that are arranged in a brickwall geometry. The blue boxes are placeholders that can

be replaced with any 2-qubit gate.

Crucially, the set of elementary quantum transformations is strictly larger than the set of elementary

reversible transformations in conventional logic. This larger expressiveness is where the power of

QPUs hails from. Elementary quantum transformations can be combined to produce more complicated

quantum circuits. In fact, one of the fundamental results of quantum computation asserts that any

quantum mechanical process that involves n qubits can be accurately approximated by a quantum

circuit comprised only of elementary quantum gates, see e.g. [BBC+95]. This includes all conceivable

quantum computations, and the set of all reversible n-bit circuits is a strict subset thereof. Recall

that conventional circuits, like those executed in a CPU, can be mapped to reversible circuits at the

cost of (at most) a polynomial number of extra bits. This showcases that quantum circuits can, at

least in theory, be at least as powerful as conventional hardware. In fact, the seminal algorithms by

Shor [Sho94] (factoring and discrete logarithm), Harrow, Hassidim and Lloyd [HHL09] (fast linear

system solver) and others do indicate that they are strictly more powerful.

An important summary parameter of quantum circuits is depth. That is, the number of steps required

to execute all elementary gates that make up the circuit (after parallelization). Similar to runtime

in the Turing machine model, circuit depth is a measure of cost associated with executing a given

computation. The shorter the depth, the easier the associated quantum circuit. In fact, very shallow

(i.e. constant-depth) quantum circuits are so easy that they can be efficiently simulated on conventional

hardware, see e.g. [Vid03, BGM21, CC20]. On the other end of this spectrum are exceedingly wide

(i.e. exponential-depth) quantum circuits that can become so complex that even a fully-functional

QPU would require millions of years to sequentially execute all layers of elementary gates. The

quantum-mechanical processes behind such circuits are too time-consuming and complicated to ever

occur in nature.

The sweet spot for quantum computing lies between these two circuit-depth extremes. Powerful

use cases, like Shor’s algorithm or HHL, translate into quantum circuits whose circuit depth scales

polynomially in the number of qubits. In stark contrast, the best known conventional algorithms

translate into conventional circuits of (worst-case) exponential depth – an exponential quantum

advantage. Alas, even the most accurate QPUs of today are far too noisy to reliably explore the

regime of polynomial-depth quantum circuits. Gate errors, which are inevitable for today’s devices,
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circuit depth 14
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qu
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ts

Figure 1.2: Illustration of a quantum circuit diagram: Qubits are represented by horizontal lines that
are meant to be read from left to right. The little blue boxes are placeholders for elementary quantum
gates that only ever act on two neighboring qubits. We can combine many of these elementary quantum
gates to execute more complicated, global quantum computations. The circuit geometry depicted here
illustrates a so-called brickwork quantum circuit. The circuit depth counts the total number of gate
layers. It is an important summary parameter that tells us how complicated/expensive a given quantum
computation is.

quickly accumulate and can overpower the actual signal. As a consequence, the circuit depth of

near-term QPU computations needs to be shallow. And this raises the question of quantum advantage:

Is there any computing problem (useful or useless), where near-term QPUs outperform conventional

supercomputers?

It is widely believed that there is an affirmative, but also somewhat boring, answer: QPUs are much

better at simulating themselves than conventional supercomputers could ever hope to be. The Google

team used this type of reasoning to claim quantum advantage in 2019 [AAB+19]. They used their

53-qubit QPU to execute random quantum circuits with depth up to 20 much faster than the world’s

most powerful supercomputer of the time: 200 seconds vs. at least 2.5 days2.

But how can we be certain that conventional supercomputers must perform so much worse? On

the one hand, there are credible obstructions from the theory of computational complexity. Roughly

speaking, the ability of efficiently simulating a random quantum circuit computation on conventional

hardware would lead to a collapse of the polynomial hierarchy at the third level (a hypothetical

relation between different computational complexity classes that is widely believed to be false), see

e.g. [AA11, BJS11].

On the other hand, there are also more practical considerations that support a quantum advantage.

Several techniques have been developed that attempt to simulate quantum circuits on conventional

hardware. And while some of them are designed to exploit latent structure, they all require an

exponential overhead in the number of qubits once the circuits become too deep (c.f. [Vid03, BGM21,

CC20] and/or lacks advantageous structure (c.f. [ZW19, WHB21, BBC+19]). Importantly the circuits
2The original Google paper mentions 10,000 years, but IBM called these claims excessive and listed techniques that

conventional supercomputers could use to achieve the task in 2.5 days, see https://www.ibm.com/blogs/research/
2019/10/on-quantum-supremacy/. Up to our knowledge, the actual simulation has not been carried out yet.

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/


1.4. OPPORTUNITIES FOR NEAR-TERM QPUS 9

used to demonstrate quantum advantage are comprised of elementary 2-qubit gates that are sampled

uniformly at random from the collection of all possible 2-qubit gates. This has a serious downside: the

resulting circuit executes a completely random, and therefore utterly useless, computation. But, on

the upside, there can be no advantageous structure that classical simulators could exploit. And circuit

depths of order 20 also do seem sufficient to derail short-depth simulation techniques.

Note, however, that the final argument only addresses quantum circuits that are incompressible.

Indeed, suppose that it were possible to accurately approximate a quantum circuit functionality with

another quantum circuit that is much shallower. Then, we could apply short-depth simulators, like

[BGM21, CC20], to this compressed circuit and effectively nullify the presumed quantum advantage.

Intuitively, such noteworthy compressions seem unlikely, but how can we be sure? Perhaps we

were not clever enough to think of an ingenious shortcut that allows us to represent the underlying

functionality much more efficiently. It is not possible in practice to enumerate all the quantum circuits

that approximate another circuit to find one of minimal size. For that reason, it is quite difficult to

obtain a useful lower bound on the minimal circuit size.

Yet it is possible, to derive powerful lower bounds for ensembles of random circuits, which hold

with high probability when concrete circuits are selected from these ensembles. This is the main

contribution of Ref. [BCHJ+21] (see also Chapter 4) – the second of four journal publications that

form the main part of this thesis. The key idea is to link shortest possible circuit depth, also called

quantum complexity, to pseudorandom properties of the underlying random circuit ensemble. The

stronger the pseudorandomness, the longer the circuit depth required to realize it. In a second step,

we can then relate pseudorandomness to the depth of random quantum circuits with certain geometry

constraints, like random brickwall circuits illustrated in Figure 1.2. Together, these arguments imply a

direct relation between actual and minimal circuit depth. With extremely high probability (over the

choice of individual 2-qubit gates), the shortest possible circuit depth can only be polynomially smaller

than the actual depth of the original random circuit. In other words: substantial compressibility is

extremely unlikely for random circuits. This insight supplies further evidence that the random quantum

circuits used to demonstrate quantum advantage are indeed very hard to simulate on conventional

hardware.

We find it worthwhile to point out that the study of quantum complexity also has implications

beyond quantum computing. In quantum many-body physics, the shortest possible circuit depth

required to prepare ground-state wave functions is used to classify topological phases of matter at

zero temperature [CGW10]. Quantum complexity has recently also become a popular subject in

high-energy physics, where complexity growth is conjectured to be related to the long-time growth of

the interior of an eternal black hole [Sus16a, SS14, Sus16b]. These are encouraging synergies, where

concepts and insights from quantum computing drive progress in other, seemingly unrelated, scientific

communities.
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1.4.2 Variational Quantum Eigensolver (VQE)

We have seen that QPUs can natively run computations that would require exponentially more resources

on conventional hardware. In the last subsection, we have also pinpointed the reason: computing

properties of a n-body quantum system does typically require (order) 2n memory and runtime. This

curse of dimensionality quickly becomes prohibitively expensive. QPUs, on the other hand, have

the potential to bypass this issue entirely. This opens up new and interesting possibilities for solving

quantum mechanical problems in material science, many-body physics and chemistry.

A prototypical example problem is the ground state problem in quantum many-body physics. The

input is a spatial configuration of n qubits (spins), e.g. a one-dimensional chain or a two-dimensional

lattice, as well as an energy function, called Hamiltonian, that is typically a sum of simple nearest-

neighbor interactions: H = ∑〈i j〉 hi j, where 〈i, j〉 with 1 ≤ i, j ≤ n runs over pairs of qubits that are

adjacent to each other. What is more, each nearest-neighbor interaction hi j is simple and can be

succinctly represented by a 22×22 matrix, because each of them only affects 2 qubits at a time. The

total n-qubit Hamiltonian, however, is much more complicated. Mathematically, it is a self-adjoint

matrix with 2n rows and 2n columns. The ground state problem asks for identifying the smallest

eigenvalue of this enormous matrix:

minimize
ψ∈C2n

〈ψ,Hψ〉 subject to 〈ψ,ψ〉= 1 (ground state problem). (1.1)

Here, 〈x,y〉= x̄T y = ∑i x̄iyi denotes the canonical inner product on the complex-valued vector space

C2n
. The smallest possible value is called the ground state energy. Finding it, is not intrinsically

difficult. Computing the eigenvalue decomposition of H determines E0 = λmin(H) and, by extension,

solves Eq. (1.1) in a runtime that is (at most) cubic in matrix size. The problem is that H is an

exponentially large matrix to begin with.

The variational method for computing ground state energies replaces general 2n-dimensional

vectors ψ by a family of ansatz vectors ψ(θ) that only depend on a polynomial number of (real-valued)

parameters θ ∈ Rm with m = poly(n). Subsequently, we vary these parameters to minimize energy

over this family of ansatz vectors:

minimize
θ∈Rm

〈ψ(θ),Hψ(θ)〉 subject to 〈ψ(θ),ψ(θ)〉= 1 (variational method).

By construction, any variational method produces upper bounds on the true ground state energy. The

quality of approximation depends on the family of ansatz functions θ 7→ ψ(θ) and the way we update

the parameters to (hopefully) approach a minimum. Indeed, there is a trade-off. Variational ansatz

functions do suppress the degrees of freedom enormously, but they also complicate the optimization

landscape. The function θ 7→ 〈ψ(θ),Hψ(θ)〉 typically has many local minima, as well as a large

number of saddle points. But, the most glaring problem is that evaluating the objective function may

still require matrix-vector multiplications in 2n dimensions. Traditionally, this challenge is overcome

by carefully selecting a family of ansatz vectors that plays nicely with the total Hamiltonian so that

each 〈ψ(θ),Hψ(θ)〉 can be evaluated at poly(n) cost. Prominent examples are the density matrix
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Figure 1.3: Variational Quantum Eigensolver (VQE): (a) Illustration for the particular case of simulat-
ing one-dimensional quantum electrodynamics (lattice Schwinger model) [KMvB+19]. (b) Cost of
converting relevant QPU result into actionable advice for a single variational parameter update. The
plots show the number of QPU evaluations followed by measurement required to accurately estimate
the cost function as a function of QPU size (number of qubits) for direct measurements (green), partial
tomography (brown) [BMBO20], the original hand-crafted method (blue) [KMvB+19], as well as
classical shadows (red) [HKP20] and their derandomized counterpart (orange) [HKP21a].
This figure is imported from Ref. [HKP20], see also Chapter 3.

renormalization group formalism (DMRG) in many-body physics and the Hartree-Fock method in

quantum chemistry.

The variational Quantum Eigensolver (VQE) instead uses a QPU to evaluate θ 7→ 〈ψ(θ),Hψ(θ)〉
directly. We refer to Ref. [CAB+20] for a thorough introduction and important references. Outsourcing

these computations to a QPU can circumvent the curse of dimensionality, but for a different family of

ansatz vectors. Namely, those ψ(θ) ∈ C2n
that characterize the state of an n-qubit quantum register

after a variational quantum circuit has been executed. This is visualized in Fig. 1.3 (left). The m

variational parameters θ = (θ1, . . . ,θm) specify simple single-qubit gates within a relatively shallow

quantum circuit geometry. After encoding the parameters in a quantum circuit, we generate the

associated ansatz state by applying the circuit to a fixed, and typically simple, input quantum state.

So, ψ(θ) is an actual quantum state comprised of n qubits. Importantly, the preparation cost is only

proportional to the circuit depth d2(m/n)e� 2n. We can repeatedly prepare this ansatz state to estimate

〈ψ(θ),Hψ(θ)〉 by decomposing H = ∑〈i j〉 hi j into its elementary constituents and approximating each

〈ψ(θ),hi jψ(θ)〉 by direct quantum measurements. Approximately knowing 〈ψ(θ),Hψ(θ)〉 then

allows us to execute a stochastic optimization for the variational parameters θ to obtain a new ansatz

state that achieves smaller energy (Strictly speaking, we may actually have to estimate 〈ψ(θ),Hψ(θ)〉
for an entire collection of parameters to approximate, for instance, a stochastic gradient descent step).

And multiple iterations of this hybrid quantum-classical update strategy yield better and better ansatz

functions that hopefully converge to the true ground state energy.

By construction, many VQE iterations are required to (hopefully) converge to the ground state en-
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ergy. And the cost of each iteration is actually dominated by the cost of approximating 〈ψ(θ),Hψ(θ)〉
for fixed parameters θ up to sufficient accuracy. A naive readout procedure, where we estimate

individual terms hi j in the Hamiltonian one after the other, scales linearly in the number of terms. And

although polynomial in n, this overhead can quickly become a real bottleneck. The r.h.s. of Fig. 1.3 il-

lustrates this for a VQE designed to probe physical theories for quantum electrodynamics [KMvB+19].

There, the authors actually developed a specialized measurement procedure to efficiently estimate all

terms of the problem-specific Hamiltonian. But, the associated cost still scales polynomially in QPU

size n. This, in turn, limited their demonstration to n = 9 qubits, even though the quantum platform

they used could have readily supported up to 20 qubits (and more).

This scaling problem can be overcome by developing better solutions to the readout problem. The

works [HKP20] (see also Chapter 3) and [HKP21a] (see also Chapter 5) achieve just that. These

two articles constitute two main pillars of this thesis. Ref. [HKP20] introduces and analyzes a

novel quantum-to-classical converter based on randomly rotating the individual qubits just prior to

measurement. Visualized in Fig. 1.3 (left), randomization ensures that the subsequent measurement

can access all possible directions of the 2n-dimensional quantum state space. And they do so in a

random, yet unbiased fashion. This paves the way for Monte Carlo approximation: repeatedly perform

randomized single-qubit quantum measurements (each applied to a freshly generated quantum state)

and approximate the underlying quantum state by empirical averaging over the observed measurement

outcomes. We call this approximation a classical shadow of the underlying quantum system. It is

possible to rigorously prove that the number of randomized measurements required to accurately

approximate a collection of poly(n) quantum state properties only scales logarithmically in n. Applying

this to VQE can yield an exponential speed-up for the quantum-to-classical readout required within

each iteration. Already (order) log(n) randomized measurements suffice to accurately approximate all

poly(n) simple energy terms 〈ψ(θ),hi jψ(θ)〉 simultaneously. These numbers can then be combined

to approximate 〈ψ(θ),Hψ(θ)〉= ∑〈i j〉〈ψ(θ),hi jψ(θ)〉 orders of magnitudes faster than traditional

methods. This scaling improvement is visualized in Fig. 1.3 (right) for the VQE problem considered in

Ref. [KMvB+19].

The same plot also showcases that additional improvements are possible if we derandomize the

originally randomized measurement protocol behind classical shadows. Derandomization is a powerful

procedure from theoretical computer science that can convert randomized algorithms into deterministic

ones [MR95,AS08]. This general principle allows us to iteratively replace initially random single-qubit

measurements with fixed deterministic measurement choices. We refer to Ref. [HKP21a] for details,

see also Chapter 5 below. This greedy assignment procedure can be executed very efficiently on

conventional hardware and effectively optimizes the quantum measurement procedure for the type of

VQE Hamiltonian at hand. Runtime and memory scale linearly in the number of qubits and the number

of target functions (which is optimal). We also prove that the resulting deterministic measurement

protocol is guaranteed to perform at least as well as the randomized one. Complementary empirical

studies paint an even more favorable picture. Fig. 1.3 (right), for instance, showcases a consistent

improvement of about one order-of-magnitude.
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Other VQE use cases yield even larger advantages for derandomization. This includes, in particular,

the electronic ground state problem in quantum chemistry. There, one is interested in accurately

computing the ground state energy of a small- to medium-size molecule. This is a challenging problem,

because quantum mechanical effects (such as the Pauli exclusion principle for electrons) must be

taken into account. It is, however, possible to encode the molecular energy function in a synthetic

many-body Hamiltonian H = ∑i hi, much like the ones introduced and discussed above [JW28, BK02].

Once again, this Hamiltonian is comprised of only poly(n) terms hi. Each of them is simple, but in

contrast to before, their range is not confined to a small subset of qubits. This can cause problems for

randomized measurement procedures, because the likelihood of obtaining useful outcome statistics

for predicting 〈ψ(θ),hiψ(θ)〉 diminishes exponentially with the support size of hi. Consequently,

the original classical shadows protocol performs exceptionally poorly for these types of quantum

chemistry Hamiltonians. Modifications of the original protocol, like biasing the originally random

measurement settings [HBRM20, Had21, HHR+21], do address this issue and improve the readout

stage considerably. Derandomization may be viewed as another modification. Numerically, we observe

that derandomization can keep up with these recent developments and often performs even better than

biased, but still random, measurement techniques.

Before moving on, we find it worthwhile to point out that no rigorous performance guarantees have

yet been established for VQE. On the contrary, it is possible to show that the classical optimization

required in each iteration is intrinsically hard [BK21]. Complexity-theoretic obstructions for VQE

are not too surprising. After all, the many-body ground state problem is known to be at least as hard

as the satisfiability problem (SAT) and is probably even harder3. A provably efficient VQE solution

for arbitrary ground state problems would therefore imply that the problem class NP is contained in

BQP, the class of all problems that can efficiently be solved with high probability on a fully-functional

quantum computer. And this inclusion is widely believed to be false. (We don’t believe that quantum

computers are able to solve NP-complete problems efficiently.) On the other hand, reductions of

hard problem instances produce very particular, and typically even unphysical, Hamiltonians. And

it is entirely possible that VQE does perform very well for more physically motivated problems that

have advantageous structure. Numerical simulations, as well as proof-of-principle demonstrations on

small-scale hardware do seem to point in this direction, see [CAB+20] and references therein. For the

time being, we should regard VQE as a heuristics, albeit a very interesting one.

1.4.3 Quantum algorithms for convex optimization

The most prominent quantum algorithms promise exponential quantum advantages over the best

known conventional algorithms. But already polynomial speedups can make a substantial difference,

especially if the best-known classical runtime scales like a bad polynomial in input size. Certain

optimization algorithms fall into this category. An optimization problem is convex if it corresponds to

3It is possible to show that every problem whose solution can be efficiently checked on a quantum computer can be
reduced to an instance of the ground state problem. This identifies the ground state problem as the quantum computing
analog of the satisfiability problem [KSV02].
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minimizing a convex function over a convex set of feasible solutions. Roughly speaking, convexity of

the objective function ensures that every local minimum is also a global minimum, while convexity

of the feasible set implies that iterative solvers don’t get stuck near the boundary. Together, these

desirable features ensure that most, though not all, convex optimization problems can be solved in

polynomial runtime. We refer to standard textbooks [BV04, Bar02] for a thorough discussion.

Many important optimization problems can be rephrased as, or relaxed to, a convex optimization

problem. Concrete examples include portfolio optimization [MOS14], network flow problems [GH62],

constrained entropy maximization [Jay57], sparse [CRT06, Don06] and low-rank regression mod-

els [RFP10, Gro11, KRT17], phase retrieval [CSV13, GKK17], binary matrix decompositions [KT21],

but also (optimal) relaxations of combinatorial optimization problems, such as finding the maximum

cut in a graph (MAXCUT) [GW95]. This list is far from exhaustive.

Accurate general-purpose solvers for these types of optimization problems can scale with the

fifth power of the input size. Although polynomial, this scaling quickly become prohibitively expen-

sive. A seminal work by Brandão and Svore [BS17] addressed this polynomial scaling problem by

introducing a novel quantum meta-algorithm for solving matrix-valued optimization problems with

a positive semidefiniteness constraint (i.e. every feasible matrix must be self-adjoint and can only

have nonnegative eigenvalues). A thorough theoretical analysis yields (worst-case) runtime guarantees

that scale much more favorably with input size, but at the cost of a worse scaling an approximation

accuracy. See also Ref. [vAGGdW17b] for a more thorough and improved analysis. Roughly speaking,

the underlying idea is as follows. Absorb the positive semidefiniteness constraint by representing

every feasible point as the matrix exponential of another self-adjoint matrix: X ← exp(−H) (recall

that matrix exponentials have nonnegative eigenvalues by construction). Subsequently, we iteratively

update the matrix exponent H to penalize directions where the current iterate X = exp(−H) is very

far from being feasible or very far from being optimal. See Fig. 1.4 for a visualization of a related

meta-algorithm that solves a semidefinite feasibility problem (i.e. determine wether the intersection

of several convex sets is non-empty). Remarkably, it is possible to prove that this procedure must

converge after a number of iterations that only scales logarithmically in problem size. This ensures

that the total runtime is dominated by the cost for executing the update rule. And there, the main

bottleneck is computing the matrix exponential X = exp(−H). For d×d matrices, this may require

up to O(d3) arithmetic operations on conventional hardware. Brandão and Svore realized that a

QPU can sometimes perform matrix exponentiation more efficiently than a conventional CPU. A

quantum subroutine called Gibbs sampling [TOV+11, CS17] is capable of producing quantum states

that encode structured matrix exponentials much more efficiently. This quantum advantage translates

into highly competitive runtimes of the resulting hybrid quantum-classical algorithm. What is more,

the QPU subroutine seems to be more stable with respect to quantum circuit imperfections than more

traditional quantum algorithms, like Grover or Shor. Moreover, the number of required qubits only

scales logarithmically in input size. These two features indicate that fast quantum solvers for convex

optimization may constitute and interesting and useful application of near-term quantum architectures.

However, the Brandão-Svore algorithm is not perfect. The actual runtime scales rather unfavorably
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Figure 1.4: Illustration of a meta-algorithm for convex optimization: We visualize a semidefinite
feasibility problem. The task is to find a point in the intersection of the set of positive semidefinite
matrices (illustrated as a white circle), a linear half space (blue) and a non-linear wedge (orange). We
first perform a change of variables Xk← exp(−Hk) that ensures that we always stay within the set of
positive semidefinite matrices (white circle). We then execute the following update rules iteratively: (i)
check if the current iterate Xk = exp(−Hk) is contained in both the half space and the wedge. If this is
the case, we have found a point in the intersection and are done. If this is not the case, there must be a
hyperplane (blue line) that separates Xk from one of the sets. The update rule Hk+1 = Hk +ηPk, where
η is a small step size, introduces a penalty for this direction of violation, such that the next iterate
Xk+1 = exp(−Hk+1) will be closer to the convex set in question.
In Ref. [BKF19] (see also Chapter 6) we rigorously prove that this procedure must terminate after only
a logarithmic number of steps. The most expensive subroutine is computing the matrix exponentials
Xk = exp(−Hk). Outsourcing this subroutine to a QPU would result in a noteworthy quantum speed-up.
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with a problem-specific parameter, called the width of the optimization problem. And for many

interesting use cases, like relaxations of combinatorial optimization problems and spin ground state

problems, the problem width is so large that it negates any potential for a quantum advantage. In

Ref. [BKF19], we address this problem by developing a new overarching meta-algorithm that is better

suited for dealing with these types of problem geometries. Illustrated in Fig. 1.4, this meta-algorithm

is already competitive on conventional hardware. But, similarly to the original Brandão-Svore hybrid

algorithm, an additional quantum advantage is possible by delegating the computation of matrix

exponentials to a QPU. As a result, we obtain rigorous runtime guarantees that outperform the best

known algorithms for generic MAXCUT and spin glass problem instances. This work is the last of

four journal publications that form the main part of this thesis4.

The framework we develop turns out to be remarkably flexible and can be adapted to cover other

use cases. In Ref. [FBK21], we use similar ideas to develop a procedure for reconstructing classical

descriptions of quantum systems in a resource-optimal fashion. Numerical studies suggest that a

conventional and naive implementation of this algorithms is already very competitive. Empirically, we

find that the algorithm performs much better than the theory suggests.

1.4.4 Perspective

The last subsections illustrated three promising use cases for existing and near-term quantum processing

units. In Sub. 1.4.1 we have illustrated how existing quantum processors, like Google’s sycamore chip,

can execute certain, admittedly contrived, computations much quicker than conventional hardware ever

could (quantum advantage). The Variational Quantum Eigensolver (VQE), discussed in Sub. 1.4.2,

attempts to harness this potential for solving challenging ground state problems in many-body physics

and quantum chemistry. In Sub. 1.4.3, we finally discussed the possibility of speeding up solvers for

certain convex optimization problems by executing hybrid quantum-classical algorithms that outsource

crucial subroutines to a QPU for a net gain in runtime.

There are other near-term applications that we haven’t discussed (yet). One of them is the

Quantum Approximate Optimization Algorithm (QAOA) [FGG14]. Somewhat similar in spirit to

VQE, this is a hybrid quantum-classical algorithm designed for (approximately) solving combinatorial

optimization problems (MAXCUT). In contrast to VQE, rigorous theory support does exist for several

important use cases, like finding the maximum cut in a (triangle-free) graph [FGG14]. Alas, these turn

out to be weaker than the strongest convergence guarantees available for conventional algorithms5.

Rigorous quantum speed-ups are currently not available for this algorithm, but empirical results do

look promising.

Another potential application for near-term quantum algorithms is machine learning with quantum-

enhanced feature spaces, see e.g. [HCT+19]. The underlying idea is to use quantum circuits to define

4Note that it is joint work with F. Brandão, one of the inventors of this type of hybrid quantum-classical algorithms. It
also features in the Quantum Algorithm Zoo (https://quantumalgorithmzoo.org).

5Interestingly, these classical guarantees have only been established after Ref. [FGG14] pointed towards a rigorous
quantum speedup for approximating MAXCUT.

https://quantumalgorithmzoo.org
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novel types of feature maps for supervised and unsupervised learning. Coordinates xk ∈ R of a data

point x = (x1, . . . ,xD)∈RD parametrize pre-specified single-qubit gates within a fixed circuit geometry

(e.g. a single-qubit Pauli-X rotation by angle xk, U(xk) = exp(−ixkσX), embedded into a larger, n-qubit

quantum circuit geometry). This produces an n-qubit quantum circuit U(x1, . . . ,xD) that is applied to

a fixed input quantum state. The resulting QPU state ψ(xi) implicitly describes a quantum feature

vector with 2n degrees of freedom. What is more, the QPU can also be used to compute similarity

measures between feature vectors belonging to different data points. The most popular choice is the

quantum embedding kernel kquantum(x,y) = |〈ψ(x),ψ(y)〉|2 for data points x,y ∈ RD. The kernel trick

then allows for integrating these quantum-enhanced similarity measures in a conventional learning

algorithm, e.g. a support vector machine for binary classification.

Conceptually, quantum embedding kernels are reminiscent of VQE. We use QPUs as co-processors

to compute functions that live in an exponentially large space. These computations are then used to

execute powerful conventional algorithms. And, like with VQE, we are not yet aware of any rigorous

quantum advantages. This, however, is a very active field of research – both from an empirical and a

theoretical perspective. We refer to Refs. [ASZ+21, HBM+21] for interesting recent contributions.

1.5 Summary and outlook

In this introductory chapter, we have attempted to provide a broad and, whenever possible, nontechnical

overview of the state of quantum computing in the year 2021. We have pointed out ultimate goals, like

polynomial-time algorithms for factoring and discrete logarithm, but also emphasized the restricted

applicability of quantum computers. They should be viewed as special-purpose co-processors, quantum

processing units (QPU), that can be used to further empower conventional hardware. This motivates

the concept of hybrid quantum-classical computers which comes with novel challenges as well as

opportunities. The study of both is fascinating and timely. Unprecedented progress in the design and

control of quantum architectures has led to the advent of the first interesting QPUs; interesting in the

sense that they are too large to be (easily) simulated on conventional hardware.

In Section 1.3, we discussed (some of the) challenges that come with a hybrid architecture. Two

bottlenecks concern information transmission. We must be able to efficiently map conventional

instructions, like execute this quantum computation, onto the QPU (input problem). And, once a

quantum computation has completed, we must also be able to access its result (readout problem). While

the former problem bears conceptual similarities with conventional circuit design, the readout problem

is plagued by genuine quantum effects like probabilistic measurement outcomes and wavefunction

collapse. These effects can add up and lead to real bottlenecks. Sometimes, though not always, they can

be overcome by a combination of randomized measurements (quantum hardware) and data processing

(conventional software). This quantum-to-classical conversion procedure, known as classical shadows,

has empowered many recent QPU applications.

In Section 1.4 we shifted our attention to opportunities instead. Near-term hybrid quantum-classical

computers have been used to demonstrate quantum advantage: quantum computers can solve certain
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very specialized, and admittedly also very useless, problems in milliseconds for which the world’s

largest supercomputers would need days at least. Near-term QPUs can also be used to execute the

Variational Quantum Eigensolver (VQE), a hybrid quantum-classical heuristic to solve challenging

ground state problems in quantum chemistry, many-body physics and material science. Other quantum-

enhanced hybrid algorithms, like the Quantum Approximate Optimization Algorithm (QAOA), or

quantum-enhanced kernels and neural networks utilize a similar set of ideas and have also attracted a

lot of attention recently. Finally, we have also discussed how QPUs can be used to speed up powerful

meta-algorithms for solving convex optimization problems. The required QPU subroutine, computing

matrix exponentials, is more demanding than the quantum subroutines for VQE, QAOA and the like.

But it is still a far cry away from the intricacy of traditional quantum algorithms, like those of Shor

and Grover.

The advent of intermediate-scale (50 – 100 qubits) QPUs is in the process of changing quantum

computing research. Until very recently, quantum computers have mostly been a theoretical concept.

Likewise, progress and new insights have typically been the product of either rigorous mathematical

arguments and/or simulations of (small-scale) quantum architectures on conventional hardware. But

the new era also opens up new possibilities. Namely, empirical studies on hybrid quantum-classical

computers. Google’s 53-qubit chip, for instance, is capable of performing computations that we cannot

hope to simulate on conventional supercomputers. And even larger quantum architectures are currently

in the making. More so than ever, this potential has attracted attention and talent from other scientific

communities. And it is difficult to tell, where this accumulation of new possibilities and talent will

lead to in the upcoming years. Just one thing seems relatively certain: Fully functional, fault-tolerant,

quantum computers will not be available for years to come. And it will require continued attention,

focus and dedication to get there at all.

But, in the meantime, there is still a lot of potential for interesting developments. The intersection

between machine learning (ML) and quantum computing (QC) looks like a particularly promising

junction for the exchange of powerful ideas. Partly, because both quantum computing and machine

learning seem to already be potent in their own right. But also, because both fields are fashionable and

substantial attention has already gravitated towards them individually. Machine learning methods have

already been successfully applied to problems in quantum physics, see [CT17, vNLH17, BCJ+19].

And modern QPUs could only become as accurate as they currently are, because sophisticated

(and expensive) machine learning procedures are used to calibrate them on a daily basis. In the

converse direction, there has been much hope that QPUs may have the potential to speed up expensive

subroutines within the training stage of a ML model exponentially, see e.g. [KP20, LMR14, LMR13,

RSML18]. But, more recently, all these works have been superseded by conventional algorithms

empowered by quantum-inspired data structures [Tan19,Tan18,GLT18,KP20]. As of now, these recent

developments have nullified all known exponential quantum speed-ups for ML subroutines.

But there are other ways to combine quantum computing and machine learning. Quantum em-

bedding kernels, discussed in Sec. 1.4.4, for instance, currently receive a lot of attention. Even more

recently, a preprint co-authored by the applicant proposes to use near-term QPUs in order to generate
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training data that can subsequently be used to empower conventional ML models [HKT+21]. This

approach combines the core strengths of both fields: QPUs are good at simulating quantum physical

properties while (conventional) machine learning models, like support vector machines or neural

networks, excel at learning and generalizing from training data. The quantum-to-classical converters

introduced in Sub. 1.3.2 (see also Chapter 3) provide a sufficiently strong link between the two realms

and actually allows us to rigorously prove powerful convergence guarantees that point towards a novel

window of opportunity, as well as potential quantum advantages. The companion paper [HKP21b]

highlights that such a combination is surprisingly powerful. There, we prove that even a fully quantum

ML algorithm running on a fully-functional quantum computer with an arbitrary number of qubits

could not substantially outperform this near-term ML setup in terms of training data size and average

prediction error. Exponential runtime improvements may still be possible, though.

To summarize: synergies between quantum-mechanical experiments (simulated on a QPU) and

conventional ML (executed on conventional hardware) can be even more powerful than one might

think [HKP21b]. And, moreover, they can even be equipped with rigorous performance guaran-

tees [HKT+21] that scale (quasi-) polynomially in quantum system size. These quantum machine

learning ideas are still at an early stage. But, we are confident that they open up completely new

possibilities for near-term quantum computers that can be backed up by rigorous and non-asymptotic

theory support.
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9. [GKKT20] M. Guţă, J. Kahn, R. Kueng J.A. Tropp, Fast state tomography with optimal error

bounds, Journal of Physics A 53:204001 (2020)

10. [KMV19] R. Kueng D.G. Mixon, S. Villar, Fair redistricting is hard, Theoretical Computer

Science 791:28–35 (2019)

11. [KKEG19] M. Kliesch, R. Kueng J. Eisert, D. Gross, Guaranteed recovery of quantum processes

from few measurements, Quantum 3:171 (2019)

12. [JKM19] P. Jung, R. Kueng, D.G. Mixon, Derandomizing compressed sensing with combinato-

rial design, Frontiers in Applied Mathematics and Statistics 5:26 (2019)

13. [RKK+18] I. Roth, R. Kueng S. Kimmel, Y.K. Liu, D. Gross, J. Eisert, M. Kliesch, Recovering

quantum gates from few average gate fidelities, Physical Review Letters 121:170502 (2018)

[editor’s suggestion]

Conference proceedings (peer-reviewed)

14. [FBK21] F.G.S.L. Brandão, R. Kueng, D. Stilck França, Fast and robust quantum state to-

mography from few basis measurements, Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC) (2021)

15. [GKFW21] T. Grurl, R. Kueng, J. Fuß, R. Wille, Stochastic quantum circuit simulation using

decision diagrams, Design, Automation and Test in Europe (DATE) Conference (2021)

16. [HKMW21] S. Hillmich, R. Kueng, I.L. Markov, R. Wille, As Accurate as Needed, as Efficient

as Possible: Approximations in DD-based Quantum Circuit Simulation, Design, Automation

and Test in Europe (DATE) Conference (2021)

17. [BKW21] L. Burgholzer, R. Kueng R. Wille, Random stimuli generation for the verification of

quantum circuits, Asia and South Pacific Design Automation Conference (ASP-DAC) (2021)

18. [RFK+18] I. Roth, A. Flinth, R. Kueng J. Eisert, G. Wunder, Hierarchical restricted isometry

property for Kronecker product measurements, 56th Annual Allerton Conference on Communi-

cation, Control, and Computing (Allerton) (2018)

Book chapters (peer-reviewed)

19. T. Fuchs, D. Gross, P. Jung, F. Krahmer, R. Kueng, D. Stöger, Proof methods for robust low-rank
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Tomography, under review at PRX Quantum (2021)

21. H.Y. Huang, R. Kueng, G. Torlai, V.V. Albert, J. Preskill, Provably efficient machine learning

for quantum many-body problems, under review at Science (2021)

22. T. Fuchs, D. Gross, P. Jung, F. Krahmer, R. Kueng, D. Stöger, Sketching with Kerdock’s crayons:
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2.2 Core contributions

Since his graduation in 2016, the applicant has co-authored more than 21 scientific articles that address a

broad range of challenges and opportunities within the umbrella term of near-term quantum computing.

Four among them have been selected to form the main body of this thesis. This subselection is far

from complete and does not necessarily include the strongest or most influential contributions either.

Instead, these four journal articles are intended to be exemplars for the applicant’s method-oriented

approach to research. In a first step, familiarity with the theory behind quantum computing and detailed

knowledge about existing results in the literature are combined to identify well-posed problems

that seem interesting, timely and, perhaps most importantly, solvable. Subsequently, advanced

proof techniques from theoretical computer science (e.g. convex optimization, pseudorandomness,

computational complexity and algorithm design), mathematics (e.g. high-dimensional probability,

matrix analysis and representation theory) and information theory (e.g. communication complexity and

channel coding) are used to make rigorous assertions. Whenever possible, complementary numerical

studies are conducted to confirm the theory or to underscore the feasibility of a newly developed

method.

2.2.1 Efficient quantum-to-classical converters

We present an efficient method for constructing an approximate classical description of a quantum

system using randomized quantum measurements. Additional randomization turns out to substantially

reduce the cost of converting quantum information into classical information. We prove that the

number of measurements is independent of system size and even saturates fundamental lower bounds

from information theory. Experiments (both in silico and in vitro) highlight the advantages, which can

even be exponential, relative to previously known methods.

2.2.2 Incompressibility of generic quantum circuits

The concept of quantum complexity has far-reaching implications spanning theoretical computer

science, quantum many-body physics, and high energy physics. The complexity of a quantum evolution

(or computation) is defined as the size of the shortest quantum circuit that accurately approximates

it. In quantum many-body physics, for instance, it s reasonable to expect that the chaotic many-body

Hamiltonians generate time evolutions whose complexity grows linearly in time. Likewise, we expect

that the complexity of a generic quantum circuit is directly proportional to circuit depth. In other

words, we believe that these circuits are incompressible.

However, because it is hard to rule out short-cuts, it is notoriously difficult to derive lower bounds

on quantum complexity. To go further, one may study more generic models of complexity growth. We

prove that local random quantum circuits generate unitary transformations whose complexity grows

linearly for a long time, mirroring the behavior one expects in chaotic quantum systems, verifying

conjectures in the context of holography (AdS/CFT duality). Our results also lend credence to the
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claim that random quantum circuits are extremely hard to simulate on conventional hardware (quantum

advantage).

2.2.3 Improving near-term quantum algorithms by derandomization

The ground state problem, i.e. accurately compute the exact ground state energy of a medium-sized

molecule, is one of the most fundamental problems in quantum chemistry. And it is a difficult

problem, largely because quantum mechanical interactions between the electrons must be taken into

account. And conventional methods struggle with this, despite decades of dedicated research and

the availability of powerful supercomputers. Near-term hybrid quantum-classical computers offer a

tantalizing alternative that is based on two steps: (i) encode the electronic energy function for the

molecule of interest into a synthetic energy function on n qubits; (ii) use a Variational Quantum

Eigensolver (VQE) to (hopefully) find the ground state energy of this synthetic n-qubit system. What

is more, the encoded energy function is not arbitrary. It is a sum of many Pauli observables (i.e.

multi-linear functions that come with a particularly rich, algebraic structure).

We consider the readout problem for precisely this type of VQE and propose an efficient deran-

domization procedure that iteratively replaces random single-qubit measurements with fixed Pauli

measurements. By construction, the resulting deterministic measurement procedure is guaranteed

to perform at least as well as the randomized one. In some cases, e.g. VQE for quantum chemistry,

the derandomized procedure is substantially better than the randomized one. Numerical experiments

highlight the advantages of our derandomized protocol over various previous methods for estimating

the ground-state energies of small molecules.

Whenever applicable, derandomization can be viewed as an unconditional improvement of the

quantum-to-classical converters discussed in Sub. 2.2.1.

2.2.4 Quantum algorithms for convex optimization

The most well-known quantum algorithms offer provable exponential speed-ups over the best known

conventional algorithm. These algorithms and their use-cases are rare and far between, though. But

provable polynomial speed-ups should not be underestimated either, especially for problems where

the best known conventional algorithm scales with a large power of the input size. General purpose

solvers for convex optimization fall into this category. Many important problems in combinatorial

optimization, data analysis, but also logistics and finance, can be reduced (or relaxed) to instances of

semidefinite programs – a special class of convex optimization problems.

We develop a hybrid quantum-classical algorithm for solving semidefinite relaxations of binary

quadratic optimization problems. This class of relaxations for combinatorial optimization has so far

eluded rigorous quantum advantages. For generic instances, we rigorously prove that our quantum

solver gives a nearly quadratic speedup over the best known state-of-the-art algorithms. To achieve this,

we develop a meta-algorithm based on iterative matrix exponent updates (a variant of mirror descent)

that is to be executed on conventional hardware. Expensive subroutines, most notably computing a
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matrix exponential in each iteration, are outsourced to a quantum co-processor. This subroutine is

probably too demanding for today’s quantum architectures. But, at the same time, it is much simpler,

and more noise resilient, than most quantum algorithms. There is hope that a variant of this hybrid

quantum-classical algorithm will become tractable in the not too distant future.

2.3 Noteworthy contributions outside quantum computing

The main focus of this thesis is quantum computing. This is a new, fascinating and interdisciplinary

field of research that comes with unique challenges and opportunities. In recent years, most of the

applicant’s efforts and passion have been devoted to finding new ways to overcome quantum computing

challenges and harness quantum advantages. But these methods and proof techniques readily extend

to other timely research areas. In fact, the list of publications in Sec. 2.1 contains at least 8 scientific

articles that address topics in computer science, wireless communication and data science. Similar to

before, we choose to briefly illustrate scope and range of these non-quantum results by means of two

examples.

2.3.1 Complexity-theoretic obstacles for fair districting

[KMV19] R. Kueng D.G. Mixon, S. Villar, Fair redistricting is hard, Theoretical Computer Science

791:28–35 (2019)

Districting, also known as Gerrymandering, is one of many peculiarities of the US voting system.

In regular time intervals, state governors have the power to redraw borders of voting districts within

the entire state. This practice has been used by both Democrats and Republicans to either spread voters

of the opposite party among as many districts as possible (“cracking”) or to concentrate many voters

of their own party into single voting districts (“packing”). The ultimate goal is to ensure that as many

voting districts as possible have a majority of likeminded voters. And because the US president is not

elected directly, but appointed by an Electoral College, this can make a big difference. Districting, for

instance, has been the reason why Donald Trump won against Hillary Clinton in the 2016 election

despite having less than 50% of American voters behind him.

In Ref. [KMV19], we approach Gerrymandering from a computational complexity perspective.

More precisely, we consider the problem of fair districting: Given a distribution of voters, separate

them into districts such that the ratio of districts where party A has a majority is proportional to the

actual percentage of voters in favor of the same party. (We also impose some reasonable constraints on

the size and shape of districts allowed). Subsequently, we show that the question of deciding whether

a fair districting exists is at least as difficult as solving the satisfiability problem. This in turn implies

that fair districting is NP-hard in general. The proof follows by Karp reduction from planar 3-SAT.

https://arxiv.org/abs/1808.08905
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2.3.2 Semi-discrete matrix factorization

[KT21] R. Kueng and J.A. Tropp, Binary Component Decomposition Part I: The Positive-Semidefinite

Case, SIAM Journal on Mathematics of Data Science, 3(2):544–572 (2021)

[KT19] R. Kueng, J.A. Tropp, Binary component decomposition Part II: The asymmetric case, under

review at Linear Algebra and its Applications (2021)

A matrix factorization represents a given matrix B as the product of two more structured matrices:

B =VW T . In data analysis, matrix factorizations are an indispensable tool for exposing latent structure.

What is more, the columns of V , often known as factors, and the columns of W , often called loadings,

can also reveal important structural information. The celebrated Principal Component Analysis

(PCA), for instance, follows from a special case of matrix factorization, namely the singular value

decomposition. Such types of matrix factorization are known to always exist. And, what is more, we

have efficient algorithms to compute them.

But PCA is not perfect. For instance, it requires that the factors (columns of V ) must be orthogonal

to each other. And, more often than not, this seems like an artificial constraint that forces factors to

become dense vectors whose entries are floating point numbers with both positive and negative signs.

This, in turn, makes it extremely difficult to interpret PCA factors. In Refs. [KT21, KT19], we develop

the theoretical foundation of binary component decompositions (BCD): B = SW T and the entries of

S are constrained to take values in the binary set {±1} (or {0,1}). This matrix factorization model

is appropriate when the underlying factors (columns of S) are meant to reflect an exclusive choice.

Concrete examples are ‘yes’ and ‘no’ in survey data, ‘like’ and ‘dislike’ in collaborative filtering,

‘active’ and ‘inactive’ in genomics, etc.

Our research answers fundamental questions about existence and uniqueness of BCDs. Moreover,

we also develop a tractable factorization algorithm that is guaranteed to succeed under a mild deter-

ministic condition. This is remarkable, because the problem of computing BCDs looks like a daunting

combinatorial optimization problem. Most structured matrix factorization problems are, in fact, NP

hard in general.

https://arxiv.org/abs/1907.13603
https://arxiv.org/abs/1907.13603
https://arxiv.org/abs/1907.13602




Chapter 3

Efficient quantum-to-classical converters
or: Predicting many properties of a quantum system from very few measurements

Abstract

Predicting the properties of complex, large-scale quantum systems is essential for developing quantum

technologies. We present an efficient method for constructing an approximate classical description

of a quantum state using very few measurements of the state. This description, called a ‘classical

shadow’, can be used to predict many different properties; order log(M) measurements suffice to

accurately predict M different functions of the state with high success probability. The number of

measurements is independent of the system size and saturates information-theoretic lower bounds.

Moreover, target properties to predict can be selected after the measurements are completed. We

support our theoretical findings with extensive numerical experiments. We apply classical shadows to

predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values

of local observables and the energy variance of many-body local Hamiltonians. The numerical results

highlight the advantages of classical shadows relative to previously known methods.
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Making predictions based on empirical observations is a 
central topic in statistical learning theory and is at the 
heart of many scientific disciplines, including quantum 

physics. For this latter field, predictive tasks, such as estimating 
target fidelities, verifying entanglement and measuring correla-
tions, are essential for building, calibrating and controlling quan-
tum systems. Recent advances in the size of quantum platforms1 
have pushed traditional prediction techniques—like quantum state 
tomography—to the limit of their capabilities. This is mainly due 
to the curse of dimensionality: the number of parameters needed 
to describe a quantum system scales exponentially with the num-
ber of its constituents. Moreover, these parameters cannot be 
accessed directly, but must be estimated by measuring the sys-
tem. An informative quantum-mechanical measurement is both 
destructive (wavefunction collapse) and yields only probabilistic 
outcomes (Born’s rule). Hence, many identically prepared samples 
are required to estimate accurately even a single parameter of the 
underlying quantum state. Furthermore, all of these measurement 
outcomes must be processed and stored in memory for subsequent 
prediction of relevant features. In summary, reconstructing a full 
description of a quantum system with n constituents (for example, 
qubits) necessitates a number of measurement repetitions exponen-
tial in n, as well as an exponential amount of classical memory and 
computing power.

Several approaches have been proposed to overcome this funda-
mental scaling problem. These include matrix product state (MPS) 
tomography2 and neural network tomography3,4. Both require only 
a polynomial number of samples, provided that the underlying state 
has suitable properties. However, for general quantum systems, 
these techniques still require an exponential number of samples. See 
Supplementary Section 3 for details.

Pioneering a conceptually very different line of research, 
Aaronson5 pointed out that demanding full classical descriptions of 
quantum systems may be excessive for many concrete tasks. Instead 
it is often sufficient to accurately predict certain properties of the 
quantum system. In quantum mechanics, interesting properties are 

often linear functions of the underlying density matrix ρ, such as the 
expectation values {oi} of a set of observables {Oi}:

oiðρÞ ¼ traceðOiρÞ 1≤ i≤M ð1Þ

The fidelity with a pure target state, entanglement witnesses and 
the probability distribution governing the possible outcomes of a 
measurement are all examples that fit this framework. A nonlinear 
function of ρ, such as entanglement entropy, may also be of inter-
est. Aaronson coined the term5,6 ‘shadow tomography’ for the task 
of predicting properties without necessarily fully characterizing the 
quantum state, and he showed that a polynomial number of state 
copies already suffice to predict an exponential number of target 
functions. Although very efficient in terms of samples, Aaronson’s 
procedure is very demanding in terms of quantum hardware; a con-
crete implementation of the proposed protocol requires exponen-
tially long quantum circuits that act collectively on all the copies of 
the unknown state stored in a quantum memory.

In this Article, we combine the mindset of shadow tomography5 
(predict target functions, not the full state) with recent insights from 
quantum state tomography7 (rigorous statistical convergence guar-
antees) and the stabilizer formalism8 (efficient implementation). 
The result is a highly efficient protocol that learns a minimal classi-
cal sketch Sρ—the classical shadow—of an unknown quantum state 
ρ that can be used to predict arbitrary linear function values (equa-
tion (1)) by a simple median-of-means protocol. A classical shadow 
is created by repeatedly performing a simple procedure: apply a 
unitary transformation ρ ↦ UρU†, and then measure all the qubits 
in the computational basis. The number of times this procedure is 
repeated is called the ‘size’ of the classical shadow. The transfor-
mation U is randomly selected from an ensemble of unitaries, and 
different ensembles lead to different versions of the procedure that 
have characteristic strengths and weaknesses. In a practical scheme, 
each ensemble unitary should be realizable as an efficient quan-
tum circuit. We consider random n-qubit Clifford circuits and ten-
sor products of random single-qubit Clifford circuits as important  
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special cases. These two procedures turn out to complement each 
other nicely. Figure 1 provides a visualization and a list of important 
properties that can be predicted efficiently.

Our main theoretical contribution equips this procedure with 
rigorous performance guarantees. Classical shadows with size of 
order log ðMÞ

I
 suffice to predict M target functions in equation (1) 

simultaneously. Most importantly, the actual system size (number of 
qubits) does not enter directly. Instead, the number of measurement 
repetitions N is determined by a (squared) norm k Oik2shadow

I
. This 

norm depends on the target functions and the particular measure-
ment procedure used to produce the classical shadow. For example, 
random n-qubit Clifford circuits lead to the Hilbert–Schmidt norm. 
On the other hand, random single-qubit Clifford circuits produce a 
norm that scales exponentially in the locality of target functions, but 
is independent of system size. The resulting prediction technique 
is applicable to current laboratory experiments and facilitates the 
efficient prediction of few-body properties, such as two-point cor-
relation functions, entanglement entropy of small subsystems and 
expectation values of local observables.

In some cases, this scaling may seem unfavourable. However, 
we rigorously prove that this is not a flaw of the method, but an 
unavoidable limitation rooted in quantum information theory. By 
relating the prediction task to a communication task9, we establish 
fundamental lower bounds highlighting that classical shadows are 
(asymptotically) optimal.

We support our theoretical findings by conducting numerical 
simulations for predicting various physically relevant properties 
over a wide range of system sizes. These include quantum fidel-
ity, two-point correlation functions, entanglement entropy and 
local observables. We confirm that prediction via classical shadows 
scales favourably and improves on powerful existing techniques—
such as machine learning—in a variety of well-motivated test cases. 
An open-source release for predicting many properties from very 
few measurements is available at https://github.com/momohuang/
predicting-quantum-properties.

Procedure
Throughout this work we restrict attention to n-qubit systems and 
ρ is a fixed, but unknown, quantum state in d = 2n dimensions. To 
extract meaningful information, we repeatedly perform a simple 

measurement procedure: apply a random unitary to rotate the state 
(ρ ↦ UρU†) and perform a computational-basis measurement. The 
unitary U is selected randomly from a fixed ensemble. On receiving 
the n-bit measurement outcome b̂


E
2 0; 1f gn

I

, we store an (effi-

cient) classical description of Uy b̂

E

b̂
D U

I

 in classical memory. It is 

instructive to view the average (over both the choice of unitary and 
the outcome distribution) mapping from ρ to its classical snapshot 
Uy b̂


E

b̂
D U

I

 as a quantum channel:

E Uy b̂

E

b̂
D U

h i
¼ MðρÞ ) ρ ¼ E M�1 Uy b̂


E

b̂
D U

 h i
ð2Þ

This quantum channel M
I

 depends on the ensemble of (random) 
unitary transformations. Although the inverted channel M�1

I
 is not 

physical (it is not completely positive), we can still apply M�1

I
 to 

the (classically stored) measurement outcome Uy b̂

E

b̂
D U

I

 in a com-
pletely classical post-processing step. (M

I
 is invertible if the ensem-

ble of unitary transformations defines a tomographically complete 
set of measurements; see Supplementary Section 1.) In doing so, 
we produce a single classical snapshot ρ̂ ¼ M�1 Uy b̂


E

b̂
D U

 

I

 of 
the unknown state ρ from a single measurement. By construction, 
this snapshot exactly reproduces the underlying state in expecta-
tion (over both unitaries and measurement outcomes): E½ρ̂ ¼ ρ

I
. 

Repeating this procedure N times results in an array of N indepen-
dent, classical snapshots of ρ:

Sðρ;NÞ ¼ ρ̂1 ¼ M�1 Uy
1 b̂1


E
b̂1

D U1

 
; ¼ ;

n

ρ̂N¼ M�1 Uy
N b̂N


E
b̂N

D UN

 o ð3Þ

We call this array the classical shadow of ρ. Classical shadows of 
sufficient size N are expressive enough to predict many properties of 
the unknown quantum state efficiently. To avoid outlier corruption, 
we split the classical shadow into equally sized chunks and con-
struct several, independent sample mean estimators. Subsequently,  
we predict linear function values (1) via median of means  
estimation10,11. This procedure is summarized in Algorithm 1. For many  

Measurements

Few repetitions

Quantum system

Possible properties

Data acquisition phase Prediction phase

Predicting ...U
nitary

E
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Entanglement
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Hamiltonian

Entanglement
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Fig. 1 | an illustration for constructing a classical representation, the classical shadow, of a quantum system from randomized measurements. In the 
data acquisition phase, we perform a random unitary evolution and measurements on independent copies of an n-qubit system to obtain a classical 
representation of the quantum system—the classical shadow. Such classical shadows facilitate accurate prediction of a large number of different 
properties using a simple median-of-means protocol.
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physically relevant properties Oi and measurement channels M
I

, 
Algorithm 1 can be carried out very efficiently without explicitly 
constructing the large matrix ρ̂i

I
.

Median of means prediction with classical shadows can be 
defined for any distribution of random unitary transformations. 
Two prominent examples are (1) random n-qubit Clifford circuits 
and (2) tensor products of random single-qubit Clifford circuits. 
Example (1) results in a clean and powerful theory, but also practi-
cal drawbacks, because n2=log ðnÞ

I
 entangling gates are needed to  

sample from n-qubit Clifford unitaries. The corresponding inverted 
quantum channel is M�1

n ðXÞ ¼ ð2n þ 1ÞX � I
I

. Example (2) is 
equivalent to measuring each qubit independently in a random 
Pauli basis. Such measurements can be routinely carried out in 
many experimental platforms. The corresponding inverted quan-
tum channel is M�1

P ¼ Nn
i¼1M�1

1
I

. We refer to examples (1)/(2) as 
random Clifford/Pauli measurements, respectively. In both cases, 
the resulting classical shadow can be stored efficiently in a classical 
memory using the stabilizer formalism.

Algorithm 1. Median of means prediction based on a classical 
shadow S(ρ, N). 

1 function LinearPredictions(O1, …, OM, S(ρ; N), K)

2 Import Sðρ;NÞ ¼ ρ̂1; ¼ ; ρ̂N½ 
I

 ⊳ Load classical shadow

3 Split the shadow into K equally-sized parts and set ⊳ Construct K 
estimators of ρ
  ρ̂ðkÞ ¼ 1

bN=Kc
PkbN=Kc

l¼ðk�1ÞbN=Kcþ1 ρ̂l
I4  for i = 1 to M do

5 Output ôiðN; KÞ ¼ median tr Oiρ̂ð1Þ

 
; ¼ ; tr Oiρ̂ðKÞ

 n o
:

I

 ⊳ Median of means 
estimation

Rigorous performance guarantees
Theorem 1 (informal version). Classical shadows of size N suffice to 
predict M arbitrary linear target functions trðO1ρÞ; ¼ ; trðOMρÞ

I
 up 

to additive error ϵ given that N≥ ðorderÞ log ðMÞmaxijjOijj2shadow=ϵ2
I

. 
The definition of the norm ∣∣Oi∣∣shadow depends on the ensemble of uni-
tary transformations used to create the classical shadow.

We refer to Supplementary Section 1 for background, a detailed 
statement and proofs. Theorem 1 is most powerful when the lin-
ear functions have a bounded norm that is independent of system 
size. In this case, classical shadows allow for predicting a large 
number of properties from only a logarithmic number of quantum 
measurements.

The norm ∣∣Oi∣∣shadow in Theorem 1 plays an important role in 
defining the space of linear functions that can be predicted efficiently. 
For random Clifford measurements, kOk2shadow

I
 is closely related to 

the Hilbert–Schmidt norm trðO2Þ
I

. As a result, a large collection of 
(global) observables with a bounded Hilbert–Schmidt norm can be 
predicted efficiently. For random Pauli measurements, the norm 
scales exponentially in the locality of the observable, not the actual 
number of qubits. For an observable Oi that acts non-trivially on 
(at most) k qubits, jjOijj2shadow≤4kjjOijj21

I
, where ∣∣ ⋅ ∣∣∞ denotes the 

operator norm. (This scaling can be further improved to 3k if Oi is 
a tensor product of k single-qubit observables.) This guarantees the 
accurate prediction of many local observables from a much smaller 
number of measurements.

illustrative example applications
Quantum fidelity estimation. Suppose we wish to certify that an 
experimental device prepares a desired n-qubit state. Typically, 
this target state ψj i ψh j

I
 is pure and highly structured, for example, 

a Greenberger–Horne–Zeilinger (GHZ) state12 for quantum com-
munication protocols or a toric code ground state13 for fault-tolerant 

quantum computation. Theorem 1 asserts that a classical shadow 
(Clifford measurements) of dimension-independent size suffices to 
accurately predict the fidelity of any state in the lab with any pure 
target state. This improves on the best existing result on direct fidel-
ity estimation14 which requires O(2n/ϵ4) samples in the worst case. 
Moreover, a classical shadow of polynomial size allows for estimat-
ing an exponential number of (pure) target fidelities all at once.

Entanglement verification. Fidelities with pure target states can  
also serve as (bipartite) entanglement witnesses15. For many (but  
not all16) bipartite entangled states ρ, there exists a constant α and  
an observable O ¼ ψj i ψh j

I
 such that trðOρÞ>α≥ trðOρsÞ

I
, for all 

(bipartite) separable states ρs. Establishing trðOρÞ>α
I

 verifies the  
existence of entanglement in the state ρ. Any O ¼ ψj i ψh j

I
 that  

satisfies the above condition is known as an entanglement witness 
for the state ρ. Classical shadows (Clifford measurements) of loga-
rithmic size allow for checking a large number of potential entan-
glement witnesses simultaneously.

Predicting expectation values of local observables. Many 
near-term applications of quantum devices rely on repeatedly esti-
mating a large number of local observables. For example, low-energy 
eigenstates of a many-body Hamiltonian may be prepared and stud-
ied using a variational method, in which the Hamiltonian, a sum of 
local terms, is measured many times. Classical shadows constructed 
from a logarithmic number of random Pauli measurements can effi-
ciently estimate polynomially many such local observables. Because 
only single-qubit Pauli measurements suffice, this measurement 
procedure is highly efficient. Potential applications include quan-
tum chemistry17 and lattice gauge theory18.

Predicting expectation values of global observables (non-example). 
Classical shadows are not without limitations. In our examples, the 
size of classical shadows must either scale with trðO2

i Þ
I

 (Clifford mea-
surements) or must scale exponentially in the locality of Oi (Pauli 
measurements). Both quantities can simultaneously become expo-
nentially large for non-local observables with large Hilbert–Schmidt 
norm. A concrete example is the Pauli expectation value of a spin 
chain: hPi1      Piniρ ¼ tr O1ρð Þ

I
, where trðO2

1Þ ¼ 2n

I
 and k = n 

(non-local observable). In this case, classical shadows of exponential 
size may be required to accurately predict a single expectation value. 
In contrast, a direct spin measurement achieves the same accuracy 
with only of order 1/ϵ2 copies of the state ρ.

Matching information-theoretic lower bounds
The non-example above raises an important question: does the scal-
ing of the required number of measurements with Hilbert–Schmidt 
norm or with the locality of observables arise from a fundamen-
tal limitation, or is it merely an artefact of prediction with classical 
shadows? A rigorous analysis reveals that this scaling is no mere 
artefact; rather, it stems from information-theoretic reasons.
Theorem 2 (informal version). Any procedure based on single-copy 
measurements, that can predict any M linear functions trðOiρÞ

I
 up to 

additive error ϵ, requires at least (order) log ðMÞ maxikOik2shadow=ϵ2
I

 
measurements.

Here, jjOijj2shadow
I

 could be taken as the Hilbert–Schmidt norm 
trðO2

i Þ
I

 or as a function scaling exponentially in the locality of Oi. 
The proof results from embedding the abstract prediction proce-
dure into a communication protocol. Quantum information theory 
imposes fundamental restrictions on any quantum communica-
tion protocol and allows us to deduce stringent lower bounds. See 
Supplementary Sections 7 and 8 for details and proofs.

The two main technical results complement each other nicely. 
Theorem 1 equips classical shadows with a constructive performance 
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guarantee: an order of log ðMÞ maxikOik2shadow=ϵ2
I

 single-copy  
measurements suffice to accurately predict an arbitrary collection of 
M target functions. Theorem 2 highlights that this number of mea-
surements is unavoidable in general.

Predicting nonlinear functions
The classical shadow Sðρ;NÞ ¼ ρ̂1; ¼ ; ρ̂Nf g

I
 of the unknown quan-

tum state ρ may also be used to predict nonlinear functions f(ρ). We 
illustrate this with a quadratic function f ðρÞ ¼ trðOρ ρÞ

I
, where O 

acts on two copies of the state. Because ρ̂i
I
 is equal to the quantum 

state ρ in expectation, one could predict trðOρ ρÞ
I

 using two inde-
pendent snapshots ρ̂i; ρ̂j; i≠j

I
. Because of independence, trðOρ̂i  ρ̂jÞ

I
 

correctly predicts the quadratic function in expectation:
EtrðOρ̂i  ρ̂jÞ ¼ trðOEρ̂i  Eρ̂jÞ ¼ trðOρ ρÞ ð4Þ

To reduce the prediction error, we use N independent snapshots 
and symmetrize over all possible pairs: 1

NðN�1Þ
P

i≠jtrðOρ̂i  ρ̂jÞ
I

. 
We then repeat this procedure several times and form their median 
to further reduce the likelihood of outlier corruption (similar to 
median of means). Rigorous performance guarantees are presented 
in Supplementary Section 1.C. This approach readily generalizes to 
higher-order polynomials using U-statistics19.

One particularly interesting nonlinear function is the 
second-order Rényi entropy, �log ðtrðρ2AÞÞ

I
, where A is a subsystem 

of the n-qubit quantum system. We can rewrite the argument in the 
log as trðρ2AÞ ¼ tr SAρ ρð Þ

I
, where SA is the local swap operator of 

two copies of subsystem A, and use classical shadows to obtain very 
accurate predictions. The required number of measurements scales 
exponentially in the size of subsystem A, but is independent of total 
system size. Probing this entanglement entropy is a useful task and 
a highly efficient specialized approach has been proposed in ref. 20.  
We compare this method of Brydges and colleagues to classical 
shadows in the numerical experiments.

For nonlinear functions, unlike linear ones, we have not derived 
an information-theoretic lower bound on the number of measure-
ments needed, although it may be possible to do so by generalizing 
our methods.

Numerical experiments
One of the key features of prediction with classical shadows is scal-
ability. The data acquisition phase is designed to be tractable for 
state-of-the-art platforms (Pauli measurements) and future quan-
tum computers (Clifford measurements), respectively. The result-
ing classical shadow can be stored efficiently in classical memory. 
For many important features—such as local observables or global 
features with efficient stabilizer decompositions—scalability, more-
over, extends to the computational cost associated with median of 
means prediction.

These design features allowed us to conduct numerical experi-
ments for a wide range of problems and system sizes (up to 160 
qubits). The computational bottleneck is not feature prediction with 
classical shadows, but generating synthetic data, that is, classically 
generating target states and simulating quantum measurements. 
Needless to say, this classical bottleneck does not occur in actual 
experiments. We then use this synthetic data to learn a classical 
representation of ρ and use this representation to predict various 
interesting properties.

Machine-learning-based approaches3,4 are among the most 
promising alternative methods that have applications in this regime, 
where the Hilbert space dimension is roughly comparable to the total 
number of silicon atoms on earth (2160 ≃ 1048). For example, a recent 
version of neural network quantum state tomography (NNQST) is 
a generative model that is based on a deep neural network trained 
on independent quantum measurement outcomes with local  

SIC/tetrahedral positive-operator valued measures (POVMs)21.  
In this section, we consider the task of learning a classical represen-
tation of an unknown quantum state, and using the representation 
to predict various properties, addressing the relative merit of classi-
cal shadows and alternative methods.

Predicting quantum fidelities via Clifford measurements. Here 
we focus on classical shadows based on random Clifford measure-
ments, which are designed to predict observables with a bounded 
Hilbert–Schmidt norm. When the observables have efficient repre-
sentations—such as efficient stabilizer decompositions—the com-
putational cost for performing median of means prediction can also 
be efficient. (The runtime of Algorithm 1 is dominated by the cost 
of computing quadratic functions b̂

D UOUy b̂

E

I

 in 2n dimensions. 
If O ¼ ψj i ψh j

I
 is a stabilizer state, the Gottesman–Knill theorem 

allows for evaluation in Oðn2Þ
I

-time.) An important example is the 
quantum fidelity with a target state. In ref. 3, the viability of NNQST 
is demonstrated by considering GHZ states with a varying number 
of qubits n. Numerical experiments highlight that the number of 
measurement repetitions (size of the training data) to learn a neu-
ral network model of the GHZ state that achieves a target fidelity 
of 0.99 scales linearly in n. We have also implemented NNQST for 
GHZ states and compared it to median of means prediction with 
classical shadows. Figure 2a confirms the linear scaling of NNQST 
and the assertion of Theorem 1: classical shadows of constant size 
suffice to accurately estimate GHZ target fidelities, regardless of the 
actual system size. In addition, we have also tested the ability of both 
approaches to detect potential state preparation errors. More pre-
cisely, we consider a scenario where the GHZ source introduces a 
phase error with probability p ∈ [0, 1]:

ρp ¼ ð1� pÞ ψþ
GHZðnÞ

 
ψþ
GHZðnÞ

 þ p ψ�
GHZðnÞ

 
ψ�
GHZðnÞ

 ;

ψ ±
GHZðnÞ

 
¼ 1ffiffi

2
p 0j in ± 1j in� 

ð5Þ
We learn a classical representation of the GHZ source and sub-
sequently predict the fidelity with the pure GHZ state. Figure 2b 
highlights that the classical shadow prediction accurately tracks 
the decrease in target fidelity as the error parameter p increases. 
NNQST, in contrast, seems to consistently overestimate this tar-
get fidelity. In the extreme case (p = 1), the true underlying state 
is completely orthogonal to the target state, but NNQST nonethe-
less reports fidelities close to one. This shortcoming arises because 
the POVM-based machine-learning approach can only efficiently 
estimate an upper bound on the true quantum fidelity efficiently. 
To estimate the actual fidelity, an exceedingly large number of 
measurements is needed. Similar experiments are described in 
Supplementary Section 2, where we focus on toric code ground 
states and entanglement witnesses, respectively.

Predicting two-point correlation and subsystem entanglement 
entropy (Pauli measurements). Classical shadows based on ran-
dom Clifford measurements excel at predicting quantum fidelities. 
However, random Clifford measurements can be challenging to 
implement in practice, because many entangling gates are needed 
to implement general Clifford circuits. Next we consider classical 
shadows based on random local Pauli measurements, which are eas-
ier to perform experimentally. The subsystem properties can be pre-
dicted efficiently by constructing the reduced density matrix from 
the classical shadow. Therefore, the computational complexity scales 
exponentially only in the subsystem size, rather than the size of the 
entire system. Our numerical experiments confirm that classical 
shadows obtained using random Pauli measurements excel at pre-
dicting few-body properties of a quantum state, such as two-point 
correlation functions and subsystem entanglement entropy.
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Two-point correlation functions. NNQST has been shown to pre-
dict two-point correlation functions effectively3. Here, we com-
pare classical shadows with NNQST for two physically motivated 
test cases: ground states of the antiferromagnetic transverse field 
Ising model in one dimension (TFIM) and the antiferromagnetic 
Heisenberg model in two dimensions. The Hamiltonian for TFIM 
is H ¼ J

P
iσ

Z
i σ

Z
iþ1 þ h

P
iσ

X
i

I
, where J > 0, and we consider a chain 

of 50 lattice sites. The critical point occurs at h = J and exhibits 
power-law decay of correlations rather than exponential decay. 
The Hamiltonian for the two-dimensional (2D) Heisenberg model 
is H ¼ J

P
hi;ji σ

!
i  σ!j

I
, where J > 0, and we consider an 8 × 8 trian-

gular lattice. We follow the approach in ref. 3, where the ground 
state is approximated by a tensor network found using the density 
matrix renormalization group (DMRG). Random Pauli measure-
ments on the ground state may then be simulated using this tensor 
network. The two methods are compared in Fig. 3. In Fig. 3a,b, we 
can see that both the classical shadow (with Pauli measurements) 
and NNQST perform well at predicting two-point correlations. 
However, NNQST has a larger error for the 2D Heisenberg model; 
note that, for larger separations (the lower right corner of the sur-
face plot), NNQST produces some fictitious oscillations that are not 
visible in the results from DMRG and classical shadows. The two 
approaches use the same quantum measurement data; the only dif-
ference is the classical post-processing. In Fig. 3c we compare the 
cost of this classical post-processing, finding roughly a 104 times 
speed-up in classical processing time using the classical shadow 
instead of NNQST.

Subsystem entanglement entropies. An important nonlinear property 
that can be predicted with classical shadows is subsystem entangle-
ment entropy. The required number of measurements scales expo-
nentially in subsystem size, but is independent of the total number 
of qubits. Moreover, these measurements can be used to predict 
many subsystem entanglement entropies at once. This problem has 
also been studied extensively in ref. 20, where a specialized approach 
(which we refer to here as the ‘Brydges et al. protocol’) was designed 
to efficiently estimate second-order Rényi entanglement entropies 
using random local measurements. In ref. 20, a random unitary rota-
tion is reused several times. Predictions using classical shadows 
could also be slightly modified to adapt to this scenario. Results 
from our numerical experiments are shown in Fig. 4. In Fig. 4a, we 

predict the entanglement entropy for all subsystems of size ≤2 from 
only 2,500 measurements of the approximate ground state of the 
disordered Heisenberg model in one dimension. This is a prototypi-
cal model for studying many-body localization22. The ground state 
is approximated by a set of singlet states f 1ffiffi

2
p ð 01j i � 10j iÞg
I

 found 
using the strong-disorder renormalization group23,24. Both the clas-
sical shadow protocol and the Brydges et al. method use random 
single-qubit rotations and basis measurements to find a classical 
representation of the quantum state; the only difference between 
the methods is in the classical post-processing. For these small sub-
systems, we find that the prediction error of the classical shadow 
is smaller than the error of the Brydges et al. protocol. In Fig. 4b, 
we consider predicting the entanglement entropy in a GHZ state 
for system sizes ranging from n = 4 to n = 10 qubits. We focus on 
the entanglement entropy of the subsystem with system size n/2 on 
the left side. Note that this entanglement entropy is equal to one bit 
for any system size n. To achieve an error of 0.05, classical shad-
ows require several times fewer measurements and the discrepancy 
increases as we require smaller error.

Application to quantum simulation of the lattice Schwinger 
model (Pauli measurements). Simulations of quantum field theory 
using quantum computers may someday advance our understanding 
of fundamental particle physics. Although high-impact discoveries 
may still be a way off, notable results have already been achieved in 
studies of 1D lattice gauge theories using quantum platforms.

For example, in ref. 18, a 20-qubit trapped ion analogue quan-
tum simulator was used to prepare low-energy eigenstates of the 
lattice Schwinger model (1D quantum electrodynamics). The 
authors prepared a family of quantum states f ψðθÞj ig

I
, where θ is 

a variational parameter, and computed the variance of the energy 
hðĤ � hĤiθÞ

2iθ
I

 for each value of θ. Here, Ĥ
I
 is the Hamiltonian of 

the model, and hÔiθ ¼ ψðθÞh jÔ ψðθÞj i
I

 is the expectation value of 
the operator Ô

I
 in the state ψðθÞj i

I
. Because energy eigenstates, and 

only energy eigenstates, have vanishing energy dispersion, adjusting 
θ to minimize the variance of energy prepares an energy eigenstate.

After solving the Gauss law constraint to eliminate the gauge 
fields, the Hamiltonian Ĥ

I
 of the Schwinger model is 2-local, though 

not geometrically local in one dimension. Hence the quantity 
hðĤ � hĤiθÞ

2iθ
I

 is a sum of expectation values of 4-local observ-
ables, which can be measured efficiently using a classical shadow 
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Fig. 2 | Predicting quantum fidelities using classical shadows (clifford measurements) and NNQst. a, Number of measurements required to identify an 
n-qubit GHZ state with 0.99 fidelity. The shaded regions show the s.d. of the needed number of experiments over 10 independent runs. The dashed lines 
are the linear regression lines for the number of experiments under different system sizes. b, estimated fidelity between a perfect GHZ target state and a 
noisy preparation, where Z errors can occur with probability p ∈ [0, 1], under 6 × 104 experiments. The dotted line represents the true fidelity as a function 
of p. NNQST can only estimate an upper bound on quantum fidelity efficiently, so we consider this upper bound for NNQST and use quantum fidelity for 
the classical shadow.
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derived from random Pauli measurements. This is illustrated in 
Fig. 5a. Figure 5b compares the performance of classical shadows  
to the measurement scheme for 4-local observables designed in ref. 18,  
and also to a recent method25 for measuring local observables, as 
well as the standard approach that directly measures all observables 
independently.

The results show, for the methods we considered, the number 
of copies of the quantum state needed to measure the expectation 
value of all 4-local Pauli observables in hðĤ � hĤiθÞ

2iθ
I

 with an 
error equivalent to measuring each of these observables at least 100 
times. In ref. 18, such a relatively small number of measurements per 
local observable already yielded results comparable to theoretical 
predictions based on exact diagonalization. We find that the per-
formance of the classical shadow method is better than the method 
used in ref. 18 only for system size larger than 50 qubits, and may 
actually be worse for small system sizes. However, classical shadows 
provide a good prediction for any set of local observables, while the  

method of ref. 18 was hand-crafted for the particular task of estimating  
the variance of the energy in the Schwinger model.

To make a more apt comparison, we constructed a deterministic 
version of classical shadows, using a fixed set of measurements rather 
than random Pauli measurements, specifically adapted for the pur-
pose of estimating hðĤ � hĤiθÞ

2iθ
I

 in the lattice Schwinger model. 
This deterministic collection of Pauli measurements is obtained 
by a powerful technique called derandomization26,27. This proce-
dure simulates the classical shadow scheme based on randomized 
measurements and makes use of the rigorous performance bound 
we developed. When a coin is tossed in the randomized scheme to 
decide which measurement to perform next, the next measurement 
in the derandomized version is chosen to have the best possible  
performance bound for the rest of the protocol. It turns out that  
this derandomization of the classical shadow method can be carried  
out very efficiently (full details will appear in upcoming work). Not  
surprisingly, the derandomized version, also included in Fig. 5,  
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outperforms the randomized version by a considerable margin. We 
then find that the derandomized classical shadow method is sig-
nificantly more efficient than the other methods we considered, 
including the hand-crafted method from ref. 18. Finally, we empha-
size that the derandomization procedure is fully automated (see 
https://github.com/momohuang/predicting-quantum-properties 

for open-source code) and not problem-specific. It could be used 
for any prespecified set of local observables.

Outlook
A classical shadow is a succinct classical description of a quantum 
state, which can be extracted by performing reasonably simple 
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single-copy measurements on a reasonably small number of copies 
of the state. We have shown that, given its classical shadow, many 
properties of a quantum state can be accurately and efficiently pre-
dicted with a rigorous performance guarantee. In the case of clas-
sical shadows based on random Pauli measurements, our methods 
are feasible using current quantum platforms, and our numerical 
experiments indicate that many properties can be predicted more 
efficiently using classical shadows than by using other methods. We 
therefore anticipate that classical shadows will be useful in near-term 
experiments characterizing noise in quantum devices and exploring 
variational quantum algorithms for optimization, materials science 
and chemistry. Our results also suggest a variety of avenues for fur-
ther theoretical exploration. Can the classical shadow of a quantum 
state be updated efficiently as the state undergoes time evolution 
governed by a local Hamiltonian? Can we use classical shadows to 
predict properties of quantum channels rather than states? What 
are the applications of classical shadows based on other ensembles 
of unitary transformations, for example ensembles of shallow ran-
dom quantum circuits? More broadly, by mapping many-particle 
quantum states to succinct classical data, classical shadows open 
opportunities for applying classical machine-learning methods to 
numerous challenging problems in quantum many-body phys-
ics4,28,29, such as the classification of quantum phases of matter and 
the simulation of strongly correlated quantum phenomena.

Online content
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ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
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1. GENERAL FRAMEWORK FOR CONSTRUCTING CLASSICAL SHADOWS

A. Data acquisition and classical shadows

Throughout this work we restrict attention to multi-qubit systems and ρ is a fixed, but unknown, quantum
state in d = 2n dimensions. We present a general-purpose strategy for predicting many properties of this
unknown state. To extract meaningful information about ρ, we need to perform a collection of measurements.

Definition S1 (measurement primitive). We can apply a restricted set of unitary evolutions ρ 7→ UρU†, where
U is chosen from an ensemble U . Subsequently, we can measure the rotated state in the computational basis
{|b〉 : b ∈ {0, 1}n}. Moreover, we assume that this collection is tomographically complete, i.e. for each σ 6= ρ
there exist U ∈ U and b such that 〈b|UσU†|b〉 6= 〈b|UρU†|b〉.

Based on this primitive, we repeatedly perform a simple randomized measurement procedure: randomly
rotate the state ρ 7→ UρU† and perform a computational basis measurement. Then, after the measurement, we
apply the inverse of U to the resulting computational basis state. This procedure collapses ρ to

U†|b̂〉〈b̂|U where Pr
[
b̂ = b

]
= 〈b|UρU†|b〉, b ∈ {0, 1}n (Born’s rule). (S1)

This random snapshot contains valuable information about ρ in expectation:

E
[
U†|b̂〉〈b̂|U

]
= EU∼U

∑

b∈{0,1}n
〈b|UρU†|b〉U†|b〉〈b|U =M(ρ). (S2)

For any unitary ensemble U , this relation describes a quantum channel ρ 7→ M(ρ). Tomographic completeness
ensures thatM — viewed as a linear map — has a unique inverseM−1 and we set

ρ̂ =M−1
(
U†|b̂〉〈b̂|U

)
(classical shadow). (S3)

The classical shadow is a modified post-measurement state that has unit trace, but need not be positive
semi-definite. However, it is designed to reproduce the underlying state ρ exactly in expectation: E [ρ̂] = ρ.
This classical shadow ρ̂ corresponds to the linear inversion (or least squares) estimator of ρ in the single-shot
limit. Linear inversion estimators have been used to perform full quantum state tomography [30, 58], where
an exponential number of measurements is needed. We wish to show that ρ̂ can predict many properties from
only very few measurements.

B. Predicting linear functions with classical shadows

Classical shadows are well suited to predict linear functions in the unknown state ρ:

oi = tr (Oiρ) 1 ≤ i ≤M. (S4)

To achieve this goal, we simply replace the (unknown) quantum state ρ by a classical shadow ρ̂. Since classical
shadows are random, this produces a random variable that yields the correct prediction in expectation:

ôi = tr (Oiρ̂) obeys E [ô] = tr (Oiρ) . (S5)

Fluctuations of ô around this desired expectation are controlled by the variance.

∗Electronic address: hsinyuan@caltech.edu
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Lemma S1. Fix O and set ô = tr (Oρ̂), where ρ̂ is a classical shadow (S3). Then

Var [ô] = E
[
(ô− E [ô])

2
]
≤
∥∥∥O − tr(O)

2n I
∥∥∥

2

shadow
. (S6)

The norm ‖·‖shadow only depends on the measurement primitive:

‖O‖shadow = max
σ: state

(
EU∼U

∑

b∈{0,1}n
〈b|UσU†|b〉〈b|UM−1 (O)U†|b〉2

)1/2

. (S7)

It is easy to check that ‖O‖shadow is nonnegative and homogeneous (‖0‖shadow = 0). After some work, one can
verify that this expression also obeys the triangle inequality, and so is indeed a norm.

Proof. Classical shadows have unit trace by construction (tr(ρ̂) = 1). This feature implies that the variance
only depends on the traceless part O0 = O − tr(O)

2n I of O, not O itself:

ô− E[ô] = tr (Oρ̂)− tr (Oρ) = tr (O0ρ̂)− tr (O0ρ) . (S8)

Moreover, it is easy to check that the inverse of M (S2) is self-adjoint (tr
(
XM−1(Y )

)
= tr

(
M−1(X)Y

)
for

any pair of matrices X,Y with compatible dimension). These two observations allow us to rewrite the variance
in the following fashion:

Var [ô] =E
[
(ô− Eô)2

]
= E

[
(tr(O0ρ̂))

2
]
− (tr (O0 E [ρ̂]))

2
= E

[
〈b̂|UM−1(O0)U†|b̂〉2

]
− (tr (O0ρ))

2
. (S9)

Classical shadows arise from mixing two types of randomness: (i) a (classical) random choice of unitary U ∼ U
and (ii) a random choice of computational basis state |b̂〉 that is governed by Born’s rule (S1). Inserting
the average over computational basis states produces a (squared) norm that closely resembles the advertised
expression, but does depend on the underlying state:

E〈b̂|UM−1(O0)U†|b̂〉2 = EU∼U
∑

b∈{0,1}n
〈b|UρU†|b〉〈b|UM−1(O0)U†|b〉2. (S10)

Maximizing over all possible states σ removes this implicit dependence and produces a universal upper bound
on the variance. Ignoring the subtraction of (tr (O0ρ))

2 (which can only make the bound tighter), we obtain
(S6).

Lemma S1 sets the stage for successful linear function estimation with classical shadows. A single classical
shadow (S3) correctly predicts any linear function oi = tr(Oiρ) in expectation. Convergence to this desired
target can be boosted by forming empirical averages of multiple independent shadow predictions. The empirical
mean is the canonical example for such a procedure. Construct N independent classical shadows ρ̂1, . . . , ρ̂N
and set

ôi(N, 1) =
1

N

N∑

j=1

tr (Oiρ̂j) . (S11)

Each summand is an independent random variable with correct expectation and variance bounded by Lemma S1.
Convergence to the expectation value tr(Oiρ) can be controlled by classical concentration arguments (e.g.
Chernoff or Hoeffding inequalities). In order to achieve a failure probability of (at most) δ, the number of
samples must scale like N = Var [ôi] /(δε

2). While the scaling in variance and approximation accuracy ε is
optimal, the dependence on 1/δ is particularly bad. Unfortunately, this feature of sample mean estimators
cannot be avoided without imposing additional assumptions (that do not apply to classical shadows). Median
of means [36, 47] is a conceptually simple trick that addresses this issue. Instead of using all samples to
construct a single empirical mean (S11), construct K independent sample means and form their median:

ôi(N,K) = median
{
ô

(1)
i (N, 1), . . . , ô

(K)
i (N, 1)

}
where ô

(k)
i = 1

N

Nk∑

j=N(k−1)+1

tr (Oiρ̂j) (S12)

for 1 ≤ k ≤ K. This estimation technique requires NK samples in total, but it is much more robust with
respect to outlier corruption. Indeed, |ô(N,K) − tr(Oρ)| > ε if and only if more than half of the empirical
means individually deviate by more than ε. The probability associated with such an undesirable event decreases
exponentially with the number of batches K. This results in an exponential improvement over sample mean
estimation in terms of failure probability. The main result of this work capitalizes on this improvement.
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Theorem S1. Fix a measurement primitive U , a collection O1, . . . , OM of 2n × 2n Hermitian matrices and
accuracy parameters ε, δ ∈ [0, 1]. Set

K = 2 log(2M/δ) and N =
34

ε2
max

1≤i≤M
‖Oi − tr(Oi)

2n I‖2shadow, (S13)

where ‖ · ‖shadow denotes the norm defined in Eq. (S7). Then, a collection of NK independent classical shadows
allow for accurately predicting all features via median of means prediction (S12):

|ôi(N,K)− tr (Oiρ)| ≤ ε for all 1 ≤ i ≤M (S14)

with probability at least 1− δ.

Proof. The claim follows from combining the variance estimates from Lemma S1 with a rigorous performance
guarantee for median of means estimation [36, 47]: Let X be a random variable with variance σ2. Then, K
independent sample means of size N = 34σ2/ε2 suffice to construct a median of means estimator µ̂(N,K) that
obeys Pr [|µ̂(N,K)− E [X]| ≥ ε] ≤ 2e−K/2 for all ε > 0. The parameters N and K are chosen such that this
general statement ensures Pr [|ôi(N,K)− tr (Oiρ)| ≥ ε] ≤ δ

M for all 1 ≤ i ≤ M . Apply a union bound over all
M failure probabilities to deduce the claim.

Remark S1 (Constants in Theorem S1). The numerical constants featuring in N and K result from a con-
servative (worst case) argument that is designed to be simple, not tight. We expect that the actual constants are
much smaller in practice.

Each classical shadow is the result of a single quantummeasurement on ρ. Viewed from this angle, Theorem S1
asserts that a total of

Ntot =O
(

log(M)

ε2
max

1≤i≤M

∥∥∥Oi − tr(Oi)
2n I

∥∥∥
2

shadow

)
(sample complexity) (S15)

measurement repetitions suffice to accurately predict a collection of M linear target functions tr(Oiρ).
Importantly, this sample complexity only scales logarithmically in the number of target functions M . More-

over, the problem dimension 2n does not feature explicitly. The sample complexity does, however, depend
on the measurement primitive via the norm ‖·‖shadow. This term reflects expressiveness and structure of the
measurement primitive in question. This subtle point is best illustrated with two concrete examples. We defer
technical derivations to subsequent sections and content ourselves with summarizing the important aspects
here.
Example 1: Random Clifford measurements Clifford circuits are generated by CNOT, Hadamard and Phase

gates and form the group Cl(2n). The “random global Clifford basis” measurement primitive — U = Cl(2n) (en-
dowed with uniform weights) — implies the following simple expression for classical shadows and the associated
norm ‖·‖shadow:

ρ̂ = (2n + 1)U†|b̂〉〈b̂|U − I and
∥∥∥O − tr(O)

2n I
∥∥∥

2

shadow
≤ 3tr(O2). (S16)

We refer to Supplementary Section 5B for details and proofs. Combined with Eq. (S15), this ensures that
O(log(M) maxi tr(O2

i )/ε
2) random global Clifford basis measurements suffice to accurately predict M linear

functions. This prediction technique is most powerful, when the target functions have constant Hilbert-Schmidt
norm. In this case, the sample rate is completely independent of the problem dimension 2n. Prominent examples
include estimating quantum fidelities (with pure states), or entanglement witnesses.
Example 2: Random Pauli measurements Although (global) Clifford circuits are believed to be much more

tractable than general quantum circuits, they still feature entangling gates, like CNOT. Such gates are chal-
lenging to implement reliably on today’s devices. The “random Pauli basis” measurement primitive takes
this serious drawback into account and assumes that one is only able to apply single-qubit Clifford gates,
i.e. U = U1 ⊗ · · · ⊗ Un ∼ U = Cl(2)⊗n (endowed with uniform weights). This is equivalent to assuming
that we can perform arbitrary Pauli (basis) measurements, i.e., measuring each qubit in the X-, Y - and Z-
basis, respectively. Such basis measurements decompose nicely into tensor products (U |b̂〉 =

⊗n
j=1 Uj |bj〉 for

b = (b1, . . . , bn) ∈ {0, 1}n) and respect locality. The associated classical shadows and the norm ‖·‖shadow inherit
these desirable features:

ρ̂ =

n⊗

j=1

(
3U†j |b̂j〉〈b̂j |Uj − I

)
and

∥∥∥O − tr(O)
2n

∥∥∥
2

shadow
≤ 4locality(O)‖O‖2∞. (S17)
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Here, locality(O) counts the number of qubits on which O acts nontrivially. We refer to Supplementary
Section 5C for details and proofs. Combined with Eq. (S15) this ensures that O

(
log(M)4k/ε2

)
local Clifford

(Pauli) basis measurements suffice to predict M bounded observables that are at most k-local. For observables
that are the tensor product of k single-qubit observables, the sample complexity can be further improved to
O
(
log(M)3k/ε2

)
. This prediction technique is most powerful when the target functions do respect some sort of

locality constraint. Prominent examples include k-point correlators, or individual terms in a local Hamiltonian.
Discussion and information-theoretic optimality These two examples complement each other nicely. Ran-

dom Clifford measurements excel at performing useful subroutines in quantum computing and communication
tasks, such as certifying (global) entanglement, which will be feasible using sufficiently advanced hardware.
Their practical utility, however, hinges on the ability to execute circuits with many entangling gates. Random
Pauli measurements, on the other hand, are much less demanding from a hardware perspective. In today’s
NISQ era, local Pauli operators can be accurately measured using available hardware platforms. While not
well-suited for predicting global features, Pauli measurements excel at making local predictions. Furthermore,
for both kinds of randomized measurements, linear prediction based on classical shadows saturates fundamental
lower bounds from information theory.

Theorem S2 (random Clifford measurements; informal version). Any procedure based on a fixed set of single-
copy measurements that can predict, with additive error ε, M arbitrary linear functions tr(Oiρ), requires at
least Ω(log(M) maxi tr(O2

i )/ε
2) copies of the state ρ.

Theorem S3 (random Pauli measurements; informal version). Any procedure based on a fixed set of single-
copy local measurements that can predict, with additive error ε, M arbitrary k-local linear functions tr(Oiρ),
requires at least Ω(log(M)3k/ε2) copies of the state ρ.

We refer to Supplementary Section 7 (Clifford) and 8 (Pauli) for further context, details and proofs. In the
random Pauli basis measurement setting, classical shadows provably saturate this lower bound only for tensor
product observables. For general k-local observables, there is a small discrepancy between 4k (upper bound)
and 3k (lower bound).

C. Predicting nonlinear functions with classical shadows

Feature prediction with classical shadows readily extends beyond the linear case. Here, we shall focus on
quadratic functions, but the procedure and analysis readily extend to higher order polynomials. Every quadratic
function in an unknown state ρ can be recast as a linear function acting on the tensor product ρ⊗ ρ:

ôi = tr (Oiρ⊗ ρ) 1 ≤ i ≤M. (S18)

An immediate generalization of linear feature prediction with classical shadows suggests the following procedure.
Take two independent snapshots ρ̂1, ρ̂2 of the unknown state ρ and set

ôi = tr (Oiρ̂1 ⊗ ρ̂2) such that Eôi = tr (OiEρ̂1 ⊗ Eρ̂2) = tr (Oiρ⊗ ρ) = oi. (S19)

This random variable is designed to yield the correct target function in expectation. Similar to linear function
prediction we can boost convergence to this desired target by forming empirical averages. To make the best of
use of N samples, we average over all N(N − 1) (distinct) pairs:

ôi(N, 1) =
1

N(N − 1)

∑

j 6=l
tr (Oiρ̂j ⊗ ρ̂l) . (S20)

This idea provides a systematic approach for constructing estimators for nonlinear (polynomial) functions.
Estimators of this form always yield the desired target in expectation. For context, we point out that the
estimator (S20) closely resembles the sample variance, while estimators of higher order polynomials are known
as U-statistics [33]. Fluctuations of ôi(N, 1) around its desired expectation are once more controlled by the
variance. U-statistics estimators are designed to minimize this variance and therefore considerably boost the
rate of convergence.

Lemma S2. Fix O and a sample size N . Then, the variance of the U-statistics estimator (S20) obeys

Var[ô(N, 1)] ≤ 2

N

(
Var[tr(Oρ̂1 ⊗ ρ)] + Var[tr(Oρ⊗ ρ̂1)] +

1

N
Var[tr(Oρ̂1 ⊗ ρ̂2)]

)
. (S21)
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We emphasize that this variance decreases with the number of samples N . This sets the stage for successful
quadratic function prediction with classical shadows. Similar to the linear case, we will not use all samples to
construct a single U-statistics estimator. Instead, we construct K of them and form their median:

ôi(N,K) =median
{
ô

(1)
i (N, 1), . . . , ô

(K)
i (N, 1)

}
, where

ô
(k)
i (N, 1) = 1

N(N−1)

∑

j 6=l
j,l∈{N(k−1)+1,...,Nk}

tr (Oiρ̂j ⊗ ρ̂l) for 1 ≤ k ≤ K. (S22)

This renders the entire estimation procedure more robust to outliers and exponentially suppresses failure prob-
abilities.

Theorem S4. Fix a measurement primitive U , a collection O1, . . . , OM of (quadratic) target functions and
accuracy parameters ε, δ ∈ [0, 1]. Set

K =2 log(2M/δ) and

N =
34

ε2
max

1≤i≤M
8×max

(
Var[tr(Oiρ⊗ ρ̂1)],Var[tr(Oiρ̂1 ⊗ ρ)],

√
Var[tr(Oiρ̂1 ⊗ ρ̂2)]

)
. (S23)

Then, a collection of NK independent classical shadows allow for accurately predicting all quadratic features
via the median of U-statistics estimators (S22):

|ôi(N,K)− tr (Oiρ⊗ ρ)| ≤ ε for all 1 ≤ i ≤M (S24)

with probability at least 1− δ.
Proof. The proof is similar to the argument for linear prediction. We combine the bound on the variance of
U-statistics estimators from Lemma S2 with a rigorous performance guarantee for median estimation [36, 47].
Let Z be a random variable with variance at most ε2/34. Then, setting µ̂ = median {Z1, . . . , Zk} produces an
estimator that obeys Pr [|µ̂− E [Z]| ≥ ε] ≤ 2e−K/2. The parameter N is chosen ensure that each ô(k)

i (N, 1) has
variance at most ε2/34. The parameter K is chosen such that each probability of failure is at most δ/M . The
advertised statement then follows from taking a union bound over all M target estimations.

Remark S2 (Constants in Theorem S4). The numerical constants featuring in N and K result from a con-
servative (worst case) argument that is designed to be simple, not tight. We expect that the actual constants are
much smaller in practice.

Theorem S4 is a general statement that provides upper bounds for the sample complexity associated with
predicting quadratic target functions:

Ntot = O
(

log(M)

ε2
max

1≤i≤M
max

(
Var[tr(Oiρ⊗ ρ̂1)],Var[tr(Oiρ̂1 ⊗ ρ)],

√
Var[tr(Oiρ̂1 ⊗ ρ̂2)]

))
(S25)

independent randomized measurements suffice to accurately predict a collection ofM nonlinear target functions
tr(Oiρ⊗ρ). This sampling rate once more depends on the measurement primitive and it is instructive to consider
concrete examples.
Example 1: Random Pauli measurements We first discuss the practically more relvant example for today’s

NISQ era: classical shadows constructed from random single-qubit Pauli basis measurements. This measure-
ment primitive remains well-suited for predicting local quadratic features tr(Oρ ⊗ ρ). Suppose that O acts
nontrivially on k qubits in the first state copy and on k qubits in the second state copy. Thus, when viewed as
an observable for a 2n-qubit system, O is 2k-local. A technical argument shows that the maximum of the vari-
ances in Equation (S25) is bounded by 4k. We emphasize that this scaling is much better than the naive guess
42k – one of the key advantages of U-statistics. Hence we only need a total number of Ntot = O(log(M)4k/ε2)
random Pauli basis measurements to predict M quadratic functions tr(Oiρ⊗ ρ). An important concrete appli-
cation of this procedure is the prediction of subsystem Rényi-2 entanglement entropies.
Example 2: Random Clifford measurements Theorem S4 also applies to the global Clifford measurement

primitive. There, the maximum of the variances in Equation (S25) can be bounded by
√

9 + 6/2n tr(O2
i ) '

3 tr(O2
i ). Hence we only need a total number of Ntot = O(log(M) maxi tr(O2

i )/ε
2) random Clifford basis

measurements to predictM quadratic functions tr(Oiρ⊗ρ). While a clean extension of linear feature prediction
with Clifford basis measurements, the applicability of this result seems somewhat limited. Interesting global
quadratic features tend to have prohibitively large Hilbert-Schmidt norms. The purity tr(ρ2) provides an
instructive non-example. It can be written as tr (Sρ⊗ ρ), where S|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 denotes the swap
operator. Alas, tr(S2) = tr(I) = 2n which scales exponentially in the number of qubits. Nonetheless, quadratic
feature prediction with Clifford measurements is by no means useless. For instance, it can help provide statistical
a posteriori guarantees on the quality of linear feature prediction — for example, by estimating sample variances
to construct confidence intervals.
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(a) (b)

Supplementary Figure 1: Comparison between classical shadow and neural network tomography (NNQST); toric code.
(a) (Left): Number of measurements required for neural network tomography to identify a particular toric-code ground
state. We use classical fidelity for NNQST, which is an upper bound for quantum fidelity.
(b)(Right): Performance of classical shadows for the same problem. We use quantum fidelity for classical shadows. The
shaded regions are the standard deviation of the estimated fidelity over ten runs.

2. ADDITIONAL NUMERICAL EXPERIMENTS

In this section we report additional numerical experiments that demonstrate the viability of linear feature
prediction with classical shadows. We focus on the Clifford basis measurement primitive, i.e. applying a random
Clifford circuit to ρ and then measuring in the computational basis.

A. Direct fidelity estimation for the toric code ground state

In the main text, we have considered direct fidelity estimation for GHZ states and compared it with neural
network quantum state tomography (NNQST). While highly instructive from a theoretical perspective, GHZ
states comprised of 100 qubits are very fragile and challenging to implement in practice. To conduct experiments
for more physical target states, we consider Toric code ground states [18]. Not only are they the most prominent
example of a topological quantum error correcting code and thus highly relevant for quantum computing devices.
They also correspond to ground states of a Hamiltonian: H = −∑v Av −

∑
pBp, where Av and Bp denote

vertex- and plaquette operators1. The ground space of H is four-fold degenerate and we select the superposition
of all closed-loop configurations (|ψ〉 ∝∑S: closed loop |S〉) as a test state for both classical shadows and NNQST:
how many measurement repetitions are required to accurately identify this toric code ground state with high
fidelity? The results are shown in Supplementary Figure 1. Neural network tomography based on a deep
generative model seems to require a number of samples that scales unfavorably in the system size n (left). In
contrast, fidelity estimation with classical shadows is completely independent of the system size. The difficulty
of NNQST in learning 2D toric code may be related to some observed failures of deep learning [56] for learning
patterns with combinatorial structures. In Supplementary Section 4, we provide further evidence for potential
difficulties when using machine learning approaches to reconstruct some simple quantum states due to a well-
known computational hardness conjecture.

B. Witnesses for tripartite entanglement

Entanglement is at the heart of virtually all quantum communication and cryptography protocols and an
important resource for quantum technologies in general. This renders the task of detecting entanglement

1 Av is the product of four Pauli-X operators around a vertex v, while Bp is the product of four Pauli-Z operators around the
plaquette p.
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Supplementary Figure 2: Detection of GHZ-type entanglement for 3-qubit states.
(a) (Left): Schematic illustration of 3-partite entanglement. Entanglement witnesses are linear functions that separate
part of one entanglement class from all other classes.
(b) (Right): Number of entanglement witnesses vs. number of experiments required to accurately estimate all of them.
The dashed lines represent the expected number of (random) entanglement witnesses required to detect genuine three-
partite entanglement and GHZ-type entanglement in a randomly rotated GHZ state. The shaded region is the standard
deviation of the required number of experiments over ten independent repetitions of the entire setup.

important both in theory and practice [24, 31]. While bipartite entanglement is comparatively well-understood,
multi-partite entanglement has a much more involved structure. Already for n = 3 qubits, there is a variety of
inequivalent entanglement classes. These include fully-separable, as well as bi-separable states, W -type states
and finally GHZ-type states. The relations between these classes are summarized in Supplementary Figure 2
and we refer to [4] for a complete characterization. Despite this increased complexity, entanglement witnesses
remain a simple and useful tool for testing which class a certain state ρ belongs to. However, any given
entanglement witness only provides a one-sided test – see Supplementary Figure 2 (left) for an illustration –
and it is often necessary to compute multiple witnesses for a definitive answer.

Classical shadows based on random Clifford measurements can considerably speed up this search: according to
Theorem S1 a classical shadow of moderate size allows for checking an entire list of fixed entanglement witnesses
simultaneously. Supplementary Figure 2 (right) underscores the economic advantage of such an approach over
measuring the individual witnesses directly. Directly measuring M different entanglement witnesses requires a
number of quantum measurements that scales (at least) linearly in M . In contrast, classical shadows get by
with log(M)-many measurements only.

More concretely, suppose that the state to be tested is a local, random unitary transformation of the GHZ
state. Then, this state is genuinely tripartitely entangled and moreover belongs to the GHZ class. The dashed
vertical lines in Supplementary Figure 2 (right) denote the expected number of (randomly selected) witnesses
required to detect genuine tripartite entanglement (first) and GHZ-type entanglement (later). From the ex-
periment, we can see that classical shadows achieve these thresholds with an exponentially smaller number of
samples than the naive direct method. Finally, classical shadows are based on random Clifford measurements
and do not depend on the structure of the concrete witness in question. In contrast, direct estimation crucially
depends on the concrete witness in question and may be considerably more difficult to implement.

3. RELATED WORK

General quantum state tomography The task of reconstructing a full classical description — the density
matrix ρ— of a d-dimensional quantum system from experimental data is one of the most fundamental problems
in quantum statistics, see e.g. [5, 7, 29, 34] and references therein. Sample-optimal protocols, i.e. estimation
techniques that get by with a minimal number of measurement repetitions, have only been developed recently.
Information-theoretic bounds assert that of order rank(ρ)d state copies are necessary to fully reconstruct ρ
[32]. Constructive protocols [32, 49] saturate this bound, but require entangled circuits and measurements that
act on all state copies simultaneously. More tractable single-copy measurement procedures require of order
rank(ρ)2d measurements [32]. This more stringent bound is saturated by low rank matrix recovery [22, 42, 43]
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and projected least squares estimation [30, 58].
These results highlight an exponential bottleneck for tomography protocols that work in full generality:

at least d = 2n copies of an unknown n-qubit state are necessary. This exponential scaling extends to the
computational cost associated with storing and processing the measurement data.
Matrix product state tomography Restricting attention to highly structured subsets of quantum states some-

times allows for overcoming the exponential bottleneck that plagues general tomography. Matrix product state
(MPS) tomography [16] is the most prominent example for such an approach. It only requires a polynomial
number of samples, provided that the underlying quantum state is well approximated by a MPS with low
bond dimension. In quantum many-body physics this assumption is often justifiable [45]. However, MPS rep-
resentations of general states have exponentially large bond dimension. In this case, MPS tomography offers
no advantage over general tomography. Similar ideas could also be extended to multi-scale entangled states
(MERA) tomography [44].
Neural network tomography Recently, machine learning has also been applied to the problem of predicting

features of a quantum systems. These approaches construct a classical representation of the quantum system
by means of a deep neural network that is trained by feeding in quantum measurement outcomes. Compared to
MPS tomography, neural network tomography may be more broadly applicable [13, 25, 59]. However, the actual
class of systems that can be efficiently represented, reconstructed and manipulated is still not well understood.
Compressed classical description of quantum states To circumvent the exponential scaling in representing

quantum states, Gosset and Smolin [26] have proposed a stabilizer sketching approach that compresses a
classical description of quantum states to an accurate sketch of subexponential size. This approach bears
some similarity with classical shadows based on random Clifford measurements. However, stabilizer sketching
requires a fully-characterized classical description of the state as an input. So, it still suffers from an exponential
scaling in the resources used in practice. Recently, Paini and Kalev [50] have proposed an approximate classical
description of a quantum state that can estimate any observable written as a sum of Pauli operators, with
a precision that depends on the number of samples and on a properly-defined semi-norm of the observable.
The procedure performs Haar-random single-qubit rotations followed by computational basis measurements on
each copy of the system. This is similar to classical shadows based on random Pauli measurements. In our
approach, the Haar-random single-qubit rotations [50] are replaced by random single-qubit Clifford rotations,
or – equivalently – measuring each qubit in a random Pauli basis. This simplification may be viewed as a
partial derandomization and works, because the (single-qubit) Clifford group forms a 3-design [41, 60, 62]. We
also employ median-of-means estimation to achieve a stronger concentration to the expected value.
Direct fidelity estimation Direct fidelity estimation is a procedure that allows for predicting a single pure

target fidelity 〈ψ|ρ|ψ〉 up to accuracy ε. The best-known technique is based on few Pauli measurements that
are selected randomly using importance sampling [17, 23]. The required number of samples depends on the
target: it can range from a dimension-independent order of 1/ε2 (if |ψ〉 is a stabilizer state) to roughly 2n/ε4

in the worst case.
Efficient estimation of local observables In quantum many-body physics, many interesting observables can

be decomposed into local constituents. This renders the task of accurately predicting many local observables
very important — both in theory and practice. A series of recent works [8, 14, 21, 37] propose different
measurement strategies to measure many local observables simultaneously. All of them focus on estimating
k-local Pauli observables up to accuracy ε. This would directly translate to an approximation error 2kε for
general k-local observables. For some measurement schemes, this general error bound seems unavoidable.
But, for certain strategies a careful analysis could lead to an improved performance. The two works [8, 14]
are based on properly analyzing the commutation relations between the k-local Pauli observables of interest.
Subsequently, one can group commuting observables together and measure them all at once. Different from
this more standardized strategy, [37] uses entangled Bell-basis measurements, and [21] is based on randomized
measurements to efficiently measure local observables. The prior earlier works [8, 14] have worse performance
compared to the more recent two [21, 37]. While the latter two procedures are seemingly different from prediction
with classical shadows (Pauli measurements), the sample complexities associated with all three approaches are
comparable. Derandomizing classical shadows, however, could considerably reduce the number of measurements
required. We will address such a substantial and practical improvement in upcoming work.
Shadow tomography Shadow tomography aims at simultaneously estimating the outcome probabilities as-

sociated with M 2-outcome measurements up to accuaracy ε: pi(ρ) = tr(Eiρ), where each Ei is a positive
semidefinite matrix with operator norm at most one [1, 3, 10]. This may be viewed as a generalization
of fidelity estimation. The best existing result is due to Aaronson and Rothblum [3]. They showed that
N = Õ

(
log(M)2 log(d)2/ε8

)
copies of the unknown state suffice to achieve this task 2. Broadly speaking,

2 The scaling symbol Õ suppresses logarithmic expressions in other problem-specific parameters.
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their protocol is based on performing gentle 2-outcome measurements one-by-one and subsequently (partially)
reversing the damage to the quantum state caused by the measurement. This task is achieved by explicit
quantum circuits of exponential size that act on all copies of the unknown state simultaneously. This rather
intricate procedure bypasses the no-go result advertised in Theorem 2 and results in a sampling rate that is
independent of the 2-outcome measurements in question — only their cardinality M matters.

4. DETAILS REGARDING NUMERICAL EXPERIMENTS

A. Predicting quantum fidelities

This numerical experiment considers classical shadows based on random Clifford measurements. We exploit
the Gottesman-Knill theorem for efficient classical computations. This well-known result states that Clifford
circuits can be simulated efficiently on classical computers; see also [2] for an improved classical algorithm. This
has allowed us to address rather large system sizes (more than 160 qubits). To test the performance of feature
prediction with classical shadows we first have to simulate the (quantum) data acquisition phase. We do this
by repeatedly executing the following (efficient) protocol:

1. Sample a Clifford unitary U from the Clifford group using the algorithm proposed in [39]. This Clifford
unitary is parameterized by (α, β, γ, δ, r, s) which fully characterize its action on Pauli operators:

UPXj U
† = (−1)rjΠn

i=1(PXi )αji(PZi )βji and UPZj U
† = (−1)sjΠn

i=1(PXi )γji(PZi )δji (S26)

for all j = 1, . . . , n. Here, PXj , PZj are the Pauli X, Z-operators acting on the j-th qubit, and
αji, βji, γji, δji, rj , sj ∈ {0, 1}.

2. Given a unitary U parameterized by (α, β, γ, δ, r, s), we can apply U on any stabilizer state by changing
the stabilizer generators and the destabilizers as defined in [2].

3. A computational basis measurement can be simulated using the standard algorithm provided in [2].

Although originally designed for pure target states |ψi〉〈ψi|, we can readily extend this strategy to mixed
states ρ =

∑
i pi|ψi〉〈ψi|. Operationally speaking, mixed states arise from sampling from a pure state ensemble.

This mixing process can be simulated efficiently on classical machines.
For neural network quantum state tomography, we use the open-source code provided by the authors [13].

The main challenge is generating training data, i.e. simulating measurement outcomes. For pure and noisy GHZ
states, we use the tetrahedral POVM [13]. For the toric code ground state, we use the Psi2 POVM (which is
a measurement in the computational (Z-) basis). Note that measuring in the Z-basis is not a tomographically
complete measurement, but we found machine learning models to perform better using Psi2. This is possibly
because the pattern is much more obvious (closed-loop configurations) and the figure of merit used in NNQST
is a classical fidelity.

A concrete algorithm for creating training data for pure GHZ states is included in the aforementioned open-
source implementation of [13]. It uses matrix product states to simulate quantum measurements efficiently.
The training data for noisy GHZ states is a slight modification of the existing code. With probability 1− p, we
sample a measurement outcome from the original state |ψ+

GHZ〉 = 1√
2
(|0〉⊗n + |1〉⊗n). And with probability p,

we sample a measurement outcome from |ψ−GHZ〉 = 1√
2
(|0〉⊗n − |1〉⊗n) (phase error). Since the figure of merit

is the fidelity with the pure GHZ state in both pure and noisy GHZ experiment, we reuse the implementation
provided in [13].

Creating training data for toric code is somewhat more involved. The goal is to sample a closed-loop
configuration on a 2D torus uniformly at random. This can again be done using classical simulations of
stabilizer states [2]. The main technical detail is to create a tableau that contains both the stabilizer and
the de-stabilizer for the state in question. The rich structure of the toric code renders this task rather easy.
The stabilizers are the X-stars and the Z-plaquettes, with two Z-strings over the two loops of the torus. The
de-stabilizer of each stabilizer is a Pauli-string that anticommutes with the stabilizer, but commutes with other
stabilizers and other de-stabilizers. The full set of stabilizers and de-stabilizers for the toric code can be seen
in Supplementary Figure 3.

B. Potential obstacles for learning certain quantum states

In our numerical studies, we have seen that neural network quantum state tomography based on deep gen-
erative models seems to have difficulty learning toric code ground states.
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Supplementary Figure 3: Stabilizers and de-stabilizers of the toric code that encodes |00〉.

Here, we take a closer look at this curious aspect and construct a simple class of quantum states where
efficient learning of the quantum state from the measurement data would violate a well-known computational
hardness conjecture. First of all, each computational (Z-) basis measurement of the toric code produces a
random bit-string. Most bits are sampled uniformly at random from {0, 1} and the remaining bits are binary
functions that only depend on these random bits. Consider a simple class of quantum states that mimic this
property. Given a ∈ {0, 1}n−1 and fa(x) =

∑
i aixi (mod 2), we define |a〉 = 1√

2n−1

∑
x∈{0,1}n−1 |x〉 ⊗ |fa(x)〉.

Such states can be created by preparing |+〉 on the first n− 1 qubits, |0〉 on the n-th qubit followed by CNOT
gates between i-th qubit and n-th qubit for every ai = 1. Measuring |a〉 in the computational (Z-) basis
is equivalent to sampling the first n − 1 bits x uniformly at random. The final bit is characterized by the
deterministic formula fa(x). Now, consider a (globally) depolarized version of this pure state:

ρa = Dη(|a〉〈a|) = (1− η)|a〉〈a|+ η
2n I⊗n for some η ∈ (0, 1). (S27)

One of the most widely used conjectures for building post-quantum cryptography is the hardness of learning
with error (LWE) [54]. LWE considers the task of learning a linear n-ary function f over a finite ring from
noisy data samples (x, f(x) + η), where x is sampled uniformly at random and η is some independent error.
An efficient learning algorithm for LWE will be able to break many post-quantum cryptographic protocals that
are believed to be hard even for quantum computers. The simplest example of LWE is called learning parity
with error, where f(x) =

∑
i aixi (mod 2) for x ∈ {0, 1}n and some unknown a ∈ {0, 1}n. Learning parity

with error is also conjectured to be computationally hard [6]. Since learning |a〉 from computational (Z-) basis
measurements on ρa is equivalent to learning parity with error, it is unlikely there will be a neural network
approach that can learn ρa efficiently.
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C. Predicting witnesses for tripartite entanglement

This numerical experiment considers classical shadows based on random Clifford measurements. The numer-
ical studies regarding entanglement witnesses are based locally rotated 3-qubit (n = 3) GHZ states:

|ψ〉 = UA ⊗ UB ⊗ UC |ψ+
GHZ〉 where UA, UB , UC are random single-qubit rotations. (S28)

For ρ = |ψ〉〈ψ|, we hope to verify the tripartite entanglement present in the system. To this end, we consider a
simple family of entanglement witnesses with compatible structure:

O := O(VA, VB , VC) = VA ⊗ VB ⊗ VC |ψ+
GHZ〉〈ψ+

GHZ|V †A ⊗ V †B ⊗ V †C . (S29)

The single-qubit unitaries VA, VB , VC parametrize different witnesses.
A complete characterization of entanglement in three-qubit systems can be found in Supplementary Figure 2.

The expectation value of an entanglement witness O(VA, VB , VC) in the tripartite state ρ can certify that
ρ belongs to a particular entanglement class. For example, it is known from the analysis in [4] that for
any state ρs with only bipartite entanglement, tr (Oρs) ≤ .5, while for any state ρs with at most W-type
entanglement, tr (Oρs) ≤ .75. Therefore verifying that tr (Oρ) > .5 certifies that ρ has tripartite entanglement,
while tr (Oρ) > .75 certifies that ρ has GHZ-type entanglement.

After choosing random unitaries UA, UB , UC to specify the GHZ-type state |ψ〉, we generate a list of random
VA, VB , VC to specify a set of potential entanglement witnesses for |ψ〉:

O1 = O(VA,1, VB,1, VC,1), . . . , OM = O(VA,M , VB,M , VC,M ). (S30)

If the randomly generated Oi = O(VA,i, VB,i, VC,i) satisfies tr(Oi |ψ〉〈ψ|) > 0.5, then Oi is an entanglement
witness for genuine tripartite entanglement, and if tr(Oi |ψ〉〈ψ|) > 0.75, then Oi is a witness for GHZ-type
entanglement. We can compute the expected number of random candidates we have to test to find an observable
O such that tr(O |ψ〉〈ψ|) > 0.5 or tr(O |ψ〉〈ψ|) > 0.75; these numbers are indicated as the dashed lines on the
right side of Supplementary Figure 2.

Given the list of randomly generated witness candidates O1, . . . , OM , we would like to predict tr(Oi|ψ〉〈ψ|)
for all 1 ≤ i ≤ M . The naive approach is to directly measure all observables (witnesses). We refer to this as
the direct measurement approach. For this approach, we consider the number of total experiments required
to estimate every tr(Oi|ψ〉〈ψ|) up to an error 0.1. Note that the number of required samples may vary from
witness to witness — it depends on the variance associated with the estimation. In the worst case, one would
need ≈ 100 measurements for each witness candidate.

Instead of this direct measurement approach, one could use classical shadows (Clifford measurements) to
predict all the observables (witnesses) O1, . . . , OM at once. Because, tr(O2

i ) = 1 for al 1 ≤ i ≤ M , the
shadow norm obeys ‖Oi‖2shadow ≤ 3 tr

(
O2
i

)
= 3, according to the analysis in Supplementary Section 1B. Hence

Theorem 1 shows that classical shadows can predict the expectation values of many candidate witnesses very
efficiently.

In the numerical experiment, we gradually increased the number of random Clifford measurements we use to
construct classical shadows until the classical shadows could accurately predict all tr(Oi |ψ〉〈ψ|) up to 0.1-error.
The results are shown in Supplementary Figure 2. Because the system size is small (n = 3 qubits), we simulate
the quantum experiments classically by storing and processing all 23 = 8 amplitudes. In practice, one should
use statistics, like sample variance estimation or the bootstrap [19], to determine confidence intervals and a
posteriori guarantees. Quadratic function prediction with classical shadows (Clifford measurements) can be
used to achieve this goal efficiently.

D. Predicting two-point correlation functions

Predicting two-point correlation function could be done efficiently using classical shadows based on random
Pauli measurements. To facilitate direct comparison, this numerical experiment is designed to reproduce one
of the core examples in in [13]. In particular, we use the same data, downloaded from https://github.com/
carrasqu/POVM_GENMODEL. The classical shadow (based on random Pauli basis measurements) replaces the
original machine learning based approach for predicting local observables. We use multi-core CPU for training
and making prediction with the machine learning model. The reported time is the total CPU time. Predicting
local observables O using the (Pauli) classical shadow can be done efficiently by creating the reduced density
matrix ρA, where A is the subsystem O acts on. The reduced density matrix ρA can be created by simply
neglecting the data for the rest of the system. Importantly, M−1(U†|b̂〉〈b̂|U) is never created as an 2n × 2n

matrix. Taking the inner product of ρA with the local observables O yields the desired result.
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E. Predicting subsystem Rényi entanglement entropies

We consider classical shadows based on random Pauli measurements for predicting subsystem entanglement
entropies. In the first part of the experiment, we consider the ground state of a disordered Heisenberg model.
The associated Hamiltonian is H =

∑
i Ji〈Si · Si+1〉, where each Ji is sampled uniformly (and independently)

from the unit interval [0, 1]. The approximate ground state is found by implementing the recursive procedure
from [53]: identify the largest Ji, forming singlet for the connected sites, and reduce the system by removing
Ji. We refer to [53] for details. In the experiment, we perform single-shot random Pauli basis measurements
on the approximate ground state. I.e. we measure the state in a random Pauli basis only once and then
choose a new random basis. However, in physical experiments, it is often easier to repeat a single Pauli basis
measurement many times before re-calibrating to measure another Pauli basis. Performing a single random
basis measurement for many repetitions can be beneficial experimentally compared to measuring a random
basis every single time. Classical shadows (Pauli) are flexible enough to incorporate economic measurement
strategies that take this discrepancy into account. We refer to the open source implementation in https:
//github.com/momohuang/predicting-quantum-properties for the exact details.

To obtain a reasonable benchmark, we compare this procedure with the approach proposed by Brydges et
al. [12]. For a subsystem A comprised of k qubits, the approach proposed in [12] for predicting the Rényi
entropy works as follows. First, one samples a random single-qubit unitary rotations independently for all
k qubits. Then, one applies the single-qubit unitary rotation to the system and measures the system in the
computational basis to obtain a string of binary values s ∈ {0, 1}k. For each random unitary rotation, several
repetitions are performed. The precise number of repetitions for a single random basis is a hyper-parameter
that has to be optimized. The estimator for the Rényi entropy takes the following form:

tr(ρ2
A) = 2k

∑

s,s′∈{0,1}k
(−2)−H(s,s′)P (s)P (s′). (S31)

The function H(s, s′) is the Hamming distance between strings s and s′ (i.e, the number of positions at which
individual bits are different), while P (s) and P (s′) are the probabilities for measuring ρ and obtaining the
outcomes s and s′, respectively. The probability P (s) is a function that depends on the randomly sampled
single-qubit rotation. P (s)P (s′) is the expectation of P (s)P (s′) averaged over the random single-qubit rotations.

The random single-qubit rotations could be taken as single-qubit Haar-random rotations or single-qubit
random Clifford rotations. The latter choice is equivalent to random Pauli measurements – the measure-
ment primitive we consider for classical shadows also. For the test cases we considered, using random Pauli
measurements yields similar (and sometimes improved) performance compared to single-qubit Haar-random
unitary rotation. This allows the approach by [12] and the procedure based on classical shadows to be com-
pared on the same ground. We follow the strategy in [12] to estimate the formula in Eq. (S31). First, we
sample NU random unitary rotations. For each random unitary rotation, we perform NM repetitions of ro-
tating the system and measuring in the computational basis. The NM measurement outcomes allow us to
construct an empirical distribution for P (s). Thus we could use the NM measurement outcomes to estimate
2k
∑
s,s′∈{0,1}k(−2)−H(s,s′)P (s)P (s′) for a single random unitary rotation. We then take the average over NU

different random unitary rotations. Choosing a suitable parameter for NU and NM is nontrivial. We employ
the strategy advocated in [12] for finding the best parameter for NU and NM . This strategy is called grid search
and is performed by trying many different choices for NU , NM and recording the best one.

F. Variational quantum simulation of the lattice Schwinger model

The application for variational quantum simulation uses classical shadows based on random Pauli measure-
ments which is designed to predict a large number of local observables efficiently. It is based on the seminal
work presented in [40]. After a Kogut-Susskind encoding to map fermionic configurations to a spin-1/2 lattice
with an even number N of lattice sites and a subsequent Jordan-Wigner transform, the Hamiltonian becomes

Ĥ =
w

2

N−1∑

j=1

PXj P
X
j+1

︸ ︷︷ ︸
Λ̂X

+
w

2

N−1∑

j=1

PYj P
Y
j+1

︸ ︷︷ ︸
Λ̂Y

+

N∑

j=1

djP
z
j +

N−2∑

j=1

N−1∑

j′=j+1

cj,j′P
z
j P

z
j′

︸ ︷︷ ︸
Λ̂Z

. (S32)

Here, PXj , PYj , PZj denote Pauli-X,Y, Z operators acting on the j-th qubit (1 ≤ j ≤ N). This Hamiltonian has
very advantageous structure. Each of the three contributions can be estimated by performing a single Pauli
basis measurement (measure every qubit in the X basis to determine Λ̂X , measure every qubit in the Y basis to
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determine Λ̂Y and measure every qubit in the Z basis to determine Λ̂Z). The measurement of the Hamiltonian
variance 〈Ĥ2〉 − 〈Ĥ〉2 is more complicated, because 〈Ĥ2〉 does not decompose nicely. To determine its value,
we must first measure Λ̂2

X , Λ̂2
Y and Λ̂2

Z . This is the easy part, because 3 measurement bases once more suffice.
However, in addition, we must also estimate the anti-commutators {Λ̂X , Λ̂Y }, {Λ̂X , Λ̂Z}, {Λ̂Y , Λ̂Z}. This may
be achieved by measuring the following k-local observables (with k at most 4):

{Λ̂X , Λ̂Y } : PXj P
X
j+1P

Y
j′ P

Y
j′+1, ∀j, j′ ∈ {1, N − 1}, s.t. j 6= j′, j 6= j′ + 1, j + 1 6= j′,

{Λ̂X , Λ̂Z} : PXj P
X
j+1P

Z
j′P

Z
j′′ , ∀j, j′, j′′ ∈ {1, N − 1}, s.t. j 6= j′, j 6= j′′, j + 1 6= j′, j + 1 6= j′′, j′ < j′′,

{Λ̂X , Λ̂Z} : PXj P
X
j+1P

Z
j′ , ∀j, j′ ∈ {1, N − 1}, s.t. j 6= j′, j + 1 6= j′,

(S33)

{Λ̂Y , Λ̂Z} : PYj P
Y
j+1P

Z
j′P

Z
j′′ , ∀j, j′, j′′ ∈ {1, N − 1}, s.t. j 6= j′, j 6= j′′, j + 1 6= j′, j + 1 6= j′′, j′ < j′′,

{Λ̂Y , Λ̂Z} : PYj P
Y
j+1P

Z
j′ , ∀j, j′ ∈ {1, N − 1}, s.t. j 6= j′, j + 1 6= j′,

Although local, estimating all observables of this form is the main bottleneck of the entire procedure. To
minimize the number of measurement bases, the original work [40] has performed an analysis of symmetry
in the lattice Schwinger model. First, the target Hamiltonian in Equation (S32) satisfies [Ĥ,

∑
i P

Z
i ] = 0,

which corresponds to a charge conservation symmetry in the scalar fermionic field. [40] further consider a
charge symmetry subspace with

∑
i P

Z
i = 0, which corresponds to a ĈP symmetry. In this subspace, we have

〈{Λ̂X , Λ̂Z}〉 = 〈{Λ̂Y , Λ̂Z}〉. This ensures that we only have to estimate local observables corresponding to
{Λ̂X , Λ̂Y } and {Λ̂X , Λ̂Z}. In the original setup [40], this task was achieved by measuring roughly 2N bases in
total. We refer to [40, Appendix B and Appendix C] for further details and explanation. We propose to replace
this original approach by linear feature prediction with classical shadows (Pauli measurements).

For classical shadows based on random Pauli measurements, every measurement basis is an independent
random X, Y , or Z measurement for every qubit. This randomized general purpose procedure does not take
into account the fact that we want to measure a specific set of k-local observables given in Equation (S33). The
derandomized version of classical shadows is based on the concept of pessimistic estimators [51, 57] (see also
[61] for an application with quantum information context). It removes the original randomness by utilizing the
knowledge of this specific set of k-local observables. When we throw a dice (or coin) to decide whether we want
to measure in either, theX−, the Y−, or the Z−basis, the derandomized version would choose the measurement
basis (X, Y , or Z) that would lead to the best expected performance on the set of k-local observables given in
Equation (S33). The expected performance is computed based on random Pauli basis measurements and the
analysis in Supplementary Section 1. The derandomized version of classical shadows would perform at least as
well as the original randomized version. Furthermore, due to the dependence on the specific set of observables
for choosing the measurement bases, the derandomized version can exploit advantageous structures in the set
of observables we want to measure. As detailed in the main text, classical shadows based on random Pauli
measurements provide improvement only for larger system sizes (more than 50 qubits). A derandomized version
of classical shadows improves upon the randomized version and leads to a substantial improvement in efficiency
and scalability over a wide range of system sizes. As an added benefit, derandomization can be completely
automated and does not depend on the concrete set of target observables. We refer to https://github.
com/momohuang/predicting-quantum-properties for a (roughly linear time) algorithm that derandomizes
random Pauli measurements for any collection of target observables with Pauli structure.

5. ADDITIONAL COMPUTATIONS AND PROOFS FOR PREDICTING LINEAR FUNCTIONS

A. Background: Clifford circuits and the stabilizer formalism

Clifford circuits were introduced by Gottesman [27] and form an indispensable tool in quantum information
processing. Applications range from quantum error correction [48], to measurement-based quantum compu-
tation [11, 52] and randomized benchmarking [20, 38, 46]. For systems comprised of n qubits, the Clifford
group is generated by CNOT, Hadamard and phase gates. This results in a finite group of cardinality 2O(n2)

that maps (tensor products of) Pauli matrices to Pauli matrices upon conjugation. This underlying structure
allows for efficiently storing and simulating Clifford circuits on classical computers – a result commonly known
as Gottesman-Knill theorem. The n-qubit Clifford group Cl(2n) also comprises a unitary 3-design [41, 60, 62].
Sampling Clifford circuits uniformly at random reproduces the first 3 moments of the full unitary group endowed
with the Haar measure. For k = 1, 2, 3

EU∼Cl(2n)

(
UXU†

)⊗k
=

∫

U(d)

(UAU†)⊗kdµHaar(U) for all 2n × 2n matrices A. (S34)
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The right hand side of this equation can be evaluated explicitly by using techniques from representation theory,
see e.g. [28, Sec. 3.5]. This in turn yields closed-form expressions for Clifford averages of linear and quadratic
operator-valued functions. Choose a unit vector x ∈ C2n

and let H2n denote the space of Hermitian 2n × 2n

matrices. Then,

EU∼Cl(2n)U
†|x〉〈x|U†〈x|UAU†|x〉 =

A+ tr(A)I
(2n + 1)2n

=
1

2n
D1/(2n+1)(A) for A ∈ H2n , (S35)

EU∼Cl(2n)U
†|x〉〈x|U〈x|UB0U

†|x〉〈x|UC0U
†|x〉 =

tr(B0C0)I +B0C0 + C0B0

(2n + 2)(2n + 1)2n
for B0, C0 ∈ H2n traceless. (S36)

Here, Dp(A) = pA+ (1− p) tr(A)
2n I denotes a n-qubit depolarizing channel with loss parameter p. Linear maps

of this form can be readily inverted. In particular,

D−1
1/(2n+1)(A) = (2n + 1)A− tr(A)I for any A ∈ H2n . (S37)

These closed-form expressions allow us to develop very concrete strategies and rigorous bounds for classical
shadows based on (global and local) Clifford circuits.

B. Performance bound for classical shadows based on random Clifford measurements

Proposition S1. Adopt a “random Clifford basis” measurement primitive, i.e. each rotation ρ 7→ UρU† is
chosen uniformly from the n qubit Clifford group Cl(2n). Then, the associated classical shadow is

ρ̂ = (2n + 1)U†|b̂〉〈b̂|U − I, (S38)

where b̂ ∈ {0, 1}n is the observed computational basis measurement outcome (of the rotated state UρU†). More-
over, the norm defined in Eq. (S7) is closely related to the Hilbert-Schmidt norm:

tr
(
O2

0

)
≤ ‖O0‖2shadow ≤ 3tr

(
O2

0

)
for any traceless O0 ∈ H2n . (S39)

Note that passing from O to its traceless part O0 = O − tr(O)
2n I is a contraction in Hilbert-Schmidt norm:

tr
(
O2

0

)
= tr(O2)− tr(O)2

2n
≤ tr(O2). (S40)

Hence, we can safely replace the upper bound in Eq. (S39) by 3tr(O2) — the Hilbert Schmidt norm (squared)
of the original observable.

Proof. Eq. (S35) readily provides a closed-form expression for the measurement channel defined in Eq. (S2):

M(ρ) =
∑

b∈{0,1}n
EU∼Cl(2n)〈b|UρU†|b〉U†|b〉〈b|U =

∑

b∈{0,1}n

1

2n
D1/(2n+1)(ρ) = D1/(2n+1)(ρ). (S41)

This depolarizing channel can be readily inverted, see Eq. (S37). In particular,

ρ̂ =M−1
(
U†|b̂〉〈b̂|U

)
= (2n + 1)U†|b̂〉〈b̂|U − I and M−1(O0) = (2n + 1)O0 (S42)

for any traceless matrix O0 ∈ H2n . The latter reformulation considerably simplifies the expression for the norm
‖O0‖2shadow defined in Eq. (S7). A slight reformulation allows us to furthermore capitalize on Eq. (S36) to
exactly compute this norm for traceless observables:

‖O0‖2shadow = max
σ state

tr
(
σ

∑

b∈{0,1}n
EU∼Cl(2n)U

†|b〉〈b|U〈b|U(2n + 1)O0U
†|b〉2

)

= max
σ state

tr

(
σ

(2n + 1)2
(
tr(O2

0)I + 2O2
0

)

(2n + 2)(2n + 1)2n

)
=

2n + 1

2n + 2
max
σ state

(
tr(σ)tr(O2

0) + 2tr
(
σO2

0

))
. (S43)

To further simplify this expression, recall tr(σ) = 1 and note that maxσ state tr(σO2
0) = ‖O2

0‖∞, where ‖ · ‖∞
denotes the spectral norm. The bound Eq. (S39) then foloows from the elementary relation between the spectral
and Hilbert-Schmidt norms: ‖O2

0‖∞ ≤ tr(O2
0).
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C. Performance bound for classical shadows based on random Pauli measurements

Proposition S2. Adopt a “random Pauli basis” measurement primitive, i.e. each rotation ρ 7→ UρU† is a
tensor product U1 ⊗ · · · ⊗ Un of randomly selected single-qubit Clifford gates U1, . . . , Un ∈ Cl(2). Then, the
associated classical shadow is

ρ̂ =

n⊗

j=1

(
3U†j |b̂j〉〈b̂j |Uj − I

)
where |b̂〉 = |b̂1〉 ⊗ · · · ⊗ |b̂n〉 and b̂1, . . . , b̂n ∈ {0, 1}. (S44)

Moreover, the norm defined in Eq. (S7) respects locality. Suppose that O ∈ H⊗k2 only acts nontrivially on
k-qubits, e.g. O = Õ ⊗ I⊗(n−k) with Õ ∈ H⊗k2 . Then ‖O‖shadow = ‖Õ‖shadow, where ‖Õ‖shadow is the same
norm, but for k-qubit systems.

Proof. Unitary rotation and computational basis measurements factorize completely into tensor products. This
insight allows us to decompose the measurement channelM defined in Eq. (S2) into a tensor product of single-
qubit operations. For elementary tensor products X1 ⊗ · · · ⊗Xn ∈ H⊗n2 we can apply Eq. (S35) separately for
each single-qubit action and infer

M (X1 ⊗ · · · ⊗Xn) =

n⊗

j=1

( ∑

bj∈{0,1}
EUj∼Cl(2)U

†
j |b〉〈b|Uj〈b|UjXjU

†
j |b〉

)

=

n⊗

j=1

( ∑

bj∈{0,1}

1

2
D1/(2+1)(ρj)

)
= D⊗n1/3 (X1 ⊗ · · · ⊗Xn) . (S45)

Linear extension to all of H⊗n2 yields the following formula forM and its inverse:

M(X) =
(
D1/3

)⊗n
(X) and M−1(X) =

(
D−1

1/3

)⊗n
(X) for all X ∈ H⊗n2 , (S46)

where D−1
1/3(Y ) = 3Y − tr(Y )I according to Eq. (S37). This formula readily yields a closed-form expression for

the classical shadow. Use U†|b̂〉〈b̂|U =
⊗n

j=1 Uj |b̂j〉〈b̂j |Uj to conclude

ρ̂ =M−1
(
U†|b̂〉〈b̂|U

)
=

n⊗

j=1

D−1
1/3

(
U†j |b̂j〉〈b̂j |Uj

)
=

n⊗

j=1

(
3U†j |b̂j〉〈b̂j |U − I

)
. (S47)

For the second claim, we exploit a key feature of depolarizing channels and their inverses. The identity matrix
is a fix-point, i.e. D−1

1/3(I) = I = D1/3(I). For k-local observables, e.g. O = Õ ⊗ I⊗(n−k), this feature ensures

M−1
(
Õ ⊗ I⊗(n−k)

)
=

((
D−1

1/3

)⊗k
(Õ)

)
⊗ I⊗(n−k) = M̃−1(Õ)⊗ I⊗(n−k), (S48)

where M̃−1(X) = (D−1
1/3)⊗k(X) denotes the inverse channel of a k-qubit local Clifford measurement procedure.

This observation allows us to compress the norm (S7) to the “active” subset of k qubits. Exploit the tensor
product structure U = U1 ⊗ · · · ⊗ Un with Ui ∼ Cl(2) to conclude

∥∥∥Õ ⊗ I⊗(n−k)
∥∥∥

2

shadow
= max
σ: state

EU∼Cl(2)⊗n

∑

b∈{0,1}n
〈b|UσU†|b〉〈b|UM−1(O ⊗ I⊗(n−k)U†|b〉2

= max
σ: state

EU∼Cl(2)⊗k

∑

b∈{0,1}k
〈b|Utrk+1,...,n(σ)U†|b〉〈b|UM̃−1(Õ)U†|b〉2, (S49)

where trk+1,...,n(σ) denotes the partial trace over all “inactive” subsystems. Partial traces preserve the space
of all quantum states. So maximizing over all partial traces trk+1,...,n(σ) is equivalent to maximizing over all
k-qubit states and we exactly recover the norm ‖Õ‖2shadow on k qubits. Finally, it is easy to check that the
actual location of the active k-qubit support of O does not affect the argument.

Recall that the (squared) norm ‖ · ‖2shadow is the most important figure of merit for feature prediction with
classical shadows. According to Theorem S1, max1≤i≤M ‖Oi‖2shadow determines the number of samples required
to accurately predict a collection of linear functions tr(O1ρ), . . . , tr(OMρ). Viewed from this angle, Propo-
sition S2 has profound consequences for predicting (collections of) local observables under the local Clifford
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measurement primitive. For each local observable Oi, the norm ‖Oi‖2shadow collapses to its active support,
regardless of its precise location. The size of these supports is governed by the locality alone, not the total
number of qubits!

It is instructive to illustrate this point with a simple special case first.

Lemma S3. Let O be a single k-local Pauli observable, e.g. O = Pp1⊗· · ·⊗Ppk⊗I⊗(n−k), where pj ∈ {X,Y, Z}.
Then, ‖O‖2shadow = 3k, for any choice of the k qubits where nontrivial Pauli matrices act. This scaling can be
generalized to arbitrary elementary tensor products supported on k qubits, e.g. O = O1 ⊗ · · · ⊗Ok ⊗ I⊗(n−k).

Proof. Pauli matrices are traceless and obey, P 2
pj = I and D−1

1/3(Ppj ) = 3Ppj for each pj ∈ {X,Y, Z}. Proposi-
tion S2 and the tensor product structure of the problem then ensure

‖O‖2shadow =‖Pp1 ⊗ · · · ⊗ Ppk‖2shadow

= max
σ: state

EU∼Cl(2)⊗k

∑

b∈{0,1}n
〈b|U†σU |b〉〈b|U(D−1

1/3)⊗k(P1 ⊗ · · · ⊗ Pk)U†|b〉2

= max
σ: state

tr
(
σ

k⊗

j=1

( ∑

bj∈{0,1}
EUj∼Cl(2)U

†|bj〉〈bj |U〈bj |U3PjU
†U |bj〉2

))

= max
σ: state

tr
(
σ

k⊗

j=1

(
9
∑

b∈{0,1}

tr
(
P 2
j

)
I + 2P 2

j

(2 + 2)(2 + 1)2

))
= max
σ: state

tr
(
σ

k⊗

j=1

3I
)

= 3k, (S50)

where we have used Eq. (S36) to explicitly evaluate the single qubit Clifford averages.
We leave the extension to more general tensor product observables as an exercise for the dedicated reader.

The norm expression in Lemma S3 scales exponentially in the locality k, but is independent of the total
number of qubits n. The compression property (Proposition S2) suggests that this desirable feature should
extend to general k-local observables. And, indeed, it is relatively straightforward to obtain crude upper bounds
that scale with 32k. The additional factor of two, however, effectively doubles the locality parameter and can
render conservative feature prediction with classical shadows prohibitively expensive in concrete applications.

The main result of this section considerably improves upon these crude bounds and almost reproduces the
(tight) scaling associated with k-local Pauli observables.

Proposition S3. Let O be a k-local observable, e.g. O = Õ ⊗ I⊗(n−k) with Õ ∈ H⊗k2 Then,

‖O‖2shadow ≤ 4k‖O‖2∞, where ‖ · ‖∞ denotes the spectral/operator norm. (S51)

The same bound holds for the shadow norm of the traceless part of O: ‖O − tr(O)
2n I‖2shadow ≤ 4k‖O‖2∞.

The proof is considerably more technical than the proof of Lemma S3 and relies on the following auxiliary
result.

Lemma S4. Fix two k-qubit Pauli observables Pp = Pp1⊗· · ·⊗Ppk , Pq = Pq1⊗· · ·⊗Pqk with p,q ∈ {I, X, Y, Z}k.
Then, the following formula is true for any state σ:

EU∼Cl(2)⊗k

∑

b∈{0,1}k
〈b|UσU†|b〉〈b|U(D−1

1/3)⊗k(Pp)U†|b〉〈b|U(D−1
1/3)⊗k(Pq)U†|b〉 = f(p,q)tr (σPpPq) , (S52)

where f(p,q) = 0 whenever there exists an index i such that pi 6= qi and pi, qi 6= I. Otherwise, f(p,q) = 3s,
where s is the number of non-identity Pauli indices that match (s = |{i : pi = qi, pi 6= I}|).

This combinatorial formula follows from a straightforward, but somewhat cumbersome, case-by-case analysis
based on the (single-qubit) relations (S35) and (S36). We include a proof at the end of this subsection.

Proof of Proposition S3. Proposition S2 allows us to restrict our attention to the relevant k-qubit region on
which Õ ∈ H⊗k2 acts nontrivially. Next, expand Õ in the (tensor product) Pauli basis, i.e. Õ =

∑
p αpPp with

p ∈ {I, X, Y, Z}k. Fix an arbitrary k-qubit state σ and use Lemma S4 to conclude

‖Õ‖2shadow = max
σ state

EU∼Cl(2)⊗k

∑

b∈{0,1}k
〈b|UσU†|b〉〈b|U(D−1

1/3)⊗k(Õ)U†|b〉2

= max
σ state

∑

p,q

αpαqEU∼Cl(2)⊗k

∑

b∈{0,1}k
〈b|UσU†|b〉〈b|U(D−1

1/3)⊗k(Pp)U†|b〉〈b|U(D−1
1/3)⊗k(Pq)U†|b〉
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= max
σ state

∑

p,q

αpαqf(p,q)tr (σPpPq) = max
σ state

tr

(
σ
∑

p,q

αpαqf(p,q)tr (σPpPq)

)

=

∥∥∥∥∥
∑

p,q

αpαqf(p,q)trPpPq

∥∥∥∥∥
∞

, (S53)

where f(p,q) is the combinatorial function defined in Lemma S4. The last equality follows from the dual
characterization of the spectral norm: ‖A‖∞ = maxσ: state tr(σA) for any positive semidefinite matrix A.

We can further simplify this expression by introducing a partial order on Pauli strings q, s ∈ {I, X, Y, Z}n.
We write q B s if it is possible to obtain q from s by replacing some local non-identity Paulis with I. Moreover,
let |q| = |{i : qi 6= I}| denote the number of non-identity Pauli’s in the string q. Then,

∥∥∥∥∥
∑

p,q

αpαqf(p,q)trPpPq

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
1
3k

∑

s∈{X,Y,Z}k

(∑

qBs

3|q|αqPq

)2
∥∥∥∥∥∥
∞

≤ 1

3k

∑

s∈{X,Y,Z}k

(∑

qBs

3|q|αqPq

)2

, (S54)

where we have used ‖Pq‖∞ = 1 for all Pauli strings. Next, note that for fixed s ∈ {X,Y, Z}k,
∑

qBs

3|q| = 3k + k3k−1 +

(
k

2

)
3k−2 + · · ·+ 1 = 4k. (S55)

Together with Cauchy-Schwarz, this numerical insight implies

1
3k

∑

s∈{X,Y,Z}k

(∑

qBs

3|q||αq|
)2

≤ 1
3k

∑

s∈{X,Y,Z}k

(∑

qBs

3|q|
)(∑

qBs

3|q||α2
p

)
= 4k

∑

s∈{X,Y,Z}

∑

qBs

3|q|−k|αq|2. (S56)

Finally, observe that every q ∈ {I, X, Y, Z}k is dominated by exactly 3k−|q| different strings s ∈ {X,Y, Z}k.
This ensures

4k
∑

s∈{X,Y,Z}
3|q|−k|αq|2 = 4k

∑

q∈{I,X,Y,Z}
|αq|2 = 4k2−k‖Õ‖22, (S57)

because Pauli matrices are proportional to an orthonormal basis of H⊗k2 :
∑

q |αq|2 =
∑

q

∣∣2−ktr
(
σqÕ

)∣∣2 =

2−k‖Õ‖22. The general claim then follows from the fundamental relation among Schatten norms: ‖Õ‖22 ≤
2k‖Õ‖2∞ = 2k‖O‖2∞.

The bound on traceless parts O0 of observables is nearly analogous, because the transition from O to O0

respects locality. E.g. O = Õ ⊗ I⊗(n−k) obeys O0 = Õ0 ⊗ I⊗(n−k). To get the same bound, we use that this
transition is a contraction in Hilbert-Schmidt norm:

‖O0‖2shadow = ‖Õ0‖2shadow ≤ 4k2−k‖Õ0‖22 ≤ 4k2−k‖Õ‖22 ≤ 4k‖Õ‖2∞ = ‖O‖2∞.

Proof of Lemma S4. Since Pauli observables decompose nicely into tensor products, this claim readily follows
from extending a single-qubit argument. Note that D−1

1/3(Pp) = 3Pp for p 6= I and D−1
1/3(I) = I. It is straightfor-

ward to evaluate the single-qubit expression for the trivial case Pp = Pq = I. Fix a state σ and compute

EU∼Cl(2)

∑

b∈{0,1}
〈b|UσU†|b〉〈b|UD−1

1/3(I)U†|b〉2 = EU∼Cl(2)

∑

b∈{0,1}
〈b|UσU†|b〉 = EU∼Cl(2)tr(σ) = tr

(
σI2
)
. (S58)

Next, suppose Pq = I, but Pp 6= I. This single-qubit case is covered by Eq. (S35):

EU∼Cl(2)

∑

b∈{0,1}
〈b|UσU†|b〉〈b|UD−1

1/3(Pp)U
†|b〉〈b|UD−1

1/3IU
†|b〉

=tr
(
σ
∑

b∈{0,1}
U†|b〉〈b|U〈b|U3PpU

†|b〉
)

= 3tr
(
σ
∑

b∈{0,1}

1

2
D1/3(Pp)

)
= tr (σPpI) , (S59)
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because D1/3(Pp) = 1
3Pp. The case Pp = I and Pq 6= I leads to analogous results. Finally, suppose that

both Pp, Pq 6= I. By assumption D−1
1/3(Pp), D−1

1/3(Pq) and both matrices are traceless. Hence, we can resort to
Eq. (S36) to conclude

EU∼Cl(2)⊗n

∑

b∈{0,1}k
〈b|UσU†|b〉〈b|U(D−1

1/3)⊗k(Pp)U
†|b〉〈b|U(D−1

1/3)⊗k(Pq)U
†|b〉

=tr
(
σ
∑

b∈{0,1}
U†|b〉〈b|U〈b|U3PpU

†|b〉〈b|U3PqU
†|b〉
)

= 9tr
(
σ
∑

b∈{0,1}

tr(PpPq)I + PpPq + PqPp
(2 + 2)(2 + 1)2

)
(S60)

for any state σ. Pauli matrices are orthogonal (tr(PpPq) = 2δp,q) and anticommute (PpPq + PqPp = 2δp,q).
This implies that the above expression vanishes whenever p 6= q. If p = q it evaluates to 3tr(σPpPq) and we
can conclude that the single qubit average always equals

f(p, q)tr (σPpPq) where f(p, q) =





1 if p = I or q = I,
3 if p = q 6= I,
0 else.

(S61)

The statement then follows from extending this formula to tensor products of k Pauli matrices.

6. ADDITIONAL COMPUTATIONS AND PROOFS FOR PREDICTING NONLINEAR
FUNCTIONS

We focus on the particularly relevant task of predicting quadratic functions with classical shadows, using

ô(N, 1) =
1

N(N − 1)

∑

j 6=l
tr(Oρ̂i ⊗ ρ̂j) to predict tr (Oρ⊗ ρ) = E ô(N, 1). (S62)

A. General variance bound

Lemma S5 (Variance). The variance associated with the estimator Ô(N, 1) obeys

Var[ô(N, 1)] =

(
N

2

)−1(
2(N − 2) Var[tr(Osρ̂1 ⊗ ρ)] + Var[tr(Osρ̂1 ⊗ ρ̂2)]

)

≤ 4

N2
Var[tr(Oρ̂1 ⊗ ρ̂2)] +

2

N
Var[tr(Oρ̂1 ⊗ ρ)] +

2

N
Var[tr(Oρ⊗ ρ̂1)], (S63)

where Os = (O + SOS)/2 is the symmetrized version of O and S denotes the swap operator ( S|ψ〉 ⊗ |φ〉 =
|φ〉 ⊗ |ψ〉).
Proof. First, note that ô(N, 1) and the target tr(Oρ⊗ ρ) are invariant under symmetrization. This ensures

ô(N, 1) =

(
N

2

)∑

i<j

tr
(
Os⊗̂ρ̂j

)
and moreover tr (Oρ⊗ ρ) = tr (Osρ⊗ ρ) . (S64)

Thus, we may without loss replace the original observable O by its symmetrized version Os. Next, we expand
the definition of the variance:

Var[ô(N, 1)] =E
[
(ô(N, 1)− tr(Osρ⊗ ρ))

2
]

=

(
N

2

)−2∑

i<j

∑

k<l

(
E
[

tr(Osρ̂i ⊗ ρ̂j) tr(Osρ̂k ⊗ ρ̂l)
]
− tr(Osρ⊗ ρ)2

)

=

(
N

2

)−2∑

i<j

E
[

tr(Osρ̂i ⊗ ρ̂j)2
]
− tr(Osρ⊗ ρ)2

)

+2

(
N

2

)−2∑

i<j

∑

l 6=i,j

(
E
[

tr(Osρ̂i ⊗ ρ̂j) tr(Osρ̂i ⊗ ρ̂l)
]
− tr(Osρ⊗ ρ)2

)
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=

(
N

2

)−1

Var[tr(Osρ̂1 ⊗ ρ̂2)] +

(
N

2

)−1

2(N − 2) Var[tr(Osρ̂1 ⊗ ρ)]. (S65)

We can use the inequality Var[(A + B)/2] ≤ (Var[A] + Var[B])/2 (for any pair of random variables A,B) to
obtain a simplified upper bound:

Var[ô(N, 1)] =

(
N

2

)−1

Var[tr(Osρ̂1 ⊗ ρ̂2)] +

(
N

2

)−1

2(N − 2) Var[tr(Osρ̂1 ⊗ ρ)]

≤ 4

N2
Var[tr(Osρ̂1 ⊗ ρ̂2)] +

4

N
Var[tr(Osρ̂1 ⊗ ρ)]

≤ 4

N2
Var[tr(Oρ̂1 ⊗ ρ̂2)] +

2

N
Var[tr(Oρ̂1 ⊗ ρ)] +

2

N
Var[tr(Oρ⊗ ρ̂1)]. (S66)

B. Concrete variance bounds for random Pauli measurements

Proposition S4. Suppose that O describes a quadratic function tr(Oρ ⊗ ρ) that acts on at most k-qubits in
the first system and at most k-qubits in the second system and obeys ‖O‖∞ ≥ 1. Then,

max
(

Var[tr(Oρ⊗ ρ̂1)],Var[tr(Oρ̂1 ⊗ ρ)],
√

Var[tr(Oρ̂1 ⊗ ρ̂2)]
)
≤ 4k ‖O‖2∞ . (S67)

Proof. Because of the single-qubit tensor product structure in the random Pauli measurement and the inverted
quantum channelM−1

P , the tensor product of two snapshots ρ̂1 ⊗ ρ̂2 of the unknown quantum state ρ may be
viewed as a single snapshot of the tensor product state ρ⊗ ρ:

ρ̂1 ⊗ ρ̂2 =

n⊗

i=1

(
M−1

1 (U
(i)
1 |b

(i)
1 〉〈b

(i)
1 |(U

(i)
1 )†)

) n⊗

i=1

(
M−1

1 (U
(i)
2 |b

(i)
2 〉〈b

(i)
2 |(U

(i)
2 )†)

)

=

2n⊗

i=1

M−1
1 (U (i)|b(i)〉〈b(i)|(U (i))†) =: ρ̂. (S68)

Hence tr(Oρ̂1 ⊗ ρ̂2) = tr(Oρ̂) and, by assumption, O is an observable that acts on k+ k = 2k qubits only. The
claim then follows from invoking the variance bounds for linear feature prediction presented in Proposition S3.

C. Concrete variance bounds for random Clifford measurements

In contrast to the Pauli basis setup, variances for quadratic feature prediction with Clifford basis measure-
ments cannot be directly reduced to its linear counterpart. Nonetheless, a more involved direct analysis does
produces bounds that do closely resemble the linear base case.

Proposition S5. Suppose that O describes a quadratic function tr(Oρ ⊗ ρ) and obeys tr(O2) ≥ 1. Then, the
variance associated with classical shadow estimation (random Clifford measurements) obeys

max
(

Var[tr(Oρ⊗ ρ̂1)],Var[tr(Oρ̂1 ⊗ ρ)],
√

Var[tr(Oρ̂1 ⊗ ρ̂2)]
)
≤
√

9 + 6/2n tr(O2). (S69)

The pre-factor
√

9 + 6/2n converges to the constant 3 at an exponential rate in system size.

This claim is based on the following technical Lemma and insights regarding linear feature prediction.

Lemma S6. Suppose that O describes a quadratic function tr(Oρ⊗ ρ). Then,

Var[tr(Oρ̂1 ⊗ ρ̂2)] ≤ 9 tr(O2) +
6

2n
‖O‖2∞. (S70)

Proof of Proposition S5. The variance of tr(Oρ ⊗ ρ̂1) is equivalent to the variance of tr(Õρρ̂), where Õρ =
tr1 (ρ⊗ IO) describes a linear function. According to Proposition S1, this variance term obeys

Var [tr (Oρ⊗ ρ̂)] = Var
[
tr
(
Õρρ̂1

)]
≤ 3tr

(
Õ2
ρ

)
= tr

(
tr1 (ρ⊗ IO)

2
)
≤ 3tr(O2), (S71)
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because tr(ρ) = 1 and tr(ρ2) ≤ 1. A similar argument takes care of the second variance contribution
Var [tr (Oρ̂1 ⊗ ρ)]. Lemma S6 supplies a bound for the square of the final contribution. By assumption√

tr(O2) ≤ tr(O2) and the claim follows.

The remainder of this section is devoted to proving Lemma S6. Unfortunately, there does not seem to be a
direct way to relate this task to variance bounds for linear feature prediction. Instead, we base our analysis
on the 3-design property (S36) of Clifford circuits and a reformulation of this feature in terms of permutation
operators. This strategy is inspired by the approach developed in [9], but conceptually and technically somewhat
simpler. We believe that similar arguments extend to variances associated with higher order polynomials, but
do refrain from a detailed analysis. Instead, we carefully outline the main ideas and leave a rigorous extension
to future work.
Problem statement and reformulation: We will ignore symmetrization (which can only make the variance

smaller) and focus on bounding the variance of tr (Oρ̂1 ⊗ ρ̂2), where each ρ̂i is an independent classical shadow.
To simplify notation, we set d = 2n and define the following traceless variants of O:

O
(1)
0 =tr2(O)− tr (O)

d
I, and O

(2)
0 = tr1(O)− tr(O)

d
I, as well as

O
(1,2)
0 =O − tr2(O)⊗ I

d
− I
d
⊗ tr1(O) + tr(O)

I
d
⊗ I
d
. (S72)

Here, tra(O) with a = 1, 2 denotes the partial trace over the first and second system, respectively. All three
operators are traceless (recall tr (tra(O)) = tr(O)) and the final (bipartite) operator has the additional property
that both partial traces vanish identically: tra

(
O

(1,2)
0

)
= 0.

Proposition S1 asserts ρ̂a = (d + 1)U†a |b̂a〉〈b̂a|Ua − I, where each Ua ∈ Cl(d) is a random Clifford unitary
and b̂a ∈ {0, 1}n is the outcome of a computational basis measurement. These explicit formulas allow us to
decompose the expression of interest in the following fashion:

tr (Oρ̂1 ⊗ ρ̂2) =(d+ 1)2tr
(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂1〉〈b̂2|U2

)
+

tr(O)2

d2

+
d+ 1

d
tr
(
O

(1)
0 U†1 |b̂1〉〈b̂1|U1

)
+
d+ 1

d
tr
(
O

(2)
0 U†2 |b̂2〉〈b̂2|U2

)
. (S73)

The variance corresponds to the expected square of this expression. The second term is constant and does not
contribute. We analyze the remaining terms on a case-by case basis.
Linear terms: The third and fourth terms in Eq. (S73) are linear feature functions in one classical shadow

only. Their (squared) contribution to the overall variance is characterized by Proposition S1:

E

[(
d+ 1

d
tr
(
O

(a)
0 U†a |b̂a〉〈b̂a|Ua

))2
]
≤ 3

d2

∥∥∥O(a)
0

∥∥∥
2

2
for a = 1, 2. (S74)

Both bounds can be related to the Hilbert-Schmidt norm (squared) of the original observable:

3

d2

∥∥∥O(a)
0

∥∥∥
2

2
≤ 3

d2
‖tra(O)‖22 ≤ 3‖O‖22 = 3tr

(
O2
)
. (S75)

Leading-order term: We need to bound E
[
(d+1)4tr

(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂2〉〈b̂2|U2

)2 ]
, where O(1,2)

0 has

the special property that both partial traces vanish identically: tra
(
O

(1,2)
0

)
= 0 for a = 1, 2. Moreover, the

Hilbert-Schmidt norm (squared) of this operator factorizes nicely:

∥∥∥O(1,2)
0

∥∥∥
2

2
= ‖O‖22 −

1

d

∥∥O(1)
0

∥∥2

2
−
∥∥O(2)

0

∥∥2

2
− tr(O)2

d2
. (S76)

Not only is this expression bounded by the original Hilbert-Schmidt norm ‖O‖22. The norms of partial traces
also feature explicitly with a minus sign. This will allow us to fully counter-balance the variance contributions
(S75) from the linear terms.

Next, we use the 3-design property (S34) of Clifford circuits in dimension d = 2n:

EUa∼Cl(d)

[(
U†a |ba〉〈ba|Ua

)⊗3
]

=

(
d+ 2

3

)−1

P∨3 , (S77)
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where P∨3 is the projector onto the totally symmetric subspace of Cd ⊗ Cd ⊗ Cd. This formula implies

E
[
(d+ 1)4tr

(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂2〉〈b̂2|U2

)2
]
≤ tr

(
O

(1,2)
0 ⊗O(1,2)

0 ⊗ ρ⊗ ρ P (odd)
∨3 ⊗ P (even)

∨3

)
, (S78)

where the superscripts “even” and “odd” indicate on which subset of tensor factors the projectors act.
Next, we exploit the fact that symmetric projectors can be decomposed into permutation operators: (3!)P∨3 =∑
π∈S3

Wπ, where S3 is the group of all six permutations of three elements and the permutation operators act
like Wπ|ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 = |ψπ−1(1)〉 ⊗ |ψπ−1(2)〉 ⊗ |ψπ−1(3)〉:

tr
(
O

(1,2)
0 ⊗O(1,2)

0 ⊗ ρ⊗ ρ P (odd)
∨3 ⊗ P (even)

∨3

)
=

∑

π,τ∈S3

tr
(
O

(1,2)
0 ⊗O(1,2)

0 ⊗ ρ⊗ ρ W (odd)
π ⊗W (even)

τ

)
. (S79)

The specific structure of O(1,2)
0 implies that several contributions must vanish. Permutations that have either

1 or 2 as a fix-point lead to a partial trace of O(1,2)
0 that evaluates to zero. There are only three permutations

that do not have such fix-points: The flip (1, 2, 3) 7→ (2, 1, 3) and the two cycles (1, 2, 3) 7→ (3, 1, 2), (1, 2, 3) 7→
(2, 3, 1). There are in total 9 = 32 potential combinations of such permutations. Each of them results in a trace
expression that can be upper-bounded by Hilbert-Schmidt norms. For instance the pair flip and flip produces

tr
(
O

(1,2)
0 O

(1,2)
0

)
tr(ρ)2 =

∥∥∥O(1,2)
0

∥∥∥
2

2
. (S80)

All other 8 contributions can also be bounded by this expression and we conclude

E
[
(d+ 1)4tr

(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂2〉〈b̂2|U2

)2
]
≤ 9

∥∥∥O(1,2)
0

∥∥∥
2

2
(S81)

Bounds on cross-terms: Cross-terms are considerably easier to evaluate, because one (or both) random
matrices only feature linearly. We can use E

[
U†a |b̂a〉〈b̂a|Ua

]
= D1/(d+1)(ρ) = ρ+I

d+1 to effectively get rid of the
linear contribution. For instance,

(
d+ 1

d

)2

E

[ ∏

a=1,2

tr
(
O

(1)
0 U†a |b̂a〉〈b̂a|Ua

)]
=

1

d2
tr
(
O

(1)
0 ρ

)
tr
(
O

(2)
0 ρ

)
≤ 1

2d2

(
‖O(1)

0 ‖2∞ + ‖O(2)
0 ‖2∞

)
, (S82)

where ‖ · ‖∞ denotes the operator norm. Cross terms that do feature the leading order term require slightly
more work, but can be addressed in a similar fashion. Using linearity in one snapshot reduces the expression
to an expectation of a quadratic function in one snapshot only. The remaining computation is similar to the
proof of Proposition S1 and yields

(d+ 1)3

d
E
[
tr
(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂2〉〈b̂2|U2

)
tr
(
O

(a)
0 U†a |b̂a〉〈b̂a|Ua

)]
≤ 3

2d2

(
‖Õ(a)

ρ ‖22 + ‖O(a)
0 ‖22

)
, (S83)

for a = 1, 2, as well as Õ(1)
ρ = tr2 (I⊗ ρO) and Õ(2)

ρ = tr1 (ρ⊗ IO), respectively.
Full variance bound: We are now ready to combine all individual bounds to control the full variance:

Var [ô] ≤E
(

(d+ 1)2tr
(
O

(1,2)
0 U†1 |b̂1〉〈b̂1|U1 ⊗ U†2 |b̂2〉〈b̂2|U2

)
+
∑

a=1,2

d+ 1

d
tr
(
O

(a)
0 U†a |b̂a〉〈b̂a|Ua

))2

≤9‖O(1,2)
0 ‖22 +

6

2d2

(
‖tr2 (I⊗ ρO) ‖22 + ‖O(1)

0 ‖22
)

+
6

2d2

(
‖tr1 (ρ⊗ IO) ‖22

)

+
3

d2
‖O(1)

0 ‖22 +
3

d2
‖O(2)

0 ‖22 +
1

2d2

(
‖O(1)

0 ‖2∞ + ‖O(2)
0 ‖2∞

)
. (S84)

Standard norm inequalities, as well as the explicit expression for ‖O(1,2)
0 ‖22 allow for counter-balancing some of

the sub-leading terms and we conclude

Var [ô] ≤ 9‖O0‖22 +
3

d2

(
‖tr2 (I⊗ ρO) ‖22 + ‖tr1 (ρ⊗ IO) ‖22

)
≤ 9‖O0‖22 +

6

d
‖O‖2∞. (S85)
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7. INFORMATION-THEORETIC LOWER BOUND WITH SCALING IN HILBERT-SCHMIDT
NORM

Before stating the content of the statement, we need to introduce some additional notation. In quantum
mechanics, the most general notion of a quantum measurement is a POVM (positive operator-valued measure).
A d-dimensional POVM F consists of a collection F1, . . . , FN of positive semidefinite matrices that sum up
to the identity matrix: 〈x|Fi|x〉 ≥ 0 for all x ∈ Cd and

∑
i Fi = I. The index i is associated with different

potential measurement outcomes and Born’s rule asserts Pr [i|ρ] = tr(Fiρ) for all 1 ≤ i ≤ M and any d-
dimensional quantum state ρ. We present a simplified version of the proof by consider the relevant case where
M ≤ exp(2n/32). The full proof can be found in [35].

A. Detailed statement and proof idea

Theorem S5 (Detailed restatement of Theorem 2 for Hilbert-Schmidt norm). Fix a sequence of POVMs
F (1), . . . , F (N). Suppose that given any M features 0 � O1, O2, . . . , OM � I with maxi

(
‖Oi‖22

)
≤ B, there

exists a machine (with arbitrary runtime as long as it always terminates) that can use the measurement out-
comes of F (1), . . . , F (N) on N copies of an unknown d-dimensional quantum state ρ to ε-accurately predict
tr(O1ρ), . . . , tr(OMρ) with high probability. Assuming M ≤ exp(d/32), then necessarily

N ≥ Ω

(
B log(M)

ε2

)
. (S86)

It is worthwhile to put this statement into context and discuss consequences, as well as limitations. The-
orem 1 (Clifford measurements) equips classical shadows with a universal convergence guarantee: (order)
log(M) maxi tr(O2

i )/ε
2 single-copy measurements suffice to accurately predict any collection of M target func-

tions in any state. Theorem S5 implies that there are cases where this number of measurements is unavoidable.
This highlights that the sample complexity of feature prediction with classical shadows is optimal in the worst
case – a feature also known as minimax optimality.

Minimax optimality, however, does not rule out potential for further improvement in certain best-case sce-
narios. Advantageous structure in ρ or the Oi’s (or both) can facilitate the design of more efficient prediction
techniques. Prominent examples include matrix product state tomography (MPST) [16, 45] and neural net-
work tomography (NNQST) [13]. Such tailored approaches, however, hinge on additional assumptions about
the states to be measured or the properties to be predicted.3

Finally, we emphasize that Theorem 2 only applies to single-copy measurements. Another way to bypass this
lower bound is to use joint quantum measurements that act on all copies of the quantum state ρ simultaneously.
Although very challenging to implement, such procedures can get by with substantially fewer state copies while
still being universal. Shadow tomography [1, 3] is a prominent example.
Proof idea: We adapt a versatile proof technique for establishing information-theoretic lower bounds on

tomographic procedures that is originally due to Flammia et al. [22]; see also [32, 55] for adaptations and
refinements. The key idea is to consider a communication task in which Alice chooses a quantum state from
among an alphabet of possible states and then sends copies of her chosen state to Bob, who measures all
the copies hoping to extract a classical message from Alice. If we choose Alice’s alphabet suitably, then by
learning many properties of Alice’s state Bob will be able to identify the state, hence decoding Alice’s message.
Information-theoretical lower bounds on the number of copies Bob needs to decode the message can therefore
be translated into lower bounds on how many copies Bob needs to learn the properties.

To be more specific, suppose Alice chooses her state from an ensemble of M possible n-qubit signal states
{ρ1, ρ2, . . . ρM} and suppose there are M linear operators {O1, O2, . . . OM}, each with tr

(
O2
i

)
≤ B, such that

learning the expectation values of all the operators {Oi} up to an additive error ε suffices to determine ρi
uniquely. Suppose furthermore that if Bob receives N copies of any n-qubit state, and measures them one at
a time, he is able to learn all of the properties {Oi} with an additive error no larger than ε with high success
probability. This provides Bob with a method for identifying the state ρi with high probability. Therefore,
if Alice chooses her signal state uniformly at random from among the M possible states, by performing the

3 Although tractable in theory, MPST becomes prohibitively expensive if ρ is not well-approximated by a MPS with small bond
dimension. Likewise, NNQST seems to struggle to identify quantum states with intricate combinatorial structure, such as toric
code ground states. We refer to the other supplementary sections for numerical (Supplementary Section 2A) and theoretical
(Supplementary Section 4B) support of this claim.
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Supplementary Figure 4: Illustration of the communication protocol behind Theorem S5 and Theorem S6. Two parties
(Alice and Bob) devise a protocol that allows them to communicate classical bit strings: Alice encodes a bit string X in
a quantum state and sends N independent copies of the state to Bob. Bob performs quantum measurements and uses a
black box device (e.g. classical shadows) to decode Alice’s original message. An unpredictable trickster (Loki) tampers
with this procedure by randomly rotating Alice’s quantum states en route to Bob. Loki reveals his actions only after
Bob has completed the measurement stage of his protocol.

appropriate single-copy measurements Bob can acquire log2M bits of information about Alice’s message. A
lower bound on how many copies Bob needs to gain log2M bits of information about Alice’s state, then, becomes
a lower bound on how many copies Bob needs to learn the M properties {Oi}. To get the best possible lower
bound, we choose Alice’s signal ensemble {ρi} so that it is as hard as possible for Bob to distinguish the signals
using properties with tr

(
O2
i

)
≤ B.

So far, this lower bound on N would apply even if Bob has complete knowledge of Alice’s signal states and
the properties he should learn to distinguish them. We can derive a stronger lower bound on N by invoking
a powerful feature of classical shadows — that Bob must make his measurements before he finds out which
properties he must learn. To obtain this stronger bound, we introduce into the communication scenario a third
party, named Loki4, who tampers with the signal states. Loki chooses a Haar-random n-qubit unitary U , and
replaces all N copies of Alice’s signal state ρi by the rotated states UρiU† before presenting the states to Bob
(Loki’s mischief).

If Bob knew Loki’s unitary U , he could modify his measurement procedure to learn the rotated properties
{UOiU†}. These rotated properties are just as effective for distinguishing the rotated states as the unrotated
properties were effective for distinguishing the unrotated states. However, Loki keeps U secret, so Bob is forced
to perform his measurements on the rotated states without knowing U . Only after Bob’s data acquisition phase
is completed does Loki confide in Bob and provide him with a full classical description of the unitary he applied
earlier (Loki’s redemption). This three-party scenario is illustrated in Supplementary Figure 4.

Suppose, though, that using the classical shadow based on his measurements, Bob can predict any M
properties (with additive error bounded by ε and with high success probability), provided that the Hilbert-
Schmidt norm is no larger than

√
B for each property. Then he is just as well equipped to learn {UOiU†} as

{Oi}, and can therefore decode Alice’s message successfully once Loki reveals U . It must be, then, that Bob’s
measurement outcomes provide log2M bits of information about Alice’s prepared state, when U is known. This
is the idea we use to derive the stronger upper bound on N , and hence prove Theorem S5.

We emphasize again that quantum feature prediction with classical shadows can cope with Loki’s mischief,
by merely rotating the features Bob predicts, because the predicted features need not be known at the time
Bob measures. The lower bound in Theorem S5 does not apply to the task of learning features that are already

4 In Norse mythology, Loki is infamous for mischief and trickery. However, not entirely malicious, he often shows up in the nick
of time to remedy the dire consequences of his actions.
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known in advance. We also emphasize again that Theorem S5 assumes that the copies of the state are measured
individually. It does not apply to protocols where collective measurements are applied across many copies.

B. Description of the communication protocol

We show how Alice can communicate any integer in {1, . . . ,M} to Bob. Alice and Bob first agree on a
codebook for encoding any integer selected from {1, . . . ,M} in a d-dimensional quantum state. We denote
these codebook states by ρ1, . . . , ρM . Alice and Bob also agree on a set of linear features O1, . . . , OM that
satisfies

tr(Oiρi) ≥ max
j 6=i

tr(Ojρi) + 3ε. (S87)

Therefore, if each feature can be predicted with additive error ε, these features can be used to identify the state
ρi. The communication protocol between Alice and Bob is now apparent:

1. Alice randomly selects an integer X from {1, . . . ,M}.

2. Alice prepares N copies of the code-state ρX associated to X and sends them to Bob.

3. Bob performs POVMs F (i) on individual states and receives a string of measurement outcomes Y .

4. Bob inputs Y into the feature prediction machine to estimate tr(O1ρX), . . . , tr(OMρX).

5. Bob finds X that has the largest tr(OXρX).

The working assumption is that the feature prediction machine can estimate tr(O1ρX), . . . , tr(OMρX) within
ε-error and high success probability. This in turn ensures that this plain communication protocol is mostly
successful, i.e. X = X with high probability. In words: Alice can transmit information to Bob, when no
adversary is present.

We now show how they can still communicate safely in the presence of an adversary (Loki) who randomly
rotates the transmitted code states en route: ρX 7→ UρXU

† and U is a Haar-random unitary.
This random rotation affects the measurement outcome statistics associated with the fixed POVMs

F (1), . . . , F (N). Each element of Y =
[
Y (1), . . . , Y (N)

]
is now a random variable that depends on both X and U .

After Bob has performed the quantum measurements to obtain Y , the adversary confesses to Bob and reveals
the random unitary U . While Bob no longer has any copies of ρX , he can still incorporate precise knowledge of
U by instructing the machine to predict linear features UO1U

†, . . . , UOMU†, instead of the original O1, . . . , OM .
This reverses the effect of the original unitary transformation, because tr(UOiU

†UρXU†) = tr(OiρX). This
modification renders the original communication protocol stable with respect to Loki’s actions. Alice can still
send any integer in {1, . . . ,M} to Bob with high probability.

C. Information-theoretic analysis

The following arguments use properties of Shannon entropy and mutual information which can be found in
standard textbooks on information theory, such as [15].

The communication protocol is guaranteed to work with high probability, ensuring that Bob’s recovered
message X̄ equals Alice’s input X with high probability. Moreover, we assume that Alice selects her message
uniformly at random. Fano’s inequality then implies

I(X : X) = H(X)−H(X|X) ≥ Ω(log(M)), (S88)

where I(X : X) is the mutual information, and H(X) is the Shannon entropy. By assumption, Loki chooses
the unitary roatation U uniformly at random, regardless of the message X. This implies I(X : U) = 0 and, in
turn

I(X : X) ≤ I(X : X,U) = I(X : U) + I(X : X|U) = I(X : X|U). (S89)

For fixed U , X is the output of the machine that only takes into account the measurement outcomes Y . The
data processing inequality then yields

I(X : Y |U) ≥ I(X : X|U) ≥ I(X : X) ≥ Ω(log(M)). (S90)
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Recall that Y is the measurement outcome of the N POVMs F1, . . . , FN . We denote the measurement outcome
of Fk as Yk. Because Y1, . . . , YN are random variables that depend on X and U ,

I(X : Y |U) = H(Y1, . . . , YN |U)−H(Y1, . . . , YN |X,U)

≤ H(Y1|U) + . . .+H(YN |U)−H(Y1, . . . , YN |X,U)

=

N∑

k=1

(
H(Yk|U)−H(Yk|X,U)

)
=

N∑

k=1

I(X : Fk on UρXU†|U). (S91)

The second to last equality uses the fact that when X,U are fixed, Y1, . . . , YN are independent. To obtain the
best lower bound, we should choose Alice’s signal states {ρi} such that I(X : Fk on UρXU†|U) is as small as
possible. In Sec. 7D, we will see that, no matter how Bob chooses his measurements {F1, F2, . . . , FN}, there
are signal states satisfying (S87) such that

I(X : Fk on UρXU†|U) ≤ 36ε2

B
,∀k. (S92)

Assuming that this relation holds, we have established a connection between M and N : Ω(log(M)) ≤ I(X :

Y |U) ≤ 36Nε2/B and, therefore, N ≥ Ω
(
B log(M)/ε2

)
. This establishes the claim in Theorem S5.

D. Detailed construction of quantum encoding and linear prediction decoding

We now construct a codebook ρ1, . . . , ρM and linear features 0 � O1, O2, . . . , OM � I with maxi ‖Oi‖22 ≤ B
that obey two key properties:

1. the code states ρ1, . . . , ρM obey the requirement displayed in Eq. (S92).

2. the linear features O1, . . . , OM are capable of identifying a unique code state:

tr(Oiρi) ≥ max
j 6=i

tr(Ojρi) + 3ε for all 1 ≤ i ≤M. (S93)

The second condition requires each ρi to be distinguishable from ρ1, . . . , ρM via linear features Oi. The first
condition, on the contrary, requires ρX to convey as little information about X as possible. The general idea
would then be to create distinguishable quantum states that are, at the same time, very similar to each other.

In order to achieve these two goals, we choose M rank-B/4 subspace projectors Π1, . . . ,ΠM that obey
tr(ΠiΠj)/r < 1/2 for all i 6= j. The probabilistic method asserts that such a projector configuration exists; see
Lemma S7 below. Now, we set

ρi = (1− 3ε)
I
d

+ 3ε
4Πi

B
, and Oi = 2Πi, for all 1 ≤ i ≤M. (S94)

It is easy to check that this construction meets the requirement displayed in Eq. (S93). The other condition –
Eq. (S92) is verified in Lemma S8 below.

Lemma S7. If M ≤ exp(rd/32) and d ≥ 4r, then ∃M rank-r subspace projectors Π1, . . . ,ΠM such that

tr(ΠiΠj)/r < 1/2,∀i 6= j. (S95)

Proof. We find the subspace projectors using a probabilistic argument. We randomly chooseM rank-r subspaces
according to the unitarily invariant measure in the Hilbert space, the Grassmannian, and bound the probability
that the randomly chosen subspaces do not satisfy the condition. For a pair of fixed i 6= j, we have

Pr

[
1

r
tr(ΠiΠj) ≥

1

2

]
≤ exp

(
− r2f

(
d

2r
− 1

))
< exp

(
− rd

16

)
, (S96)

where we make use of [32, Lemma 6] in the first inequality and f(z) = z − log(1 + z) > z/4 for all z ≥ 1 in the
second inequality. A union bound then asserts

Pr

[
∃i 6= j,

1

r
tr(ΠiΠj) ≥

1

2

]
< M2 exp

(
− rd

16

)
≤ 1. (S97)

Because the probability is less than one, there must exist Π1, . . . ,ΠM that satisfy the desired property.
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Lemma S8. Consider a set of d-dimensional quantum states {ρ1, . . . , ρM} such that ρi = (1−α) I
d+αΠi

r , where
Πi is a rank-r subspace projector. Consider U sampled from Haar measure, and X sampled from {1, . . . ,M}
uniformly at random. Consider any POVM measurement F . Then the information gain regarding X, condi-
tioned on U , obtained from the measurement F performed on the state UρXU† satisfies

I(X : F on UρXU†|U) ≤ α2

r
. (S98)

Note that we can obtain the statement (S92) by choosing α = 3ε and r = B/4, hence completing the proof of
Theorem S5.

Proof. First of all, let us decompose all POVM elements {F1, . . . , Fl} to rank-1 elements F ′ =
{
wid |vi〉 〈vi|

}l′
i=1

,
where l ≤ l′. We can perform measurement F by performing measurement with F ′: when we measure a rank-1
element, we return the original POVM element the rank-1 element belongs to. Using data processing inequality,
we have I(X : F on UρXU†|U) ≤ I(X : F̃ on UρXU†|U). From now on, we can consider the POVM ~F to be{
wid |vi〉 〈vi|

}l
i=1

. Normalization demands

tr
(∑

i

wid |vi〉 〈vi|
)

= tr(I) = d and therefore
∑

i

wi = 1. (S99)

Let us define the probability vector ~p = tr(Uρ1U
† ~F ), so pi = wid 〈vi|Uρ1U

† |vi〉 . And the expression we
hope to bound satisfies I(X : F on UρXU†|U) = I(X,U : F on UρXU†) − I(U : F on UρXU†) ≤ I(X,U :
F on UρXU†) using the chain rule and the nonnegativity of mutual information. We now bound

I(X,U : F on UρXU†) =H
( M∑

X=1

1

M
EU [tr(UρXU

† ~F )]
)
−

M∑

X=1

1

M
EU
[
H
(

tr(UρXU
† ~F )

)]

=H
(

tr(EU [Uρ1U
†]~F )

)
− EU

[
H
(

tr(Uρ1U
† ~F )

)]

=
∑

i

−(EU pi) log(EU pi) + EU [pi log pi]

≤
∑

i

−(EU pi) log(EU pi) + EU
[
pi log(EU pi) + pi

pi − EU pi
EU pi

]

=
∑

i

EU [p2
i ]− EU [pi]

2

EU [pi]
. (S100)

The second equality uses the fact that EU f(UρXU
†) = EUf(Uρ1U

†),∀X which follows from the fact that
∀X,∃UX , ρX = UXρ1U

†
X . The inequality uses the fact that log(x) is concave, so log(x) ≤ log(y) + x−y

y . Using
properties of Haar random unitary d× d matrices, we conclude

EU [pi] = wi, EU [p2
i ] = w2

i

d

(d+ 1)

(
1 +

1

d
+ α2

(1

r
− 1

d

))
. (S101)

Therefore we have

EU [p2
i ]− EU [pi]

2

EU [pi]
= wiα

2 d

d+ 1

(1

r
− 1

d

)
≤ wiα

2

r
, (S102)

which establishes the claim:

I(X : F on UρXU†|U) ≤
∑

i

EU [p2
i ]− EU [pi]

2

EU [pi]
≤ α2

r
. (S103)

8. INFORMATION-THEORETIC BOUNDS ON PREDICTING LOCAL OBSERVABLES

In Theorem S5, we have shown that if a procedure can predict arbitrary observables with tr(O2
i ) ≤ B, then

it must use at least Ω(B log(M)/ε2) single-copy measurements (as long as M is not extraordinarily large). A
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similar argument can be used to show that if a procedure can predict arbitrary k-local observables, then it
requires at least Ω(2k log(M)/ε2) single-copy measurements (when M is not too large). This is because if we
focus on a k-qubit subsystem, then the guarantee allows us to predict arbitrary observables 0 � Oi � I with
tr(O2

i ) ≤ 2k. In the following theorem, we show a stronger lower bound by focusing on local measurements. A
local measurement is a POVM {wid |vi〉〈vi|}i where |vi〉 = |v(1)

i 〉 ⊗ . . .⊗ |v
(n)
i 〉,

∑
i wi = 1, and d = 2n. This is

the same as not performing any entangling gates when implementing the measurement. (Random) Pauli basis
measurements are a prominent example.

Theorem S6 (Detailed restatement of Theorem 2 for exponential scaling in locality). Fix a sequence of local
measurements F1, . . . , FN on n-qubit system, i.e., Fj = {wj,id |vj,i〉〈vj,i|}i where |vj,i〉 = |v(1)

j,i 〉 ⊗ . . . ⊗ |v
(n)
j,i 〉,∑

i wj,i = 1, and d = 2n. Suppose that given any M k-local observables −I � O1, O2, . . . , OM � I, there exists
a machine (with arbitrary runtime as long as it always terminates) that can use the measurement outcomes of
F1, . . . , FN on N copies of an unknown quantum state ρ to ε-accurately predict tr(O1ρ), . . . , tr(OMρ) with high
probability. Assuming M ≤ 3k

(
n
k

)
, then necessarily

N ≥ Ω

(
3k log(M)

ε2

)
. (S104)

Proof. The proof uses a quantum communication protocol between Alice and Bob, with Loki interfering in the
middle. Alice would encode some classical information in the quantum state and send to Bob. Bob would then
use the prediction procedure to decode the encoded classical information. In the middle, Loki will alter the
quantum state by applying a random unitary. Loki would then reveal the random unitary to Bob after Bob
performed quantum measurements on the quantum states. An illustration of the communication protocol can
be found in Supplementary Figure 4. The quantum state Alice encodes, the unitary applied by Loki, and the
features predicted by Bob is considerably simplified in this result compared to the previous proof.

We define ρi = (I + 3εPi)/2
n,∀i = 1, . . . ,M . Pi is the i-th Pauli observable acting on k qubits in the

n-qubit system. Any ordering of the Pauli observables is fine. Note that there are at most 3k
(
n
k

)
such Pauli

observables. This is the reason why we assume M ≤ 3k
(
n
k

)
. The corresponding linear functions chosen by Bob

are Oi = Pi,∀i = 1, . . . ,M . This guarantees the following relation:

tr(Oiρj) = 3εδij for all 1 ≤ i, j ≤M , (S105)

where δij is the Kronecker-delta (δij = 1 if i = j and δij = 0 otherwise). The random unitary applied by Loki
consists of random single-qubit unitary rotations, i.e. U = U (1) ⊗ . . . ⊗ U (n). The complete communication
protocol works as follows.

1. Alice randomly selects an integer X from {1, . . . ,M}.
2. Alice prepares N copies of the code-state ρX according associated to X and sends them to Bob.

3. Loki intercepts the N copies, samples a random unitary U = U (1) ⊗ . . .⊗U (n), applies U on all copies of
ρX → UρXU

†, and sends to Bob.

4. Bob performs local measurements Fj on individual states and receives a string of measurement outcomes
Y .

5. Loki reveals the random unitary U to Bob. Now Bob would have to predict the expectation value of
UO1U

†, . . . , UOMU† instead of the original O1, . . . , OM .

6. Since UO1U
†, . . . , UOMU† are still k-local observables, Bob can input Y into the feature prediction

machine to estimate 〈UOiU†〉UρXU† = tr(OiρX),∀i = 1, . . . ,M .

7. Bob finds X ∈ {1, . . . ,M} that has the largest tr(OXρX).

Because tr(OiρX) are predicted to ε additive error, and tr(OiρX) = 3εδiX , if the prediction procedure works
as guaranteed, Bob’s decoded information X̂ would be equal to Alice’s encoded information X with high
probability. Moreover, we assume that Alice selects her message uniformly at random. Fano’s inequality then
implies

I(X : X) = H(X)−H(X|X) ≥ Ω(log(M)), (S106)

where I(X : X) is the mutual information, and H(X) is the Shannon entropy. By assumption, Loki chooses
the random unitary U regardless of the message X. This implies I(X : U) = 0 and, in turn

I(X : X) ≤ I(X : X,U) = I(X : U) + I(X : X|U) = I(X : X|U). (S107)
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For fixed U , X is the output of the machine that only takes into account the measurement outcomes Y . The
data processing inequality then implies

I(X : Y |U) ≥ I(X : X|U) ≥ I(X : X) ≥ Ω(log(M)). (S108)

Recall that Y is the measurement outcome of the N POVMs F1, . . . , FN . We denote the measurement outcome
of Fj as Yj . Because Y1, . . . , YN are random variables that depend on X and U ,

I(X : Y |U) = H(Y1, . . . , YN |U)−H(Y1, . . . , YN |X,U)

≤ H(Y1|U) + . . .+H(YN |U)−H(Y1, . . . , YN |X,U)

=

N∑

j=1

(
H(Yj |U)−H(Yj |X,U)

)
=

N∑

j=1

I(X : Fj on UρXU†|U). (S109)

The second to last equality uses the fact that when X,U are fixed, Y1, . . . , YN are independent. This part of
the derivation is exactly the same as in Supplementary Section 7C. All that is left is to properly upper bound
I(X : Fj on UρXU†|U). First, by definition,

I(X : Fj on UρXU†|U) = EU
[
H(Fj on UρXU†)−H(X,Fj on UρXU†)

]

= EU
[
H
(
EX tr(UρXU

† ~Fj)
)
− EX H

(
tr(UρXU

† ~Fj)
)]

≤ H
(
EX EU tr(UρXU

† ~Fj)
)
− EX EU H

(
tr(UρXU

† ~Fj)
)
. (S110)

The last inequality exploits concavity of the Shannon entropy H(·). By assumption, the Fj ’s must be local
measurements, i.e. Fj = {wj,id |vk,i〉〈vk,i|}i where |vk,i〉 = |v(1)

k,i 〉 ⊗ . . . ⊗ |v
(n)
k,i 〉,

∑
i wi = 1, and d = 2n. We

define the probability of measuring i-th outcome using POVM Fj as

pj,i = wj,id 〈vj,i|UρXU† |vj,i〉 , (S111)

which is a random number depending on X and U . Using Equation (S110) and the definition of H(·), we have

I(X : Fj on UρXU†|U) ≤ H
(
EX EU tr(UρXU

† ~F (k))
)
− EX EU H

(
tr(UρXU

† ~F (k))
)

=
∑

i

(
EX,U [pj,i log(pj,i)]− EX,U [pj,i] log(EX,U [pj,i])

)

≤
∑

i

−(EX,U pj,i) log(EX,U pj,i) + EX,U
[
pj,i log(EX,U pj,i) + pj,i

pj,i − EX,U pj,i
EX,U pj,i

]

=
∑

i

EX,U [p2
j,i]− EX,U [pj,i]

2

EX,U [pj,i]
. (S112)

The second inequality uses the fact that log(x) is concave, so log(x) ≤ log(y)+ x−y
y . We now compute EX,U [pj,i]

and EX,U [p2
j,i] by using the following relation for single-qubit random unitary:

EU(j)

[
U (j) |v(j)

k,i 〉〈v
(j)
k,i | (U (j))†

]
=

I(j)

2
, EU(j)

[(
U (j) |v(j)

k,i 〉〈v
(j)
k,i | (U (j))†

)⊗2
]

=
I(j) ⊗ I(j) + S(j)

3
, (S113)

where j refers to the j-th qubit, and S is the two qubit swap operator (|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉). Recall the
definition of pj,i in Equation (S111). Together with the above relation, we have

EX,U [pj,i] =EX
[
wj,id tr

(
ρX

I
2n

)]
= EX

[
wj,i2

n tr

(
I + 3εPX

2n
I

2n

)]
= wj,i and

EX,U [p2
j,i] =EX


w2

j,id
2 tr


ρ⊗2

X

n⊗

j=1

(
I(j) ⊗ I(j) + S(j)

3

)


 = w2

j,i

(
1 +

9ε2

3k

)
. (S114)

Putting this computation into Inequality (S112), we have obtained

I(X : Fj on UρXU†|U) ≤
∑

i

wj,i
9ε2

3k
=

9ε2

3k
. (S115)
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Combining the above result with Inequality (S108) and (S109), we have

9Nε2

3k
≥ I(X : Y |U) ≥ Ω(log(M)) which implies N ≥ Ω

(
3k log(M)

ε2

)
. (S116)
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Chapter 4

Incompressibility of generic quantum circuits
or: Models of quantum complexity growth

Abstract

The concept of quantum complexity has far-reaching implications spanning theoretical computer

science, quantum many-body physics, and high-energy physics. The quantum complexity of a unitary

transformation or quantum state is defined as the size of the shortest quantum computation that executes

the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state

governed by a chaotic many-body Hamiltonian grows linearly with time for a time that is exponential

in the system size; however, because it is hard to rule out a shortcut that improves the efficiency of a

computation, it is notoriously difficult to derive lower bounds on quantum complexity for particular

unitaries or states without making additional assumptions. To go further, one may study more generic

models of complexity growth. We provide a rigorous connection between complexity growth and

unitary k-designs, ensembles that capture the randomness of the unitary group. This connection allows

us to leverage existing results about design growth to draw conclusions about the growth of complexity.

We prove that local random quantum circuits generate unitary transformations whose complexity

grows linearly for a long time, mirroring the behavior one expects in chaotic quantum systems and

verifying conjectures by Brown and Susskind. Moreover, our results apply under a strong definition of

quantum complexity based on optimal distinguishing measurements.
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The concept of quantum complexity has far-reaching implications spanning theoretical computer sci-
ence, quantum many-body physics, and high-energy physics. The quantum complexity of a unitary
transformation or quantum state is defined as the size of the shortest quantum computation that exe-
cutes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state
governed by a chaotic many-body Hamiltonian grows linearly with time for a time that is exponential in
the system size; however, because it is hard to rule out a shortcut that improves the efficiency of a com-
putation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries
or states without making additional assumptions. To go further, one may study more generic models of
complexity growth. We provide a rigorous connection between complexity growth and unitary k-designs,
ensembles that capture the randomness of the unitary group. This connection allows us to leverage existing
results about design growth to draw conclusions about the growth of complexity. We prove that local ran-
dom quantum circuits generate unitary transformations whose complexity grows linearly for a long time,
mirroring the behavior one expects in chaotic quantum systems and verifying conjectures by Brown and
Susskind. Moreover, our results apply under a strong definition of quantum complexity based on optimal
distinguishing measurements.

DOI: 10.1103/PRXQuantum.2.030316

I. MOTIVATION AND OVERVIEW

The complexity of a computation is a measure of the
resources needed to perform the computation. In a classical
model of computation, the complexity of a Boolean func-
tion may be defined as the minimal number of elementary
steps needed to evaluate the function. The precise number
of steps needed depends on how the model is chosen, but
this notion of complexity provides a useful way to quan-
tify the hardness of a computational problem because how
the number of steps scales with the size of the input to
the problem has only weak dependence on the choice of

*nickrhj@pitp.ca
†richard.kueng@jku.at

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

model. By broad consensus, a computational task is con-
sidered to be feasible if its complexity grows no faster than
a power of the input size, and intractable otherwise; using
this criterion, all classical models of computation agree
about which problems are (classically) “easy” and which
ones are “hard.”

Likewise, we may separate computational tasks into
those that are easy or hard for a quantum computer. The
circuit model of quantum computation provides a conve-
nient way to quantify quantum complexity—namely, the
quantum complexity of a Boolean function is the minimal
size of a quantum circuit, which computes the function
and outputs the right answer with high success probabil-
ity. Here by the size of the circuit we mean the number
of quantum gates in the circuit. These gates are chosen
from a universal set of gates, where each gate in the set
is a unitary transformation acting on a constant number of
qubits or qudits. Though there are many ways to choose the
universal gate set, any set of universal gates can simulate
another accurately and efficiently, so that circuit size pro-
vides a useful model-independent measure of complexity.

2691-3399/21/2(3)/030316(40) 030316-1 Published by the American Physical Society
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From a physicist’s perspective, a quantum computation is a
process governed by a local time-dependent Hamiltonian,
and an intractable computation is a process that requires a
time, which grows superpolynomially with the system size.
Such intractable processes are not expected to be observed
in nature.

Furthermore, in quantum physics, in contrast to classi-
cal digital computation, there is a meaningful notion of
complexity not only for processes, but also for quantum
states. Starting from a state in which all the bits are set to
0, any string of n classical bits can be prepared by flip-
ping at most n bits. But the time needed to prepare a pure
n-qubit quantum state, starting from a product state, even
if we are permitted to use any time-dependent Hamilto-
nian, which is a sum of terms with constant weight and
bounded norm, can be exponential in n. In fact, because
the volume of the n-qubit Hilbert space is doubly expo-
nential in n, while the number of quantum circuits with T
gates is merely exponential in T, most n-qubit pure quan-
tum states have exponentially large complexity. That is, for
a typical pure state in the n-qubit Hilbert space, the time
needed to prepare the state with some small constant error
δ, starting from a product state, grows exponentially with
n. Thus, nearly all quantum states of any macroscopic sys-
tem will forever be far beyond the grasp of the quantum
engineers [1].

While the complexity of quantum circuits has long been
a foundational concept in quantum information theory [2],
appreciation that quantum state complexity is an important
concept has blossomed relatively recently. For example,
the complexity of ground-state wave functions may be
used to classify topological phases of matter at zero tem-
perature [3]. Furthermore, a chaotic quantum Hamiltonian
H can be usefully characterized by saying that evolution
governed by H over a long time period generates highly
complex states. A particularly intriguing proposal is that,
in the context of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence, the complexity of a quantum
state of the boundary theory corresponds to the volume
in the bulk geometry, which is hidden behind the event
horizon of a black hole [4–7].

When we say a quantum state is highly complex, we
mean there is no easy way to prepare the state, but how can
we be sure? Perhaps we were not clever enough to think of
an ingenious shortcut that prepares the state efficiently. It
is not possible in practice to enumerate all the quantum
circuits that approximate a specified state to find one of
minimal size. For that reason, it is quite difficult to obtain
a useful lower bound on the complexity of the quantum
state prepared by a specified many-body Hamiltonian in a
specified time. It is reasonable to expect that, for a chaotic
Hamiltonian H and an unentangled initial state, the com-
plexity grows linearly in time for an exponentially long
time, but we do not have the tools to prove it from first
principles for any particular H .

Exp[Ω(n)]
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it

y

Circuit size (time)

FIG. 1. Expected complexity growth in random circuits. Con-
jecture 1 states that, for random quantum circuits acting on n
qubits, the circuit complexity grows linearly with circuit size
(time) until it saturates at a value exponentially large in n.
Our work provides rigorous evidence supporting this picture for
quantum systems with sufficiently large local dimension; see
Corollary 5.

One possible approach is to rely on highly plausi-
ble complexity theory assumptions to derive nontrivial
conclusions about the complexity of states generated by
particular circuits or Hamiltonians [8–10]. Another is to
consider ensembles of circuits, and to derive lower bounds
on complexity, which hold with high probability when
samples are selected from these ensembles. We follow
the latter approach here, drawing inspiration from recent
work by Susskind [8] and Brown and Susskind [7]. These
authors state a conjecture about the complexity growth of
geometrically local random quantum circuits (see Fig. 1).

Conjecture 1 (Brown and Susskind [7]; Susskind [8]):
Most local random circuits of size T have a complexity that
scales linearly in T for an exponentially long time.

Our goal is to strengthen the evidence supporting this
conjecture.

Brown and Susskind provided evidence for this scal-
ing law by means of a simple counting argument; see
also Ref. [11]. For a fixed finite set of universal quan-
tum gates, consider the ensemble of all circuits with size
T. By definition, this ensemble accurately approximates
(to within a specified error δ) all unitary transformations
with complexity T or less. Furthermore, the number of
circuits increases exponentially with T, and, because the
unitary group has a very large volume, it seems reason-
able to assume that “collisions” between circuits are rare
unless T is very large; that is, that the number of distinct
unitary transformations realized by this ensemble (where
“distinct” means more than distance δ apart) is comparable
to the number of circuits. This means that the number of
circuits with size T′ is too small to account for more than
a small fraction of the unitary transformations realized by
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circuits of size T if T′ is much smaller than T. In other
words, most random circuits with size T have complexity
at least T′, where T′ is comparable to T.

This argument hinges on a crucial assumption, which
sounds plausible but is hard to prove: collisions between
circuits of subexponential size are rare. Collisions cer-
tainly occur for any circuit size T, and necessarily become
common for circuits of exponential size, where T is compa-
rable to the Hilbert-space dimension so that the exponen-
tial of T is comparable to the Hilbert-space volume. Thus
an analytic treatment of complexity growth seems like a
daunting combinatorial task.

The work [12] provides some rigorous support for Con-
jecture 1. There, the authors show that local random cir-
cuits can “fool” short-measurement procedures. That is,
a typical quantum state prepared by a local random cir-
cuit of size polynomial in n, acting on an initial product
state, cannot be distinguished from a maximally mixed
state by any procedure that is much simpler than running
the circuit backwards and verifying that the initial product
state is recovered. Although not stated in this fashion, the
results from Ref. [12] imply that, with high probability, a
local random circuit of size T has complexity �(T1/11).
While this argument rigorously proves a weakened ver-
sion of Conjecture 1, there are still issues we wish to
address:

(i) Restricted notion of complexity: The authors implic-
itly define complexity as the capability of fool-
ing short-measurement protocols. While this oper-
ational notion of complexity is well motivated,
the actual measurement procedures considered are
quite restrictive. In particular, they do not take into
account ancilla-assisted measurements—a mainstay
of modern quantum information.

(ii) Collisions are not treated explicitly: The ensem-
ble of local random circuits of size T defines a
probability distribution on the n-qubit unitaries. If
we are only interested in specifying unitary trans-
formations up to some specified error δ, collisions
occur, so that some unitaries are more likely than
others. The arguments in Ref. [12] show that the uni-
taries sampled from this distribution typically have
complexity �(T1/11), but do not rule out the pos-
sibility that the distribution is highly nonuniform.
It is at least a logical possibility, compatible with
the findings of Ref. [12], that the ensemble con-
tains only a small number of unitaries, which have
high complexity, all of which occur with relatively
high probability. To conclude that the ensemble con-
tains many high-complexity unitaries, we need to
know more about the properties of the probability
distribution governing the ensemble.

(iii) Polynomial relation between circuit size and com-
plexity: The relation between circuit size T and

expected minimal complexity T1/11 is polynomial,
not (yet) linear as required by Conjecture 1.

In this work we make progress toward a rigorous proof
of Conjecture 1 by developing a general framework that
addresses some of the shortcomings of the previously
known rigorous evidence in favor of the conjecture [12].
In particular, we define and use a strong notion of com-
plexity, which captures the difficulty of distinguishing
a given circuit from the most useless possible quan-
tum channel: the completely depolarizing channel D(ρ) =
[Tr(ρ)/d]I that maps any state to the maximally mixed
state.

Definition 1 (Strong complexity: Informal definition):
The complexity of a quantum circuit U is the minimal
circuit size required to implement an ancilla-assisted mea-
surement that is capable of distinguishing ρ �→ UρU†

from the completely depolarizing channel ρ �→ (1/d)I.

We refer to Sec. II A for a more detailed motivation
and a precise statement of this definition. For now, we
emphasize that this strong definition of complexity implies
other (weaker) definitions, such as the minimal circuit size
required to approximate U.

Our first main contribution is a rigorous connection
between complexity growth and the notion of approximate
unitary k-designs [13,14]. We use the notation {pi, Ui}
for an ensemble of unitary transformations in which the
unitary Ui occurs with probability pi. A unitary k-design
is an ensemble with strong pseudorandom properties; an
approximate k-design accurately approximates the first k-
moments of the Haar measure on the unitary group. Hence
a k-design with large k behaves essentially like a Haar-
random ensemble of unitaries, while a small-k-design can
be highly structured. For instance, the n-qubit Pauli group
forms a 1-design, while the n-qubit Clifford group is a
3-design [15–17]. The design order k allows us to interpo-
late between these two very different regimes. Intuitively,
we would expect that the complexity of a k-design grows
with k. Our first technical contribution makes this intuition
precise: a linear growth in design implies a linear growth
in (strong) complexity.

Theorem 2 (Informal statement): Let {pi, Ui} be an
approximate unitary k-design. Then, a randomly selected
(according to the weights) element is very likely to have
strong circuit complexity approximately equal to k.

We refer to Theorem 9 for a more detailed, quantita-
tive statement. This result strengthens the assertions in
Ref. [12] by allowing ancilla-assisted measurement proce-
dures. To do so we prove novel bounds on Haar moments,
see Sec. II D for details. Our second technical contribution
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shows that the k-design property alone severely limits the
likelihood of collisions.

Lemma 3: Let {pi, Ui} be an approximate k-design. Then,
the associated weight distribution cannot be too spiky:
maxi pi � k!d−2k.

This result formalizes the intuitive idea that giving
unusually high weight to some unitaries cannot be com-
patible with the k-design property, but we are not aware of
any precise statements along these lines in the existing lit-
erature. Importantly, because Lemma 3 establishes that the
distribution is nearly flat, knowing that sampling from a
k-design yields a high-complexity unitary with high prob-
ability (as stated in Theorem 2) allows us to infer that there
must be many distinct high-complexity unitaries in the
ensemble. Here our reasoning is based on an approximate
version of Laplace’s definition of probability: if events
are assigned nearly equal probabilities, then the probabil-
ity of property X is approximately the number of events
with property X divided by the total number of events.
Together, Theorem 2 and Lemma 3 imply the following
corollary.

Corollary 4: Any approximate k-design contains expo-
nentially many (in k) unitaries that have circuit complexity
�(k).

While Corollary 4 does not by itself strongly con-
strain how these high-complexity unitary transformations
are distributed geometrically within the n-qudit unitary
group, we are also able to prove a stronger result: An
approximate k-design contains exponentially many (in k)
high-complexity unitaries whose pairwise distance (i.e.,
the distance between any pair of unitaries) is almost maxi-
mal in the diamond norm. This stronger statement rules out
the possibility that most of the high-complexity unitaries
reside inside a few tightly packed clusters within U(d).

Approximate unitary k-designs are a central concept in
quantum information, where their pseudorandom proper-
ties have found extensive application across subfields, e.g.,
state distinguishability [18], decoupling [19], state tomog-
raphy [20,21], randomized benchmarking [22], equilibra-
tion [12] (and references therein), information scrambling
[11,23], and many more. As a result, several probabilistic
constructions are known. Applying Corollary 4 to any of
these constructions establishes a rigorous model for quan-
tum complexity growth. In particular, the following.

(a) Local random quantum circuits with polynomial
design growth: Ref. [12] proves that the set
of all geometrically local circuits of size T =
O(n2k11) forms an approximate unitary k-design
[24]. Corollary 4 therefore implies that local circuits

of size T contain at least exp[�(T1/11)] elements
with strong complexity �(T1/11).

(b) Stochastic quantum Hamiltonians with polynomial
design growth: One can study the growth of
complexity in continuous-time models of chaotic
dynamics, rather than the discrete-time dynamics
embodied by random circuits [25–27]. Stochastic
Hamiltonian dynamics, in which a local Hamil-
tonian fluctuates as a function of time, has been
shown to realize approximate k-designs [26] with
a relationship between k and the evolution time
similar to what was established in Ref. [12] for
local random circuits. Further progress achieved
in Ref. [27] shows that, for a particular class of
stochastic Hamiltonians, evolution time linear in k
suffices to generate approximate k-designs for k =
o(
√

n). Corollary 4 therefore implies that with high
probability the complexity grows linearly in time, at
least for a while.

(c) Local random circuits with linear design growth:
Recently, the results of Ref. [12] were improved
using an exact mapping from random circuits to
the statistical mechanics of a lattice model [28],
showing that local circuits of size T = O(n2k)
form approximate k-designs in the limit of large
local dimension (Hilbert space dimension d = qn

with q large). The q dependence was subsequently
improved in Ref. [29] by studying the spectral gap
of the moment operator for random quantum cir-
cuits. Combined with Corollary 4 this establishes
a linear relation between circuit size and complex-
ity. Thus we can prove the following statement
analogous to Conjecture 1.

Corollary 5: The set of all local circuits of size T contains
at least exp[�(T)] elements with strong complexity �(T),
provided that the local dimension is sufficiently large: q ≥
�(k2).

More precise statements of our main results, and a more
detailed comparison to previous work, can be found in
Sec. II.

II. QUANTUM COMPLEXITY AND UNITARY
DESIGNS

A. Operational definitions of complexity

1. State complexity

We consider systems comprised of n qudits with local
dimension q: d = qn. Existing works on complexity typi-
cally start with identifying a class of states that are useful
starting states for quantum computations. In this work we
take a reverse approach and start with identifying a useless
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state. The maximally mixed state

ρ0 = I
d

, (1)

is unique in the sense that it is invariant under arbitrary uni-
tary evolutions, including any quantum circuit. Intuitively,
useful starting states should be as far away from this use-
less state as possible. If we use trace distance, this intuition
is true to some extent. Any pure state |ψ〉〈ψ | obeys

1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
. (2)

But this is clearly too coarse for distinguishing the use-
fulness of different pure states. In order to achieve such a
task, we recall the operational interpretation of the trace
distance. It corresponds the optimal bias achievable in
distinguishing the state |ψ〉〈ψ | from ρ0 using a single mea-
surement [30,31]. We refer to Appendix B 1b for a more
detailed exposition. The optimal measurement achieving
this bias is M = |ψ〉〈ψ | and does depend on the state
in question. Such a measurement may be challenging to
implement for states that we would intuitively assign a
high complexity to (such as random states) and very easy
for states that we consider useful (such as computational
basis states). We can interpolate between these extreme
cases by limiting the resources available to implement dis-
tinguishing measurements. Let Hd denote the space of
d × d Hermitian matrices. For fixed r ∈ N, we consider
the class of measurements Mr(d) ⊂ Hd that can be imple-
mented by combining (at most) r 2-local gates from a fixed,
universal gate set G ⊂ U(4). We refer to Appendix B 2 for
further details and justification. The maximal bias achiev-
able for quantum states (QS) with such a restricted set of
measurements is the solution to the following optimization
problem:

β
�

QS (r, |ψ〉) =maximize |Tr [M (|ψ〉〈ψ | − ρ0)]|
subject to M ∈ Mr(d).

(3)

We may decompose the true optimal measurement as
|ψ〉〈ψ | = U|0〉〈0|U† for some U ∈ U(d). The unitary U
may be approximated to arbitrary precision by 2-local
circuits chosen from a universal gate set [32]. This ensures

β
�

QS(r, |ψ〉)→ 1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
as r → ∞.

(4)

For simple states, like computational basis states, this
convergence happens rapidly, while generic states require
exponentially large circuit sizes. This observation is the
motivation for the following definition of complexity.

r

FIG. 2. Pictographic illustration of strong state complexity
(Definition 2). A blackbox either outputs a (known) pure state
ρ = |ψ〉〈ψ |, or the maximally mixed state ρ0 = (1/d)I. The
task is to correctly guess which one it produced by applying a
preprocessing circuit V (blue line pattern) of limited size r and
performing a simple measurement (right). We say that |ψ〉 has
strong state complexity less than r if the probability of correctly
distinguishing both possibilities is close to optimal.

Definition 2 (Strong state complexity): Fix r ∈ N and
δ ∈ (0, 1). We say that a pure state |ψ〉 has strong δ-state
complexity at most r if and only if

β
�

QS(r, |ψ〉) ≥ 1 − 1
d
− δ, (5)

which we denote as Cδ(|ψ〉) ≤ r.

This definition has a ready operational interpretation that
is illustrated in Fig. 2. The following result relates it to
more traditional definitions.

Lemma 6: Suppose that |ψ〉 ∈ Cd obeys Cδ(|ψ〉) ≥ r + 1
for some δ ∈ (0, 1) and r ∈ N. Then,

min
size(V)≤r

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 >
√
δ, (6)

i.e., it is impossible to accurately produce |ψ〉 with fewer
than r elementary gates.

The converse is false in general. To see this, select a
generic state |ψ̃〉 on (n − 1) qudits and set |ψ〉 = |0〉 ⊗
|ψ̃〉. Then, the quantity in Eq. (6) is dominated by the
(traditional) complexity of |ψ̃〉, which may be very high.
Nonetheless, the simple distinguishing measurement M =
|0〉〈0| ⊗ I (ignore everything but the first qudit) achieves

Tr [M (|ψ〉〈ψ | − ρ0)] = Tr
[
|0〉〈0|
(
|0〉〈0| − 1

q
I
)]

= 1 − 1
q

, (7)

which is high, especially for large local dimension q.
This example highlights that Definition 2 is indeed more
stringent than traditional definitions of state complexity.

Proof of Lemma 6. By contraposition. Let Gr ⊂ U(d)
denote the class of unitary circuits that are comprised
of at most r 2-local gates chosen from a universal gate
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set G. Suppose there exists a size-r circuit V ∈ Gr such
that 1

2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 ≤ √
δ. The state difference

in question has rank two, which allows for explicitly
computing the trace distance: 1

2‖|ψ〉〈ψ | − V|0〉〈0|V†‖1 =√
1 − |〈0|V†|ψ〉|2. The assumption is therefore equivalent

to |〈0|V†|ψ〉|2 ≥ 1 − δ and we conclude

β
�

QS(r, |ψ〉) ≥ Tr
[
V|0〉〈0|V†(|ψ〉〈ψ | − ρ0)

]

= |〈0|V†|ψ〉|2 − 1
d
≥ 1 − 1

d
− δ, (8)

because V|0〉〈0|V† ∈ Mr. This in turn implies Cδ(|ψ〉) ≤ r
and the claim follows. �

2. Unitary complexity

We define the complexity of unitary channels U(ρ) =
UρU† in a fashion similar to state complexity. We start
with identifying the completely depolarizing channel as the
most useless channel conceivable:

D(ρ) = ρ0 = I
d

for all states ρ. (9)

The diamond distance between D and any unitary channel
is close to maximal:

1
2
‖U − D‖� =1 − 1

d2 . (10)

As detailed in Appendix B 1c, the diamond distance also
has an appealing operational definition [33]. It corresponds
to the maximal bias achievable for the task of distinguish-
ing U from D with a single channel use. The optimal
strategy may involve a quantum memory. Choose a state
in the doubled Hilbert space |φ〉〈φ|, with |φ〉 ∈ Cd ⊗ Cd

and input one half into the unknown channel, while the
other half remains unchanged in the quantum memory.
Subsequently, perform a two-outcome measurement on the
output state to distinguish both channels.

An optimal strategy for distinguishing U from D
corresponds to choosing a maximally entangled (Bell)
state |�〉 ∈ Cd ⊗ Cd as input and measuring M = (U ⊗
I)|�〉〈�|(U† ⊗ I). Equivalently, choose (U† ⊗ I)|�〉 as
input and measure M = |�〉〈�| on the output. Similar to
the state complexity argument, the optimal input state, or
the optimal outcome measurement (or both) depend on the
unitary U ∈ U(d) describing the channel U . This may be
challenging to implement, especially if U corresponds to a
complicated circuit. We restrict apparatus power by bound-
ing the total circuit sizes that are allowed to implement
such a measurement procedure. Let Gr′ ⊂ U(d2) be the set
of all unitary circuits on 2n qudits (register+memory) that
are comprised of at most r′ elementary gates. Likewise, let
Mr′′ ⊂ H⊗2

d denote the class of all two-outcome measure-
ments on 2n qudits that require circuit size at most r′′ to

implement. The optimal bias for quantum channels (QC)
achievable under such restrictions is

β
�

QC(r, U) = maximize
∣∣Tr
{
M
[
(U ⊗ I)(|φ〉〈φ|)

− (D ⊗ I)(|φ〉〈φ|)]}

subject to M ∈ Mr′ , |φ〉 = V|0〉,
V ∈ Gr′′ , r = r′ + r′′,

(11)

where the identity channel I : Hd → Hd indicates that the
memory is left unchanged. As r increases, more compli-
cated measurements and state preparations become pos-
sible. At some point this will include ever more precise
approximations of the optimal measurement [32]:

β
�

QC(r, U) −→ 1
2
‖U − D‖�=1 − 1

d2 as r → +∞.

(12)

Similar to the state case, the rate of convergence does
depend on the complexity of the unknown unitary U.
This is the basis for our operational definition of unitary
complexity.

Definition 3 (Strong unitary complexity): Fix r ∈ N and
δ ∈ (0, 1). We say that a unitary U ∈ U(d) has strong δ-
unitary complexity at most r if and only if

β
�

QC(r, U) ≥ 1 − 1
d2 − δ, (13)

which we denote as Cδ(U) ≤ r.

The operational motivation for this definition is sketched
in Fig. 3. Strong unitary complexity (Definition 3) is more
stringent than traditional definitions that use approxima-
tion errors in some norm. But the comparison between
the two is not quite as straightforward as in the state
complexity case. This is because, the optimal strategy
for distinguishing U from D involves a maximally entan-
gled (Bell) input state |�〉〈�|, as well as a corresponding
two-outcome measurement. In the following statement, we
explicitly allow such input states and measurements in
the distinguishability protocol. Although mild—relatively
short circuits allow for transforming computational basis
states into Bell states [34]—this assumption does further
increase the power of the measurements we are allowed to
make. Our main technical results, most notably Theorem 9,
do take this into account and apply to this slightly stronger
notion of strong unitary complexity.

Lemma 7: Consider a setup that contains maximally
entangled inputs and measurements and suppose that
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r′ r′′

|φ0〉

|φ0〉

FIG. 3. Pictographic illustration of strong unitary complex-
ity (Definition 3). A blackbox (center) takes quantum states as
inputs and applies either a unitary channel U(ρ) = UρU†, or the
depolarizing channel D(ρ) = ρ0 = I/d. The task is to correctly
guess which evolution occurred. The rules of the game allow
short pre- and postprocessing circuits (blue line patterns) that
may involve a quantum memory. The final guess must be based
on a simple measurement (right). We say that U has complexity
less than r = r′ + r′′ if the probability of correctly distinguishing
both options is close to optimal.

U ∈ U(d) obeys Cδ(U) ≥ r + 1 for some δ ∈ (0, 1), r ∈ N.
Then,

min
size(V)≤r

1
2
‖U − V‖�>

√
δ, (14)

i.e., it is impossible to accurately approximate U by cir-
cuits comprised of fewer than r elementary gates.

Again, the converse relation is false in general.

Proof of Lemma 7. By contraposition. Assume there exists
V ∈ U(d) with size(V) ≤ r such that 1

2 ‖U − V‖� ≤ √
δ.

Then,

√
δ ≥ 1

2
‖U − V‖� ≥ 1

2

∥∥(U⊗ I)|�〉〈�|(U†⊗ I)

− (V ⊗ I)|�〉〈�|(V† ⊗ I)
∥∥

1

=
√

1 − |〈�|V†U ⊗ I|�〉|2, (15)

as the second expression involves a trace distance of
two pure states, which can be computed explicitly. Next,
note that M = (V ⊗ I)|�〉〈�|(V† ⊗ I) is a legitimate dis-
tinguishing measurement, because size(V) ≤ r and we
explicitly include the Bell measurement. Likewise, the
input state |�〉〈�| is also allowed and produces a max-
imally mixed state when completely depolarized: D ⊗
I(|�〉〈�|) = ρ⊗2

0 (this is why we need Bell states) ensures

β
�

QC(r, U) ≥ Tr
{
(V ⊗ I)|�〉〈�|(V† ⊗ I)

× [(U ⊗ I)|�〉〈�|(U† ⊗ I)− ρ⊗2
0

]}

= ∣∣〈�|V†U ⊗ I|�〉∣∣2 − 〈�|V†ρ0V ⊗ ρ0|�〉

≥ 1 − δ2 − 1
d2 . (16)

�

B. Approximate unitary designs

The concept of unitary k-designs [13,14] provides an
interpolation between two extreme cases: (i) small col-
lections of highly structured unitaries that form the basic
building blocks of quantum-computing devices (e.g., local
Pauli gates, or elements of the Clifford group). (ii) generic
(Haar random) unitaries that lack any sort of structure and
require circuits of exponential size to approximate.

Roughly speaking, an ensemble E = {pi, Ui} of unitaries
is a unitary k-design if it exactly reproduces the first k
moments of the Haar measure over the unitary group.
More precisely, given the twirling channels T (k)

U (X ) =∫
dUU⊗kX (U†)⊗k and T (k)

E (X ) =∑i piU⊗k
i X (U†

i )
⊗k, an

ensemble E is a unitary design with order k if

T (k)
E (X ) = T (k)

U (X ), (17)

for all X in the k-fold tensor product. Although seemingly
abstract, this notion captures important physical concepts.
1-designs are in one-to-one correspondence with unitary
operator frames, while 2-designs sufficiently capture the
notion of scrambling [11,23].

Unitary k-designs are known to exist for any dimension
d and any order k. Nevertheless, explicit constructions are
notoriously difficult to find. This challenge can be over-
come by relaxing the notion of a k-design. Indeed, for
most applications it is sufficient to ensure that Eq. (17) is
only approximately true, see Definition 4 in the Appendix
for a precise statement. Several conventions for choosing
an appropriate distance measure ‖ · ‖ have been put forth,
but here we opt for the diamond distance ‖ · ‖�, which
quantifies the distinguishability of two ensembles.

In contrast to exact k-designs, several explicit construc-
tions for approximate k-designs have been established [12,
26–28,35,36], including local random circuits and various
Brownian circuits and stochastic quantum Hamiltonians.
These constructions allow us to relate abstract insights
about complexity growth in designs to concrete random
circuit models.

C. Complexity by design

This section presents our main technical contributions.

1. State complexity growth

Theorem 8: Consider the set of (pure) states in d = qn

dimensions that results from applying all unitaries asso-
ciated with an ε-approximate 2k-design to a fixed (but
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arbitrary) starting state |ψ0〉. Then, this set contains at
least
(

d + k − 1
k

)[
1

1 + ε − 2d(n + 1)r|G|r
(

16k2

d(1 − δ)2
)k
]

,

distinct states that obey Cδ(|ψ〉) ≥ r + 1 each. Qualita-
tively, this number is of order (d/k)k as long as r obeys

r � k[n − 2 log(k)]
log(n)

.

Because of collisions, the emphasis on distinct is justi-
fied; two or more distinct unitaries can lead to the same
final state.

2. Unitary complexity growth

Theorem 9: A discrete approximate 2k-design in d = qn

dimensions contains at least

d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

,

distinct unitaries that obey Cδ(U) ≥ r + 1 each. Quali-
tatively, this number is of order (d2/k)k as long as r
obeys

r � k[n − 4 log(k)]
log(n)

.

D. Moment bounds

Both Theorems 8 and 9 follow from an initial prob-
abilistic statement combined with relatively straightfor-
ward counting arguments. These probabilistic statements
highlight that it is very unlikely to distinguish random
k-design elements from their average with a fixed mea-
surement procedure. Markov’s inequality—Pr [S ≥ τ ] =
Pr
[
Sk ≥ τ k

] ≤ E[Sk]/τ k for non-negative random vari-
ables S—reduces this probabilistic assertion to a ques-
tion about moment growth. The larger the moments we
can control, the stronger this assertion becomes. Designs
appropriately capture this feature: a k-design accurately
approximates Haar-random moments up to order k. This is
why designs with growing k become increasingly complex.

For state complexity, the associated Haar-moment com-
putation is relatively straightforward:

E|ψ〉

({
Tr(M |ψ〉〈ψ |)−E|ψ〉

[
Tr(M |ψ〉〈ψ |)]

}k
)

≤
(

k2

d

)k/2

,

(18)

for any fixed measurement M , see e.g., Corollary 24 below.
However, such simple moments do not cover strong uni-

tary complexity. Quantum channels allow for more sophis-
ticated measurement procedures that render the associated

Haar-moment computations nontrivial. Our main technical
contribution is a novel bound that addresses this setting.

Theorem 10: Fix a bipartite input state |φ〉 ∈ Cd ⊗ Cd

and measurement M of compatible dimension. For U
chosen uniformly from the Haar measure, we have

EU

[(
Tr
[
M
(
U ⊗ I
)|φ〉〈φ|(U† ⊗ I

)]

− EU

{
Tr
[
M
(
U ⊗ I
)|φ〉〈φ|(U† ⊗ I

)]})k]
≤ Ck(k!)2

dk/2 ,

where Ck = [1/(k + 1)]
(

2k
k

)
< 4k/k denotes the kth

Catalan number.

This bound is considerably more general than exist-
ing ones in the literature. Reference [12], for instance,
utilizes Eq. (18) only. We establish this result by combin-
ing Schur-Weyl duality [37,38] with Weingarten calculus
[39,40] and auxiliary arguments from tensor network the-
ory [41,42] and convex optimization [43,44]. We believe
that the dimensional scaling in the final bound is tight, but
there may be room for further improving the k-dependent
constants. In particular, we do not know if the Catalan
number is necessary, or merely an artifact of our proof
technique.

E. Relation to previous work

Quantum complexity has recently become a popular
subject in high-energy physics. A considerable amount of
attention has been devoted to understanding the complex-
ity accumulated after an exponentially long time. Works by
Susskind and Aaronson [4,8,9] point to an intriguing con-
nection to theoretical computer science: unless PSPACE ⊆
BQP/poly (a hypothetical relation between different com-
putational complexity classes that is widely believed to
be false), the circuit complexity of certain Hamiltonian
evolutions U = exp(−iHt) achieves superpolynomial val-
ues for exponentially long time scales t. In a similar
vein, Bohdanowicz and Brandão [10] constructed a family
of Hamiltonians that provably achieves superpolynomial
complexity in exponential time, unless PSPACE = BQP.

These arguments address late-time complexity and
therefore do not yield insights regarding early-time com-
plexity growth. In this regard, relations between complex-
ity growth and approximate k-designs have recently been
pointed out in Refs. [11,45]. Specifically, Ref. [11] defined
a notion of the complexity of generating an ensemble of
unitaries and gave a lower bound on the ensemble com-
plexity in terms of the distance to forming a unitary design.
They also argued that the lower bound of the complexity
of a k-design is linear in k. Our arguments and results may
be regarded as a substantial refinement of these ideas.
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The notion of strong complexity put forward in our work
has its conceptual roots in quantum information. Encom-
passing this mindset is the statement from Ref. [46]: “most
states are too entangled to be useful as computational
resources.” At the core of this argument is the follow-
ing observation. Haar-random pure states are so highly
entangled that local measurements yield almost uniformly
random outcomes. In turn, any quantum device that relies
on local measurements and uses known, but Haar-random,
states could be efficiently simulated by tossing classical
coins! This prevents any genuine quantum advantage for
computation.

Strong state complexity (Definition 2) may be thought
as a formal version of this observation. Measuring the
maximally mixed state ρ0 always results in a uniform out-
come distribution. Moreover, Ref. [46] makes essential use
of the fact that the measurements are constrained to be
“simple” (in their case: local measurements augmented by
classical postprocessing). The core of their argument may
be summarized as follows: low complexity measurements
do not allow for distinguishing a Haar-random state from
the maximally mixed state. We present a variant of this
argument in Appendix A 1 below.

While Ref. [46] considers only Haar-random pure states,
similar arguments have been established for states that are
less generic, see e.g., Ref. [12, Section 3]. Although not
stated at this level of generality, Ref. [12, Corollary 10]
effectively points out that states generated by approximate
k-designs fool short quantum circuits: with high probabil-
ity they cannot be distinguished from the maximally mixed
state by means of any measurement with small circuit size.
They also extend this result to circuits [12, Corollary 11].
With high probability, a randomly selected (according to
the weights) k-design element cannot be approximated by
any short-sized circuit V in the sense that ‖U − V‖∞ is
small.

The second main result of our work, Theorem 9,
improves upon this result in two ways. Firstly, the strong
unitary complexity (Definition 3) is more stringent than
their more traditional definition. While Theorem 9 does
imply [12, Corollary 11], the converse is not necessarily
true.

Secondly, and more importantly, both Corollaries 10 and
11 in Ref. [12] are probabilistic. While this is enough to
deduce average-case behavior, a strong quantitative state-
ment about the number of k-design elements with high cir-
cuit complexity remains beyond the scope of these asser-
tions. A worst-case caricature may help to illustrate this
subtlety. Suppose that the weights accompanying a unitary
k-design are extremely spiky. A single high-complexity
unitary, say U1 ∈ U(d) is accompanied by an exceedingly
large weight p1 � 1, while all other design unitaries Ui
have low complexity and almost vanishing weights pi � 0.
Such a weight distribution would not contradict the asser-
tion of Ref. [12, Corollary 11]. The single high-complexity

circuit occurs with high probability (over the weights).
Nonetheless, the hypothetical k-design contains only a
single high-complexity element.

Here we overcome this issue by explicitly ruling out
the possibility of such extreme cases ever occurring. The
definition of an approximate k-design alone implies that
the weights cannot be too spiky, see Lemma 3. This bound
on the weights allows us to convert probabilistic (average
case) statements into quantitative ones. Not only does the
average circuit complexity grow linearly with the order
k of an approximate design, the absolute number of dis-
tinct circuits that have high complexity must also grow
exponentially with k.

Interest in state complexity has been stimulated by its
potential role in quantum gravity and the AdS/CFT corre-
spondence; see Sec. IV for further discussion. Recently, the
relevance to holographic duality of computational pseudo-
randomness has been emphasized. Specifically, the authors
of Ref. [47] argue that one can construct two mixed quan-
tum states on the boundary (A and B) such that both A and
B can be efficiently prepared, yet A and B cannot be distin-
guished from maximally mixed states by polynomial-size
quantum circuits. Furthermore, the corresponding bulk
states (A′ and B′) can be distinguished efficiently from one
another. This observation indicates that the holographic
dictionary, which relates bulk and boundary states must
have high computational complexity.

We stress that this concept of pseudorandom quantum
states, which can be efficiently prepared yet cannot be
distinguished from random by computationally bounded
observers, is applicable to mixed states, or ensembles of
pure states, but not to individual pure quantum states. If
a particular pure state can be prepared efficiently by a
quantum circuit, that state can always be distinguished effi-
ciently from a maximally mixed state by running the circuit
backwards. An ensemble of pure states can be pseudo-
random only if it contains superpolynomially many pure
states, where the observer who draws a sample from the
ensemble and attempts to distinguish this sampled state
from a maximally mixed state has no information about
which sample was chosen. In contrast, in our definition
of complexity for pure states, the observer is permitted
to use a different distinguishing circuit for each possible
pure state. On the other hand, the existence of pseudoran-
dom quantum states [48] indicates that, for mixed states,
our definition of state complexity, namely the computa-
tional cost of distinguishing the state from a maximally
mixed state, can differ substantially from another natural
definition, the computational cost of preparing the state.

III. COMPLEXITY GROWTH IN RANDOM
CIRCUITS

The rigorous statements put forward in Theorems 8
and 9 gain additional meaning when applied to concrete
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examples. The literature contains several proofs of design
growth in random circuits. Combining these with our rig-
orous insights yields a number of concrete models for
complexity growth.

A. Local random circuits

For concreteness, we focus here on systems comprised
of n qubits, i.e., q = 2 and d = 2n. Let G ⊂ U(4) be a
(finite) universal gate set containing inverses, i.e., g−1 =
g† ∈ G whenever g ∈ G. We can generate G-local random
circuits by sequentially applying a random gate g ∈ G to
a randomly selected pair of neighboring qubits. Repeating
this procedure independently for T steps results in random
circuits of size T. We refer to the application of each gate as
a time step, such that size T circuits are of depth T and have
thus evolved to time T. Intuitively, the larger T, the more
random the circuit becomes. A seminal result by Brandão,
Harrow, and Horodecki confirms this intuition in a precise
sense.

Theorem 11 (Corollary 7 in Ref. [12]): Fix d = 2n, ε >
0, k ≤ √

d, and let G ⊂ U(4) be a universal gate set con-
taining inverses [49]. Then, the set of all G-local random
circuits of size T forms an ε-approximate k-design if

T ≥ Cn�log2(k)�2k9.5[nk + log (1/ε)
]
, (19)

where C > 0 is a (large) constant, which depends on G.

We emphasize that the weights associated with each
unitary in this ensemble are defined implicitly by this ran-
dom procedure. Several different T-sized circuits may give
rise to the same final unitary, say U1, while another one,
say U2, may exclusively be obtained from a single circuit
geometry. The weights associated with U1 and U2 take
into account this behavior, i.e., p1 ≥ 2p2 for our exam-
ple. However, the fact that the entire ensemble still forms
an approximate k-design limits potential fluctuations. This
in turn imposes lower bounds on the minimal number of
distinct unitaries and severely limits the potential for col-
lisions. It cannot be too likely that two or more different
random circuits coincide. These features were conjectured
by Brown and Susskind [7, Sec. 6.5] who, in turn, base
their counting argument that relates circuit size and com-
plexity on an extreme version of this conjecture: collisions
do not occur at all. One of the main results of this work
is rigorous proof for a weaker version of their conjec-
tured relation between circuit size and complexity. It is an
immediate consequence of Theorems 9 and 11.

Corollary 12 (Polynomial relation between circuit size
and circuit complexity for local random circuits): Fix
δ ∈ (0, 1), r ≤ 2n/2 and set T ≥ Cn2

[
log2(n)r/n

]11 . Then,
the set of all G-local circuits of size T contains at least

C̃nr unitaries that obey Cδ(U) > r. Here, C, C̃ > 0 are
constants that implicitly depend on δ and G.

This result establishes a polynomial relation between the
size T of G-local circuits and the strong δ-unitary complex-
ity that may be achieved in such a model [50]. The relation
T � r11 is a consequence of Theorem 11, which features a
similar relation between the degree 2k of an approximate
2k-design and the circuit size T required to implement it.
This relation between complexity and circuit size can cer-
tainly be improved, which we soon discuss, but there are
fundamental limits: a lower bound on the design depth for
random circuits is known. A converse result (Proposition 8
in Ref. [12]) states that for ε ≤ 1/4 and k ≤ d1/2, the size
of random circuits on n qudits must be at least

T ≥ 2kn log q
q4 log k

to form an ε-approximate k-design.

(20)

See Appendix C 10 for a rederivation of this claim.

B. Relating two conjectures

Fix q = 2, d = 2n (n qubits) and suppose that the afore-
mentioned lower bound were not only necessary, but also
(approximately) sufficient: G-local circuits of size T �
2nk/log2(n) generate (sufficiently accurate) approximate
2k-designs. Under this assumption, G-local random cir-
cuits of size T contain at least d2k/(k!)2 elements with
circuit complexity r � T. If we also assume k ≤ √

d
[log2(k) ≤ n/2], then this bound can be simplified further
as

d2k

(k!)2
= 22nk−2 log2(k!) � 22k[n−log2(k)]

� 2nk � 2log2(n)T ≥ 2T. (21)

This is essentially Conjecture 1: the set of all G-local cir-
cuits of size T contains an exponentially growing set of ele-
ments with complexity r � T. This observation provides
a relation between Conjecture 1 (linear growth in com-
plexity) to an existing conjecture in quantum information
[12].

Conjecture 13 (Linear growth in design): G-local cir-
cuits on n qubits of size T = O(n2k) form approximate
k-designs.

To achieve a linear growth in complexity it suffices to
have a linear growth in design.

C. Linear growth in design for local random circuits at
large local dimension

We again consider a 1d system comprised of n qudits
of local dimension q, with total dimension d = qn, and
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evolve the system by a random circuit consisting of local
2-site unitaries drawn Haar randomly from U(q2). The
results of Ref. [12] also ensure that such random circuits
form approximate k-designs when the size is O(n2k11).
Although Conjecture 13, a linear design growth in G-local
random circuits with local qubits, is currently out of reach,
progress was made recently in Ref. [28], improving the
k dependence for Haar-local random circuits in the limit
of large local dimension and giving a linear growth in the
circuit size to form a unitary k-design.

Theorem 14 ([28]): Random quantum circuits on n qudits
of local dimension q form approximate unitary k-designs
when the circuit size is T = O(n2k) for some q > q0, where
q0 depends on the size of the circuit [51].

The approach of Ref. [28] was to consider the frame
potential, capturing the 2-norm distance to forming an
approximate design, and make use of an exact statistical
mechanical mapping [52,53] in order to write the frame
potential as the partition function of a triangular lattice
model. The contributions to the partition function can be
interpreted as domain walls in the lattice model. In the
limit of large q, Ref. [28] showed that only a simple sec-
tor of domain walls contribute, allowing for the calculation
of the k-design circuit size. More precisely, by computing
the single domain-wall terms and showing that the mul-
tidomain wall terms contribute at subleading order in 1/q,
it was proved that local random circuits exhibit a linear
growth in design for some q > q0, where q0 depends on
the circuit size T and moment k.

Theorem 14 and Corollary 12 allow us to establish Con-
jecture 1 for local random circuits with Haar-random 2-site
unitaries in the limit of large q.

Corollary 15 (Linear complexity growth): Given the set
of local random circuits of size T at large q, most circuits
have strong complexity �(T), i.e., growing linearly in T
for a long time.

Although Theorem 9 still applies for local Haar random
quantum circuits, giving a lower bound on the number
of distinct unitaries with high complexity, its meaning
becomes less clear when we have a continuous ensem-
ble. We can consider an ensemble of finite cardinality
by constructing an ε-covering of the set of random cir-
cuits. We review the notion of an ε-covering in Appendix
C 10 and give a bound on the cardinality of a covering
for local random circuits. Constructing a coarse net then
shows that exponentially many random quantum circuits,
with Haar-random 2-site unitaries, have high complexity.

Recently, an improvement was made in the q depen-
dence of Theorem 14. By studying the spectral gap of the
moment operator for random quantum circuits, and using
Knabe bounds to bound the spectral gap, it was proven

in Ref. [29] that one requires only the local dimension to
be q ≥ �(k2) to form unitary designs. While that work
explicitly studied circuits with Haar-random 2-local gates,
the seminal result in Ref. [54] that the spectral gap is k
independent for any set of universal gates G (containing
inverses and comprised of algebraic entries), guarantees
that the circuit size required to form a k-design for G-
local circuits changes only by a constant. This allows us
to extend the result to random quantum circuits instead
comprised of 2-local gates randomly chosen from G.

Theorem 16 ([29]): G-local random quantum circuits on
n qudits of local dimension q form approximate unitary
k-designs for T ≥ O(n2k) when q ≥ 6k2.

Therefore, Theorem 16 and Corollary 12 immediately
establish Conjecture 1 for G-local random quantum cir-
cuits for q ≥ 6k2.

Lastly, we emphasize that we do not prove linear com-
plexity growth up to time scales of order d. While taking a
large enough q will ensure linear design growth for times
exponential in n, such a limit still pushes the true expo-
nential time scales of interest, t ∼ d = qn, out of reach.
Proving an optimal design growth for local random circuits
away from the large q limit would allow us to better probe
late-time complexity.

D. Stochastic quantum Hamiltonians

There also exist continuous-time models of chaotic
dynamics, analogous to random circuits, which scramble in
O(log n) time [25]. In a similar spirit to models of random
walks on the unitary group, one can define a one-parameter
family of Hamiltonians, which generate a time-dependent
unitary evolution. The Hamiltonian on n qubits at a time
step s is given by a sum of random all-to-all 2-body inter-
actions, meaning we sum over all possible 1- and 2-local
interactions with independently chosen Gaussian random
couplings

Hs =
∑

i<j

∑

α,β

Js,i,j ,α,βSαi Sβj , (22)

where Sαi is a Pauli operator acting on site i with α =
{0, 1, 2, 3}. The couplings are each drawn independently
from a Gaussian distribution with zero mean and variance
σ 2. Not only are the couplings random in space, but are
further chosen randomly at each time step s. The time
evolution to time t is then given by

Ut =
t∏

s=1

e−iHsδt, (23)

where we consider the continuum limit δt → 0 with the
variance of the couplings scaling as σ 2 = J/δt so that the
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interactions strength increases proportionally to the inverse
time step and where J is a constant.

It was shown in Ref. [26], using similar techniques to
Ref. [12], that these stochastic quantum Hamiltonians (also
called Brownian circuits) form k-designs in polynomial
time.

Theorem 17 (Corollary 10 in Ref. [26]): For d = 2n

and ε > 0, the ensemble of time evolutions by stochas-
tic Hamiltonians in Eq. (22), forms an ε-approximate
k-design for times

t ≥ C�log2(k)�2k9.5[nk + log(1/ε)], (24)

where C > 0 is a constant.

For the Brownian circuit models, the constant prefactor
C depends on the local dimension, here chosen to be 2,
but also on the interaction strength of the couplings J , C ∼
1/J , meaning if the interactions are stronger then the depth
required to form a design decreases accordingly.

We can again use the polynomial relation between com-
plexity and design to discuss complexity growth. Theo-
rems 9 and 17 together give that Brownian circuits have
a complexity growing polynomially in time as �(t1/11).

E. Nearly time-independent Hamiltonian dynamics

There is another random quantum circuitlike con-
struction of a time-dependent Hamiltonian with varying
couplings over discrete time steps. This “nearly time-
independent” model of Ref. [27] forms k-designs in a
circuit size O(n2k), for moments up to k = o(

√
n), achiev-

ing the nearly optimal lower bound with a linear growth in
design for a short time.

Consider a 1d system of n qudits, with d = qn, and
define a time-dependent set of random couplings

J (t, g) =
{
λ/(�t/2� + 1), λ ∈ [−g/2, g/2]

}
, (25)

where λ is drawn uniformly at random from the inter-
val. We now generate two ensembles of Hamiltonians with
time-dependent couplings

EZ(t) =
{
−
∑

j<k

hjkZj Zk −
∑

j

bj Zj

}
,

EX (t) =
{
−
∑

j<k

hjkXj Xk −
∑

j

bj Xj

}
,

(26)

with hjk ∈ J (t, h) and bj ∈ J (t, b), and where h =
�t/2�/2 and b = �t/2� + 1/2. We then define the time

evolution of our system: we evolve by an X -type Hamilto-
nian HX ∼ EX at even time steps and a Z-type Hamiltonian
HZ ∼ EZ at odd time steps. Then the unitary time evolu-
tions form an ε-approximate k-design for k = o(n1/2), after
T time steps, where

T ≥ [k + 1/2 + (1/n) log2(1/ε)], (27)

where each time step involves O(n2) gates.
This construction forms unitary k-designs almost lin-

early in time, with the caveat that the time scale is limited
to approximately

√
n. Thus we get a linear growth in

design at early times, but not exponentially in n. Conse-
quently, this implies a linear growth in complexity at (very)
early times.

F. Comment on time-independence

We discuss a few explicit models of complexity growth
in systems that are random in both space and time. As
we emphasize, one of our results is that a polynomial
growth in design implies a polynomial growth in com-
plexity (Corollary 4). Thus, the random circuit and Brow-
nian circuit models, which form approximate k-designs in
poly(k) depth, are also explicit examples of systems with a
long-time polynomial growth in complexity.

But for an ensemble of time evolutions to form a k-
design, randomness in time is likely essential. For instance,
consider an ensemble of time evolutions generated by an
ensemble of Hamiltonians, Et = {e−iHt, H ∈ EH }, where
EH could be a disordered spin system or any ensem-
ble of random Hermitian matrices. The rigid structure of
eigenvalues then prohibits the late-time Haar randomness.

Interestingly, the Gaussian unitary ensemble (GUE),
an ensemble of d × d random Hermitian matrices with a
unitarily-invariant measure, does come close to an approx-
imate k-design in 2-norm for moments k � d at a specific
time scale t ∼ √

d [45]. But at later times, the 2-norm dis-
tance between the ensemble of unitaries generated by GUE
Hamiltonians and the Haar ensemble becomes large. More
generally, one expects that any ensemble of unitary evo-
lutions generated by time-independent Hamiltonians will
not form a k-design at late times. A general argument for
this is as follows [11], under the exponential map λ→ eiλt,
the eigenvalues of a Hamiltonian are distributed as time-
evolving phases on the unit circle. In the limit t → ∞,
the phases become uncorrelated and uniformly distributed,
unlike the correlated and logarithmically repelling eigen-
values of Haar-random unitaries. Thus, to understand the
complexity growth of (ensembles of) time-independent
Hamiltonian evolution, we would need to look beyond
their design properties for an alternative approach, for
instance, by studying the approximate invariance of the
ensemble [45,55].
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IV. COMPLEXITY IN HOLOGRAPHIC SYSTEMS

Much of the recent interest in quantum complexity in the
high-energy literature has centered on the conjectured rela-
tion between complexity growth and the long-time growth
of black-hole interiors [4,5,56]. More specifically in the
context of the AdS/CFT correspondence, the region behind
the horizon of an eternal AdS-Schwarzschild black hole
grows linearly in time for an exponential time (t ∼ en). The
holographic picture is a two-sided geometry connected by
a wormhole, where the throat of the wormhole is grow-
ing in time. The claim is that the quantum complexity
of the dual CFT state is the long-time linearly increasing
quantity, which captures the wormhole growth. There have
been a number of proposals for what bulk quantity actually
computes the complexity, including the volume and action
of the AdS wormhole. The complexity/volume conjecture
states that the computational complexity of the boundary
state is equal to the volume of the wormhole. More pre-
cisely, the complexity of time-evolved thermofield double
state of the two boundary CFTs is equal to spatial vol-
ume behind the horizon of the two-sided geometry on a
maximal time slice [5]. The “complexity equals action”
conjecture posits that the action computed on a certain
region of the bulk geometry, which extends behind the
horizon (the Wheeler-DeWitt patch), is the quantity, which
is dual to the complexity [6,57]. A lot of progress has been
made checking these conjectures and studying complexity
growth in holographic systems, see, for instance, [58–64].

In this work we rigorously compute the complexity
growth in a number of random circuit models, by relat-
ing the growth in design to the growth of complexity,
and are able to prove a linear growth in complexity for
local random circuits in the limit of large local dimension
(albeit, not for an exponentially long time). As we men-
tion, the connection between unitary designs and quantum
complexity will likely not inform complexity growth in
holography as evolution by time-independent Hamiltoni-
ans will not converge to approximate designs. Thus, to
study complexity growth in holography we need to explore
properties beyond the Haar randomness of the evolution.

A. Strong complexity in the bulk

We briefly discuss why we believe our proposed strong
definition of complexity (in terms of a distinguishing mea-
surement), is congruent with expectations from the bulk
and might be more suited for holography than the standard
definition in terms of the circuit complexity.

One feature we expect complexity growth will exhibit
in holography, and fast scrambling systems more gener-
ally, is the switchback effect [5]. Consider a time-evolved
local operator O(t) = e−iHtOeiHt (sometimes called a pre-
cursor), where O might be a single-site Pauli. For such
an operator, we anticipate a delay in the onset of the lin-
ear complexity growth. For the traditional definition of

complexity, consider the minimal circuit approximating
the evolution operator e−iHt. The reason for this delay is
the exact cancellation of gates outside the lightcone of the
spreading operator. Once the operator grows to be the size
of the system (more precisely, to have support on weight
n Pauli operators) after a time scale called the scrambling
time, we expect the complexity of O(t) to begin its long
time linear growth. Such an effect is also present in the bulk
for both complexity-volume and action conjectures. This
feature is also present in complexity growth of O(t) under
the strong definition of complexity in Definition 2. To be
concrete, consider a system of n qubits and the evolved
state e−iHtOeiHt|ψ0〉, where H is a chaotic but local Hamil-
tonian and we take |ψ0〉 to be an unentangled product
state. Prior to the scrambling time, the optimal measure-
ment to distinguish the evolving state from the maximally
mixed state is a simple measurement of a qubit outside
the lightcone of the evolving operator. It is not until the
scrambling time, when operator has grown to have sup-
port on all sites, that the complexity of the distinguishing
measurement begins to grow.

Another interesting expectation from holographic sys-
tems, where the strong and weak definitions of complexity
differ, is that of one-clean qubit. This is essentially the
argument given in Lemma 6, to prove that measurement
complexity is a stronger definition than standard circuit
complexity. Consider a simple initial state |ψ0〉, which has
been evolved for an exponential time such that |ψ(t)〉 is
maximally complex. If we add a single unentangled qubit
to the state |ψ(t)〉 ⊗ |0〉, then the minimal circuit complex-
ity will be unchanged, but maximal potential complexity
increases and the complexity of the state can continue to
grow for a long time until it saturates at the new maximal
value. For the complexity of a distinguishing measure-
ment, adding a single clean qubit resets the complexity to
an order-one value, as the optimal measurement is simply
the projection onto the clean qubit. Reference [7] pro-
posed the notion of uncomplexity as the difference of the
complexity of a state or unitary from its maximal com-
plexity and suggested an interpretation in the bulk as the
total spacetime volume accessible to an infalling observer.
Uncomplexity can be thought of as a resource to do useful
computation. As we describe, our strong definition of com-
plexity directly encodes this potential for useful quantum
computation.

B. Entanglement growth by design

The suggestion that complexity be the dual of the long-
time geometric growth in the bulk was motivated by the
observation that the wormhole grows long past the times
cales at which entropic quantities saturate. Given that we
discuss long-time growth in complexity from a long-time
growth in design, it is worth commenting on the saturation
of entropies after a short growth in design order.
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The entanglement entropies for k-designs were stud-
ied in Ref. [65]. Specifically, they looked at the
Rényi-α entropies of a density matrix ρ: S(α)(ρ) =
[1/(1 − α)] log [Tr(ρα)]. For any state, the Rényis are
bounded above and below by the min-entropy Smin(ρ) :=
limα→∞ S(α)(ρ) = − log(‖ρ‖∞) [66]. For an n-qubit sys-
tem, consider the reduced density matrix ρA = TrĀ|ψ〉〈ψ |
on a subsystem A consisting of half the qubits, so that dA =
dĀ. Reference [65] showed that for states |ψ〉 drawn from
a (k > log d) design, the min-entropy of ρA is nearly max-
imal. Therefore, all entropies are nearly maximal once the
design order is k ≈ n. Considering then the time-evolved
states of a fast-scrambling system, which forms unitary
designs linearly in time, all entropies will saturate at a time
of order n. Our arguments ensure complexity growth of
approximate k-designs well beyond this entropy saturation
threshold.

V. DISCUSSION

We rigorously establish a growth of the quantum com-
plexity in the time evolution of a number of models. We
prove that with overwhelming probability, an element sam-
pled from an approximate unitary k-design has a strong
complexity that scales at least linearly in k. Moreover, we
can count the elements of a design of a given complex-
ity and show that there are at least an exponential number
(in k) of distinct unitaries with this complexity. Using the
known relations between the evolution time and the design
order k thereby establishes a lower bound on the growth
of quantum complexity. Specifically, for random quantum
circuits we make substantial progress on conjectures by
Brown and Susskind and, using a recently established lin-
ear relation between the circuit size and design order, prove
a linear growth of quantum complexity.

A number of open questions remain. For one, the results
in Refs. [28,29] required taking the local dimension q
to be large in a k-dependent manner. For local qubits,
T = O(n2k11) is still the best known design depth. A proof
of a linear design growth for random quantum circuits on
qubits up to exponentially high moments would prove a
linear growth of complexity for exponentially long times.
In this work we largely focus on time-dependent evo-
lution, but the original discussion of a long-time linear
complexity growth in holographic systems was focused
on time-independent Hamiltonian evolution. It remains to
be seen if one can prove anything about the complexity
Cδ(e−iHt) for a specific many-body Hamiltonian H . Lastly,
we largely focus on the growth regime for complexity.
Nevertheless, there are a number of interesting questions
at exponentially late times, when t ≥ d2 and complexity
saturates at its maximal value.

As we emphasize, our results hold for a new and
stronger notion of quantum complexity, defined in terms of
optimal distinguishing measurements. We believe strong

complexity to be more aptly suited for complexity in
holography than circuit complexity, mirroring expectations
from the bulk. More broadly, it would be interesting to
explore the implications of our strong definition of com-
plexity for quantum error correction and topological order.
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APPENDIX A: PROOF OF THE MAIN RESULTS

1. Motivating example computations for Haar-random
states

In this section, we provide valuable intuition by analyz-
ing the complexity of Haar-random states using concen-
tration of measure (Levy’s lemma). The results presented
in the main text will follow by replacing Haar-random
states and unitaries with approximate k-designs and mea-
sure concentration with moment bounds. Moment bounds,
however, are considerably weaker than measure concen-
tration. This, in particular, affects constants and subleading
contributions.

a. Most states have high complexity

The Hilbert space of n qudits is enormous, d = qn.
Nonetheless, only a tiny fraction of all possible (pure)
quantum states seems to be useful for quantum com-
putation, see, e.g., Ref. [46]. Strong state complexity
(Definition 2) captures this curious aspect. In order to
get a quantitative handle on the set of all pure states we
endow it with the uniform measure dψ that is induced by
the Haar measure on the unitary group U(d). Then, ran-
dom pure states |ψ〉〈ψ | behave like the maximally mixed
state ρ0 = I/d in expectation. This behavior extends to the
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outcome statistics of arbitrary (fixed) measurements:

E|ψ〉 [Tr (M |ψ〉〈ψ |)] =Tr
(
ME|ψ〉 [|ψ〉〈ψ |]) =Tr (Mρ0).

(A1)

Concentration of measure (Levy’s lemma) ensures that
deviations from this average case behavior are exponen-
tially suppressed in concrete instances:

Pr{|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ τ }

≤ 2 exp
(
− dτ 2

9π3

)
for any τ ≥ 0. (A2)

We refer to Proposition 29 in Appendix D below for a
proof of this well-known result. We can combine this asser-
tion with a union bound (Boole’s inequality) to conclude
for any r ∈ N and δ ∈ (0, 1)

Pr [Cδ(|ψ〉) ≤ r]

= Pr
{

max
M∈Mr

|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ 1 − d−1 − δ
}

≤ 2|Mr| exp
(
−d(1 − d−1 − δ)2

9π3

)

≤ 2.0072|Mr| exp
(
−d(1 − δ)2

9π3

)
. (A3)

Suppose that Mr arises from combining at most r ele-
ments of a fixed universal gate set G ⊂ U(q2). A naive
counting argument reveals |Mr| ≤ 2d(n + 1)r|G|r and we
refer to Appendix B 2 below for details. We conclude that
the Pr [Cδ(|ψ〉) ≤ r] remains exponentially suppressed (in
d = qn) until

r � qn

log(n)
. (A4)

To summarize, a random state is exceedingly likely to have
an exponentially large strong δ-state complexity.

The Haar measure has another desirable property. It is
fair in the sense that it assigns the same (infinitesimal)
weight to each pure state. Such perfectly flat probability
distributions allow for turning the probabilistic statement,
Eq. (A3), into a quantitative one. From the definition
of probability, Pr [Cδ(|ψ〉) ≤ r] corresponds to the ratio
of low-complexity states over all states. Thus, Eq. (A3)
ensures that the fraction of low-complexity states remains
exponentially tiny until r � qn/ log(n). In other words,
most pure states have exponentially large complexity.

b. Most high-complexity states are far apart

In the previous subsection, we saw that concentration
of measure, Eq. (A2), allows us to conclude that most

quantum states have exponentially high state complexity.
This argument, however, does not (yet) tell us anything
about the geometric separation between high-complexity
states. In principle, a large fraction of high-complexity
states could result from tiny perturbations of only a few
well-separated core states that have high complexity each.
In other words, high-complexity states could come in few
tightly packed clusters, in which case the effective number
of high-complexity regions could still be comparatively
small.

The probabilistic method [67] allows us to prove that
extreme clustering cannot occur: there are exponentially
many high-complexity states whose pairwise distance is
almost maximal.

We show this statement by induction based on two fea-
tures of Haar-random states. Firstly, we use the main result
from the previous subsection. Choose r � qn/ log(n) such
that Eq. (A3) ensures

Pr [Cδ(|ψ〉) ≤ r] ≤ 2.0072|Mr| exp
(
−d(1 − δ)2

9π3

)
<

1
2

.

(A5)

The parameter r is chosen such that Haar-random states
exceed this complexity with probability (at least) 1/2.
Concentration of measure also implies that a Haar-random
state is very likely to be far away from any fixed state
|φ〉〈φ|. For any � ∈ (0, 1),

Pr
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

= Pr
[|〈ψ |φ〉|2 ≥ �2] ≤ 3 exp

(
−�

2d
9π3

)
. (A6)

This bound readily follows from Eq. (A2) (set M = |φ〉〈φ|
and perform elementary modifications).

The first step in our inductive argument is simple.
Equation (A5) asserts that the probability of Haar ran-
domly sampling a low complexity (at most r) state is
smaller than 1/2. This is equivalent to stating that the
probability of Haar randomly sampling a high complex-
ity (larger than r) is at least 1/2. Importantly, this assertion
implies that such a state exists, because the probability of
sampling one is strictly positive. Choose one such state
|φ1〉 as the first state in our list.

To construct the second state in our list, we refine this
probabilistic existence argument. The probability of Haar
randomly sampling a low-complexity state or a state that
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is too close to |φ1〉 is bounded by

Pr
[
Cδ(|ψ〉) ≤ r ∪ 1

2
‖|ψ〉〈ψ | − |φ1〉〈φ1|‖1 ≤ 1 −�

]

≤ Pr [Cδ(|ψ〉) ≤ r] + Pr

×
[

1
2
‖|ψ〉〈ψ | − |φ1〉〈φ|‖1 ≤ 1 −�

]

<
1
2
+ 3 exp

(
−�

2d
9π3

)
. (A7)

By contraposition, the probability of sampling a state that
has high complexity and is simultaneously far away from
|φ1〉 is at least 1

2 − 3 exp[−(�2d/9π3)] > 0. This implies
the existence of such a state. Choose one such state |φ2〉
and append it to the list: {|φ1〉, |φ2〉}.

We can now inductively repeat this probabilistic exis-
tence argument and iteratively append distant high-
complexity states to the list {|φ1〉, . . . , |φN 〉}. This con-
struction only breaks down once the list cardinal-
ity N counterbalances exponential suppression: 1

2 −
3N exp[−(�2d/9π3)] ≤ 0, or equivalently N ≥ 1

6 exp
[(�2d/9π3)]. Beyond this threshold, we cannot use simple
union bounds and concentration of measure to ensure exis-
tence of another list element. Such a threshold, however,
scales exponentially in the Hilbert-space dimension: the
list {|φ1〉, . . . , |φN 〉} contains N = 1

6 exp[(�2d/9π3)] high-
complexity states whose pairwise trace distance is at least
1 −�.

We conclude this subsection with providing a bit of
context. Existence proofs based on strictly positive prob-
abilities date back to Erdős who developed them to solve
several important problems in graph theory. Today, this
technique is known as the probabilistic method and does
constitute an important tool in applied math, combina-
torics, and theoretical computer science [67].

2. Proof of Theorem 8

Haar-random states result from applying a Haar-random
unitary U ∈ U(d) to an arbitrary starting state, say |ψ0〉.
Now suppose that this unitary U is not chosen from
the Haar measure, but from an approximate 2k-design.
By definition, this ensures that the first 2k moments of
|ψ〉〈ψ | = U|ψ0〉〈ψ0|U† accurately approximate the corre-
sponding Haar moments. While this is too coarse to deduce
exponential concentration, Eq. (A2), (this would require
matching behavior for all moments), polynomial concen-
tration arguments do apply. Fix a measurement M ∈ Hd
and let M̄ = M − [Tr(M )/d]I denote its traceless part.
Markov’s inequality then implies that for any τ > 0

Pr{∣∣Tr
[
M (|ψ〉〈ψ | − ρ0)

]∣∣ ≥ τ }
= Pr{[Tr

(
M̄ |ψ〉〈ψ |)]2k ≥ τ 2k}

≤ τ−2kE
[
Tr
(
M̄ |ψ〉〈ψ |)2k

]
. (A8)

The final expectation value corresponds to a moment of
order 2k. This is the largest moment that still approx-
imately exhibits Haar-random behavior. Explicit bounds
can be derived by exploiting this similarity and we refer
to Corollary 24 below for a technical derivation:

Pr{|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ τ } ≤ (1 + ε)
(

2k

τ
√

d

)2k

.

(A9)

Qualitatively, this deviation bound is proportional to d−k

and becomes ever more stringent as the design order 2k
increases. We can now combine this tail bound with a
union bound and a counting argument for the measurement
set Mr in a fashion analogous to the Haar-random case. For
any r ∈ N and any δ ∈ (0, 1) this yields

Pr [Cδ(|ψ〉) ≤ r] ≤ |Mr|(1 + ε)
(

2k√
d
(
1 − d−1 − δ)

)2k

≤ 2(1 + ε)d(n + 1)r|G|r
(

16k2

d(1 − δ)2
)k

, (A10)

where we tacitly assume (1 − δ) ≥ 2d−1 in the last step.
Qualitatively, this probability remains tiny until

r � (k − 1)n − 2k log(k)
log(n)+ log(|G|) � k[n − 2 log(k)]

log(n)
, (A11)

provided that n ≥ |G| and k < d/2. We can compare this
to the complexity of Haar-random states in Eq. (A4). Note
that the two coincide when we consider designs of expo-
nentially large degree. So far, this is a purely probabilistic
statement. In contrast to the Haar-uniform case it is a priori
not clear whether it is possible to transform it into a quan-
titative one. The reason for this is twofold: (i) the weights
pj associated with different elements from an approximate
2k-design are typically not uniform. This nonuniformity
extends to the distribution over the different states |ψi〉; (ii)
collisions in the state generation: two (or more) distinct
design unitaries can produce the same state.

Fortunately, the defining properties of designs ensure
that these deviations cannot be too radical: the weights
associated with distinct states |ψi〉 must obey qj ≤ (1 +
ε)
(

d+k−1
k

)−1—see Lemma 21 in Appendix C 6 below (or,
equivalently, Lemma 3 in the main text). This extra con-
dition does allow for drawing quantitative conclusions.
Recall that the probability of an event E is the expected
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value of its indicator function 1 {E}. Therefore,

Pr [Cδ(|ψ〉) > r] =
∑

j

qj1 {Cδ(|ψ〉) > r}

≤ (1 + ε)
(

d + k − 1
k

)−1∑

j

1 {Cδ(|ψ〉) > r} .

(A12)

The sum on the rhs is simply the cardinality N of the set of
states |ψ〉 with δ-state complexity greater than r and the lhs
is 1 − Pr [Cδ(|ψ〉) ≤ r]. Substituting the bound, Eq. (A10),
into this expression establishes the claim:

N ≥
(

d + k − 1
k

)

×
[

1
1 + ε − 2d(n + 1)r|G|r

(
16k2

d(1 − δ)2
)k
]

.

(A13)

3. Proof of Theorem 9

The proof is largely analogous to the proof of
Theorem 8. Fix a measurement M ∈ Hd ⊗ Hd and an
input state |φ〉 ∈ Cd ⊗ Cd. Recall that the bias of dis-
tinguishing a unitary channel U : Hd → Hd from the
depolarizing channel D via this measurement procedure
is Tr [M (U ⊗ I − D ⊗ I) (|φ〉〈φ|)]. Moreover, the depo-
larizing channel corresponds to the Haar average over
all unitary channels: EU(U) = D, see, e.g., Lemma 26
in Appendix C 9 below. Now suppose that the corre-
sponding unitary U ∈ U(d) is chosen randomly from an
ε-approximate 2k-design. Markov’s inequality yields

Pr{|Tr [MU ⊗ I(|φ〉〈φ|)] − Tr [MD ⊗ I(|φ〉〈φ|)] | ≥ τ }
≤ τ−2k E

(
{Tr [MU ⊗ I(|φ〉〈φ|)]

− Tr [MD ⊗ I(|φ〉〈φ|)]}2k
)

. (A14)

The final expectation value corresponds to the highest
2k-design moment that still approximates Haar-random
behavior. Our main technical contribution in Theorem 10
establishes tight bounds on such Haar-random moments.
These generalize approximate 2k-design ensembles E in a
relatively straightforward fashion:

EE
(
{Tr [MU ⊗ I(|φ〉〈φ|)] − Tr [MD ⊗ I(|φ〉〈φ|)]}2k

)

≤ [(2k)!]2

dk

(
C2k + ε

(2k)!d3k

)
. (A15)

See Corollary 23 in Appendix C 8 below for a precise
statement and proof. Next, we emphasize that the crude

bound |Mr| ≤ (2d2 + 1)n2r|G|r applies to circuit measure-
ments. Combining the above concentration inequality with
a union bound over all measurements M ∈ Mr ensures

Pr [Cδ(U) ≤ r]

≤ 3
(

C2k + ε

(2k)!d3k

)
d2n2r|G|r

(
64k4

d(1 − δ)2
)k

,

(A16)

where we tacitly assume (1 − δ) ≥ 2d−1. Qualitatively,
this probability remains tiny until

r � (k − 2)[n − 4k log(k)]
log(n)+ log |G| � k[n − 4 log(k)]

log(n)
, (A17)

provided that n ≥ |G| and k ≤ d/2. The definition of an
approximate 2k-design also imposes constraints on the
weight fluctuations. Lemma 3 asserts that weights associ-
ated with distinct ensemble unitaries must obey pj ≤ (1 +
ε)(k!/d2k). This approximate flatness allows us to turn the
probabilistic statement from above into a quantitative one:

Pr [Cδ(U) > r] =
∑

j

pj1 {Cδ(U) > r}

≤ (1 + ε) k!
d2k

∑

j

1 {Cδ(U) > r} . (A18)

The sum on the right counts the cardinality N of distinct
unitaries with δ-unitary complexity at least r + 1, while the
lhs may be lower bounded by Eq. (A16):

N ≥ d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

. (A19)

4. Distant and distinct design elements

We show that unitary and state designs contain an
exponential number [�(dk)] of distinct high-complexity
elements. But to really capture the ergodic nature of
chaotic evolution over the unitary group, these distinct
high-complexity elements should be pairwise far apart.
Here we address this subtlety and show that unitary and
state designs contain an exponential number of distant
high-complexity unitaries or states.

a. Distant and distinct state design elements

Consider an element drawn at random from an ε-
approximate spherical k-design |ψ〉. Equation (A10) gives
that the probability the state has δ-state complexity less
than r, Cδ(|ψ〉) ≤ r, is bounded to be O(d−k) when r � kn.
We can also show that the probability an element drawn at
random from an ε-approximate spherical k-design is close
to a fixed reference state |φ〉 is polynomially suppressed in
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k. Choose � ∈ (0, 1) and combine 1
2‖|ψ〉〈ψ | − |φ〉〈φ|‖1 =√

1 − |〈ψ ,φ〉|2 with Markov’s inequality to conclude

Pr
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

= Pr
[|〈ψ ,φ〉|2 ≥ �2] = Pr

[|〈ψ ,φ〉|2k ≥ �2k]

≤ �−2kE|ψ〉
[|〈ψ ,φ〉|2k] ≤ 1 + ε

�2k

(
d + k − 1

k

)−1

.

(A20)

The last inequality follows from a k-design moment bound
similar to Eq. (18). We refer to the proof of Lemma 21
in Appendix C 6 below for a detailed derivation. Qualita-
tively, this bound is of order O(d−k). We can now use a
union bound to limit the probability of a random k-design
state to have either low complexity or to be close to the
reference state,

Pr
[Cδ(|ψ〉) ≤ r ∪ 1

2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�]

≤ Pr [Cδ(|ψ〉) ≤ r] + Pr

×
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

≤ 2(1 + ε)dnr|G|r
(

16k2

d(1 − δ)2
)k

+ 1 + ε
�2k

(
d + k − 1

k

)−1

. (A21)

As long as r � nk, this bound is also of order O(d−k) and,
in turn, strictly smaller than one. We know that if the prob-
ability of the state having low complexity or being close to
our fixed state is strictly less than 1, then there is a nonzero
probability of a design element that is of high complex-
ity and is far away from the fixed state. Simply stated, if
Pr[A ∪ B] < 1 then Pr[Ā ∩ B̄] > 0.

We can iterate this procedure to construct a set of high-
complexity states that are pairwise separated. As long as
the probability that the design element is of low complexity
or is close to all elements of the set is less than one, then
there exists a design element, which is of high complexity
and far away from all other design elements in the set. To
construct the set {|ψ1〉, . . . , |ψN 〉}, we simply need that

Pr

[

Cδ(|ψN 〉 ≤ r
N−1⋃

i=1

1
2
‖|ψN 〉〈ψN | − |ψi〉〈ψi|‖1 ≤ 1 −�

]

< 1. (A22)

A union bound then converts this requirement into the
following sufficient condition on the set cardinality N :

N < �2k
(

d + k − 1
k

)[
1

1 + ε − 2dnr|G|r
(

16k2

d(1 − δ)2
)k
]

.

(A23)

For constant � ∈ (0, 1), this threshold is exponential as
long as the complexity obeys r � k,

N ≈ O(dk) for Cδ(|ψ〉) ≤ r ≈ k. (A24)

We note the similarity of this bound to the bound derived
for the number of distinct design elements.

a. Distant and distinct unitary design elements

Now we consider a unitary U drawn from an ε-
approximate unitary k-design E . Equation (A16) bounds
the probability of the unitary having δ-unitary complexity
less than r, Cδ(U) ≤ r, to be O(d−2k) when the complexity
is roughly r � nk.

Randomly chosen k-design elements also tend to land
far away from any fixed unitary. For some V ∈ U(d) and
� ∈ (0, 1), Markov’s inequality implies

Pr
[|Tr(U†V)|2 ≥ d2�2] = Pr

[|Tr(U†V)|2k ≥ d2k�2k]

≤ EE
[|Tr(U†V)|2k

]

d2k�2k ≤ 1 + ε
�2k

k!
d2k ,

(A25)

where the last inequality follows from a k-design moment
bound. We refer to the proof of Lemma 20 in Appendix
C 6 below for a detailed derivation. Next, we apply a trick
from the proof of Lemma 7 in the main text: |Tr(U†V)|2 ≥
d2�2 is a necessary condition for ‖U − V‖� < 1 −�.
This allows us to conclude

Pr
[‖U − V‖�≤1 −�] ≤ (1 + ε) k!

d2k

1
�2k . (A26)

Qualitatively, this is of order O(d−2k).
We now have all the ingredients in place to repeat the

argument from the state case. The probability of sampling
a unitary that has either low complexity or is close to any
reference unitary V is

Pr [Cδ(U) ≤ r ∪ ‖U − V‖�≤1 −�]

≤ 3(1 + ε)d2n2r|G|r
(

1024k4

d(1 − δ)2
)k

+ 1 + ε
�2k

k!
d2k ,

(A27)

according to a union bound. This is on the order of
O(d−2k) < 1 as long as the complexity r � nk. By contra-
position, this ensures that there exists a design element U1
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that has both high complexity and is far away from V. We
can use this insight to iteratively construct a set of N high-
complexity design unitaries with large pairwise distances.
Explicitly, to construct a set of unitaries {U1, . . . , UN }, we
need that

Pr

[

Cδ(UN ) ≤ r
N−1⋃

i=1

‖UN − Ui‖�≤1 −�
]

< 1. (A28)

A union bound relates this condition to a sufficient upper
bound on the set cardinality N :

N < �2k d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

.

(A29)

This threshold is exponential as long as the complexity
obeys r � k:

N ≈ O(d2k) for Cδ(|ψ〉) ≤ r ≈ k. (A30)

APPENDIX B: CONCEPTUAL BACKGROUND
AND CONTRIBUTIONS

1. Distinguishing states and channels

This conceptual section will review one fundamental
question in probability theory, as well as two quantum
generalizations. We refer to Refs. [33,68] for details. The
underlying question is the following: what is the best strat-
egy to distinguish two (biased) coins based on a single
toss? More precisely, we consider the following game:
there are two identically looking coins with different biases
towards coming up heads when being tossed. These biases
are known to the player. A referee then picks one of these
coins uniformly at random and hands it to the player. The
player is allowed to perform a single toss. Based on the
result she must guess which coin she obtained and wins if
this guess was correct.

a. Distinguishing classical probability distributions

Consider two (discrete) d-variate random variables.
Then, we may represent the associated probability dis-
tributions by d-dimensional vectors p , q ∈ Rd, which are
entrywise positive (pi, qi ≥ 0) and whose entries sum up
to one. Likewise, a collection of events E1, . . . , Em can
be also represented by vectors e1, . . . , em ∈ Rd that are
entrywise non-negative and obey the following normaliza-
tion condition:

∑m
i=1 ei = �1. Here, �1 = (1, . . . , 1)T ∈ Rd

denotes the all-ones vector. The probability of observing
the event associated with index i is

Pr [i] = 〈ei, p〉. (B1)

The properties of probability and event vectors then assure
Pr [i] ≥ 0 and

∑m
i=1 Pr [i] = 1. Let us now return to the

motivating question: what is the best strategy to distinguish
two random variables, characterized by known probability
vectors p and q in the single-shot limit? This is a binary
question and without loss of generality we can restrict our
attention to binary events. Let e1 denote the event that
leads us to guess that we observe the first random vari-
able. The complementary event e2 = �1 − e1 is then fully
characterized as well. Under the additional assumption that
either random variable is handed to us with equal prior
probability, the probability of success becomes

pcl = 1
2

Pr [1|p] + 1
2

Pr [2|q] = 1
2
(〈e1, p〉 + 〈e2, q〉)

= 1
2

(
〈e1, p − q〉 + 〈�1, q〉

)
= 1

2
+ 1

2
〈e1, p − q〉.

(B2)

This expression may now be optimized over all possible
events e1 in order to determine the optimal guessing strat-
egy. The only constraints on e1 are non-negativity and
normalization. Together, they demand 0 ≤ e1 ≤ �1, where
the inequality signs are to be understood componentwise.
The resulting optimization problem is a linear program
[44,69]

maximize
1
2
+ 〈e1, p − q〉

subject to �1 ≥ e1 ≥ 0,
(B3)

and can be solved in a computationally tractable way. In
fact, this problem is simple enough to solve analytically.
The optimal e1 is the indicator function for pi ≥ qi, i.e.,
ei = 1 {pi ≥ qi}. This is the maximum-likelihood estimator
from statistics. Opt for the distribution that is most likely to
produce the outcome that has been observed. This choice
achieves an optimal success probability of

p�cl =
1
2
+ 1

4
‖p − q‖�1 . (B4)

Note that a success probability of 1/2 can be trivially
achieved by mere guessing. The remaining factor (multi-
plied by 2)

β
�

cl =
1
2
‖p − q‖�1 = 1

2

d∑

i=1

|pi − qi| , (B5)

is called the bias and corresponds to the total variational
distance between p and q.

b. Distinguishing quantum states

It is useful to think of quantum states ρ as matrix
generalizations of probability vectors. Similarly, positive
operator-valued measurements (POVM) with m outcomes
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are characterized by a collection of positive semidefinite
(PSD) matrices {Mi}m

i=1 ∈ Hd that sum up to the iden-
tity matrix I. Born’s rule states that the probability of
observing certain outcomes is

Pr [i] = Tr (Miρ) for all 1 ≤ i ≤ m. (B6)

This may be viewed as a noncommutative analog of the
classical probability rule in Eq. (B1). One may also adapt
the distinguishability game to the quantum setting: what
is the probability of correctly distinguishing two quantum
states ρ, σ by performing a single measurement? Once
more, this is a binary question. We can without loss restrict
attention to two-outcome measurements: M1 and M2 =
I − M1. We associate the first outcome with opting for ρ
while the second outcome flags σ . Similar to the classical
case, the probability of success is

pQS = 1
2
+ 1

2
(M1, ρ − σ) , (B7)

which corresponds to a bias of βQS = (M1, ρ − σ). We
may now optimize over all possible measurements M1 to
obtain the best bias possible:

β
�

QS =maximize (M1, ρ − σ)
subject to I � M1 � 0.

(B8)

The constraint denotes the positive semidefinite order (A �
B if and only if A − B is positive semidefinite). This is
a semidefinite program [44,69] that is simple enough to
solve analytically. The optimal measurement M1 corre-
sponds to the orthogonal projection onto the positive range
of ρ − σ . The associated optimal bias is

β
�

QS = 1
2
‖ρ − σ‖1, (B9)

which is the trace distance of the density matrices ρ and
σ . This result is known as the Holevo-Helstrom theorem
[30,31].

Example 1: Choose ρ = |ψ〉〈ψ | and σ = ρ0 = (1/d)I.
Then, the (unique) optimal measurement is M1 = |ψ〉〈ψ |
and achieves a bias of

β
�

QS = 1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
. (B10)

c. Distinguishing quantum channels

Quantum channels describe evolutions of quantum-
mechanical systems. They are linear maps A : Hd → Hd′
that map density operators to density operators of poten-
tially different dimension d′.

Suppose that we wish to distinguish two channels, say A
and B based on a single channel use. For instance, input a
concrete quantum state and perform a measurement on the
outcome state. This indicates more freedom to maximize
the probability of correct distinction by optimizing over
potential input states and measurements of the channel
output. The laws of quantum mechanics allow for further
improving this strategy. It is possible to entangle the input
state with a quantum memory: ρin ∈ Hd ⊗ Hd. We then
apply the channel to the first quantum system, while the
second one is left unchanged in the memory. A final two-
outcome measurement M1 ∈ Hd′ ⊗ Hd on both output and
memory state potentially reveals additional information.
The outcome state depends on the channel in question. A
priori there are two possibilities. Either ρout = A ⊗ I(ρin),
or ρout = B ⊗ I(ρin). Here, I(X ) = X denotes the iden-
tity channel acting trivially on the memory. The proba-
bility of correctly distinguishing these states—and thus
the underlying channels—with a single measurement M1 ∈
Hd′ ⊗ Hd becomes

pQC = 1
2
+ Tr
{
M1 [A ⊗ I(ρin)− B ⊗ I(ρin)]

}
. (B11)

We may now optimize over all degrees of freedom to max-
imize the value of pQC. Optimizing the measurement M1
results in a bias that is proportional to the trace distance
of the outcome states. Because of convexity, optimization
over potential input states can without loss of generality be
restricted to pure states:

β
�

QC = 1
2

max
|ψ〉〈ψ |
∥∥A ⊗ I(|ψ〉〈ψ |)− B ⊗ I(|ψ〉〈ψ |)∥∥1.

(B12)

This optimal bias is called the diamond distance between
channels A and B [70].

It defines a distance measure between quantum chan-
nels that is more complicated than the trace distance
between quantum states and the total variational distance
between classical probability distributions, respectively. It
can be difficult to compute it analytically, but does admit a
computationally tractable reformulation (as a semidefinite
program) [71–73].

Example 2: Consider a unitary channel U(ρ) = UρU† ∈
Hd and the completely depolarizing channel D(ρ) =
[Tr(ρ)/d]I ∈ Hd. Then,

1
2
‖U − D‖� =1 − 1

d2 , (B13)

and optimal strategies are based on maximally entangling
the input with the memory: Let |�〉 = (1/

√
d)
∑d

i=1 |i〉 ⊗|i〉 ∈ Cd ⊗ Cd be the maximally entangled (Bell) state. Set
ρin = |�〉〈�| and measure M1 = (U† ⊗ I)|�〉〈�|(U ⊗ I).
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It is easy to check that this strategy achieves the dia-
mond distance in Eq. (B13). Proving optimality is less
trivial. For instance, this claim follows from relating the
diamond distance to another norm that is easier to com-
pute. We refer to Ref. [74, Theorem 7] and Ref. [75] for
details.

2. Conceptual contributions

a. Cornering “easy” unitary transformations

Fix d = qn. The evolution of a closed, d-dimensional
quantum-mechanical system is unitary: U(ρ) = UρU†

with U ∈ U(d). While evolutions may represent natural
processes, they can also be engineered to perform certain
tasks, such as quantum computing. Scalability of quan-
tum computing hinges on the important observation that
complicated evolutions (quantum gate architectures) can
be decomposed into sequences of simple building blocks.
A universal gate set G ⊂ U(q2) acting on two (neighbor-
ing) qudits forms such a basic set of building blocks. For
technical reasons, we assume that G contains the identity
(doing nothing), as well as inverses: g ∈ G implies g† ∈ G.

Universality then means that any unitary U ∈ U(d) may
be accurately approximated by a finite sequence of r uni-
taries chosen from G. We refer to Fig. 4 for an illustrative
example. Such decompositions into sequences of elemen-
tary gates provide us with a notion of simplicity. Intu-
itively, a quantum cicuit V is simple if it may be generated
by a G-local circuit of short size. In contrast to depth, size
counts the total number of elementary gates in a circuit.
For r ∈ N we define

Gr := {V ∈ U(d) : V is generated by a

× G-local circuit of size ≤ r
}

. (B14)

We set G0 = {I} and the following inclusion relation
follows from I ∈ G:

G0 ⊆ G1 ⊆ · · · ⊆ Gr. (B15)

The cardinality of Gr may be bounded by a simple count-
ing argument:

∣∣Gr
∣∣ ≤ (n|G|)r = logq(d)

r|G|r. (B16)

The fact that G is a universal gate set ensures that Gr
becomes dense in U(d) provided that r → ∞. A priori
Gr depends on the particular choice of universal gate set
G. However, the Solayev-Kitaev theorem also asserts that
other universal gate sets can be accurately compiled at the
cost of a constant overhead only [32].

b. Cornering “easy” measurements

The conceptual question underlying our definition of
complexity is binary. Are we facing a pure state (unitary
channel), or a maximally mixed state (depolarizing chan-
nel)? This allows us to restrict attention to two-outcome
measurements, where we associate one outcome with each
possibility.

Two-outcome measurements always assume the fol-
lowing form: (M , I − M ), where M obeys I � M � 0.
Measuring a quantum state ρ ∈ Hd results in two poten-
tial outcomes, say “yes” and “no.” The probability of
observing either is characterized by Born’s rule (B6):

Pr [“yes”] = Tr (Mρ) and Pr [“no”]

= Tr [(I − M )ρ] = 1 − Pr [“yes”] . (B17)

A projective two-outcome measurement is one for which
M is an orthogonal projection:

M = VPlV†, with Pl =
l∑

i=1

|i〉〈i| and V ∈ U(d). (B18)

Here l ∈ [d] characterizes the rank of the measurement
M and V is a unitary basis change to the eigenbasis of
M . Naimark’s theorem, see, e.g., Refs. [33,76], provides a
powerful connection between arbitrary two-outcome mea-
surements M and projective measurements of the form
Eq. (B18). Every two-outcome measurement on ρ ∈ Hd
corresponds to a projective measurement on ρ ⊗ |a〉〈a| ∈
Hd ⊗ H2, where |a〉〈a| ∈ H2 is an ancilla system prepared
in a pure state |a〉 ∈ C2. Pictorially (see Appendix C 3 for
an introduction of wiring diagrams),

M =
Pla a (B19)

V =

FIG. 4. Illustration of elementary gate decompositions. A unitary V on n = 10 qudits is comprised of 12 geometrically local 2-qudit
gates at random positions, i.e., size(V) = 12.
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Based on this reformulation of general two-outcome mea-
surements, we model limited resources in the following
way:

1. The ancilla state |a〉 ∈ C2 corresponds to a (fixed)
simple state, e.g., |a〉 = |0〉.

2. The unitary V ∈ U(2d) must be feasible to imple-
ment. More concretely we assume that it is com-
prised of at most r 2-qudit gates chosen from a
(fixed) universal gate set G ⊂ U(q2).

3. The projective measurement Pl =
∑l

i=1 |i〉〈i| is
diagonal in the computational basis.

For fixed r ∈ N (circuit size for V), this framework defines
the following class of measurements:

Mr =
{
Tr2
(
I ⊗ |a〉〈a|VPl′V†) : V ∈ Gr, l′ ∈ [2d]

} ⊂ Hd.
(B20)

Here, Tr2 : Hd ⊗ H2 → Hd denotes the partial trace. By
construction, this set is finite and obeys

|Mr| ≤ 2d
∣∣Gr
∣∣ ≤ 2d

[
logq(d)+ 1

]r |G|r = 2d(n+ 1)r|G|r.
(B21)

The last equality is contingent on d = qn (n qudits). The
set Mr captures all two-outcome measurements in Hilbert-
space dimension d that can be implemented by using a
single ancilla qubit, as well as circuits of size at most r.

We can readily extend this family of two-outcome mea-
surements to quantum channel discrimination. But there
we need to take into account an additional quantum
memory whose dimension is also d (see, e.g., Fig. 3).
So, the two-outcome measurement must act on a com-
posite system with dimension dim

(
Cd ⊗ Cd

) = d2. For
technical reasons, we also include a single Bell mea-
surement (|�〉〈�|, I −�〉〈�|) ⊂ H⊗2

d � Hd2 with |�〉 =
(1/

√
d)
∑d

i=1 |i〉 ⊗ |i〉 in the definition. This implies that
the total number of elementary projective measurements is
2d2 + 1 and we conclude

Mr =
{
Tr2
(
I ⊗ |a〉〈a|VPl′V†) : V ∈ Gr, l′ ∈ [2d2]}

∪ {V|�〉〈�|V† : V ∈ Gr
} ⊂ H⊗2

d . (B22)

This modification simplifies the proof of Lemma 7 and
is comparatively benign. Assuming d = qn (n qudits), a
simple counting argument reveals

|Mr| ≤ (2d2 + 1)|Gr| ≤ (2d2 + 1)(2n + 1)r|G|r. (B23)

APPENDIX C: TECHNICAL BACKGROUND AND
CONTRIBUTIONS

1. Notation and basic facts from matrix analysis

Endow the vector space Cd with the standard inner
product 〈x|y〉. A pure quantum state is a vector ψ ∈ Cd

normalized to (Euclidean) unit length, i.e., 〈ψ ,ψ〉 = 1. We
succinctly denote this by identifying normalized vectors
with kets:

|ψ〉 denotes ψ ∈ Cd with 〈ψ |ψ〉 = 1. (C1)

Let Hd denote the space of Hermitian d × d matrices. This
is a real-valued subspace of the space of all (complex-
valued) d × d matrices Md. Fix an orthonormal basis
|1〉, . . . , |d〉 of Cd. Then, the trace of a matrix X is Tr(X ) =∑d

i=1〈i|X |i〉. The trace is cyclic, i.e., Tr(XY) = Tr(YX )
and forms the basis for defining the Schatten p-norms. In
particular,

‖X ‖1 = Tr(|X |), |X | =
√

X 2 (trace norm),

‖X ‖2 =
√

Tr(X 2) (Frobenius norm),

‖X ‖∞ = max
|y〉

|〈y|X |y〉| (operator norm).

(C2)

Schatten-norms obey the following order relations:

‖X ‖∞ ≤ ‖X ‖2 ≤ ‖X ‖1 and ‖X ‖1 ≤
√

d‖X ‖2

≤ d‖X ‖∞ for all X ∈ Hd. (C3)

A variant of Hölder’s inequality applies to traces of inner
products, see, e.g., Ref. [77, Ex. IV.2.12]:

|Tr(XY)| ≤ ‖X ‖1‖Y‖∞ for all X , Y ∈ Hd. (C4)

The trace corresponds to a full index contraction. Partial
contractions are possible for tensor products and partial
traces are concrete examples. For X , Y ∈ Hd define

Tr1 (X ⊗ Y) = Tr(X )Y and Tr2 (X ⊗ Y) = Tr(Y)X ,
(C5)

and extend this definition linearly to the tensor prod-
uct H⊗2

d � Hd2 . This definition naturally extends to ten-
sor products of higher order. The following tight bound
connects partial traces and operator norms:

max {‖Tr1(X )‖∞ , ‖Tr2(X )‖∞}
≤ d‖X ‖∞ for all X ∈ H⊗2

d . (C6)

A matrix X ∈ Hd is PSD if 〈y|X |y〉 ≥ 0 for all y ∈ Cd. We
denote this feature by X � 0. Positive semidefiniteness is
preserved under partial traces:

X ∈ H⊗2
d , X � 0 implies Tr1(X ) � 0, Tr2(X ) � 0.

(C7)

The trace norm of PSD matrices is particularly simple:
‖X ‖1 = Tr(X ) whenever X � 0.

030316-22



MODELS OF QUANTUM COMPLEXITY GROWTH PRX QUANTUM 2, 030316 (2021)

2. Convex geometry and optimization

The main technical contributions of this paper are based
on bounds that follow from a fundamental argument in
convex optimization. Comprehensive references for con-
vex geometry and optimization include Refs. [43,44]. A
function f : Hd → R is convex if

f [τX + (1 − τ)Y]

≤ τ f (X )+ (1 − τ)f (Y) for all X , Y ∈ Hd, τ ∈ [0, 1] .
(C8)

Linear transformations in the argument preserve this fea-
ture. Similarly, a set K ⊆ Hd is convex if

X , Y ∈ K imply τX + (1 − τ)Y ∈ K for all τ ∈ [0, 1] .
(C9)

Let K ⊆ Hd be a convex set. A point X ∈ K is an extreme
point if Y, Z ∈ K and X = τY + (1 − τ)Z for some τ ∈
(0, 1) necessarily imply Y = Z = X . Extreme points form
the boundary of a convex set.

Example 3: The set of all quantum states in Hd is the con-
vex hull (i.e., the set of all convex combinations) of pure
states:

{ρ ∈ Hd : Tr(ρ) = 1, ρ � 0} = conv
{|ψ〉〈: |ψ〉 ∈ Cd} .

(C10)

All extreme points are pure states.

Fact 18 (Convex functions achieve their maximum at
an extreme point): Let K ⊆ Hd be a convex set and let
f : K → R be a convex function. Then, there exists an
extreme point X� of K such that

max
X ∈K

f (X ) ≤ f (X�). (C11)

This result justifies the presentation of the dia-
mond distance in Eq. (B12). The function X �→
‖A ⊗ I(X )− B ⊗ I(X )‖1 is convex (norms are convex
and the channel acts like a linear transformation of the
argument) and pure states are the extreme points of the set
of all quantum states. Hence,

max
ρ

‖A ⊗ I(ρ)− B ⊗ I(ρ)‖1

= max
|ψ〉〈ψ |

‖A ⊗ I(|ψ〉〈ψ |)− B ⊗ I(|ψ〉〈ψ |)‖1 . (C12)

The following technical result will prove highly valuable
for establishing bounds on very general Haar moments.

Lemma 19: Fix A ∈ Hd PSD (A � 0). Then, the func-
tion h(X ) = Tr (XAXA) is non-negative and convex for all
X ∈ Hd.

Proof. Apply an eigenvalue decomposition: A = U(
∑d

i=1
αi|i〉〈i|)U†. The assumption that A is PSD ensures
α1, . . . ,αd ≥ 0. Next, fix X ∈ Hd arbitrary, set X̃ = U†XU
and compute

Tr(XAXA) =
d∑

i,j=1

αiαj
∣∣〈i|X̃ |j 〉∣∣2 ≥ 0. (C13)

This establishes non-negativity of h(X ). For convexity,
fix X , Y ∈ Hd and τ ∈ [0, 1]. Set τ̄ = 1 − τ and note
that τ τ̄ = τ − τ 2 = τ̄ − τ̄ 2 ≥ 0. Non-negativity moreover
implies h(X − Y) ≥ 0 and we can readily deduce convex-
ity:

h(τX + τ̄Y)

= τ 2Tr(XAXA)+ 2τ τ̄Tr(XAYA)+ τ̄ 2Tr(YAYA)

= τh(X )− τ τ̄ [Tr(XAXA)− 2Tr(XAYA)

+ Tr(YAYA)] + τ̄h(Y)

= τh(X )− τ τ̄h(X − Y)+ τ̄h(Y) ≤ τh(X )+ τ̄h(Y).
(C14)

�
3. Wiring calculus

Wiring diagrams, sometimes also known as tensor net-
work diagrams, provide a graphical way for computing
contractions between tensors. Here we provide only a brief
overview and refer to the recent survey [41] and lecture
notes [68] for a detailed introduction. The wiring formal-
ism associates a box with every tensor and a line emanating
from the box with every index. Connected lines represent
contracted indices. More precisely, we place contravariant
indices of a tensor on the left of the box and covariant
ones on the right. Table I contains all the essential rules
necessary for the scope of this work.

Importantly lines can be bent at will without chang-
ing the value of an equation [78]. For instance, let ρ =
|ψ〉〈ψ | ∈ Hd be a pure quantum state and suppose that
M ∈ Hd is measurement. We can then represent Born’s
rule pictographically as

Tr (Mρ) = M ρ = M ψ ψ = M ψψ = 〈ψ|M |ψ〉 .
(C15)
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TABLE I. Basic building blocks of wiring calculus.

ket vector |ψ〉 ∈ Cd
ψ

bra vector 〈φ| ∈ (Cd
)∗ � Cd

φ

inner product (contraction) 〈φ|ψ〉 φ ψ

matrix A ∈ Md
A

matrix product of A, B ∈ Md AB ∈ Md
A B

matrix trace (contraction) Tr(A) ∈ C
A

tensor product (vectors) |ψ〉 ⊗ |φ〉 ∈ (Cd)⊗2

ψ

φ

tensor product (matrices) A ⊗ B ∈ H⊗2
d

A

B

Partial traces also assume a simple form. For X ∈ Hd ⊗
Hd

Tr1(X) = X and Tr2(X) = X .

(C16)

Wiring calculus is exceptionally well suited to keep track
of flip operators. Define F|i〉| ⊗ |j 〉 = |j 〉 ⊗ |i〉 via its
action on computational basis elements and extend this
definition linearly to Cd ⊗ Cd. Then,

F = .
(C17)

Vectorization is a linear map vec: Md → Cd ⊗ Cd defined
by its action on computational basis elements

|vec (|i〉〈j |)〉 := |i〉 ⊗ |j 〉, (C18)

and linearly extended to all of Md. In wiring calculus,
|φ〉 = |vec(�)〉 corresponds to bending the right (covari-
ant) index of a matrix A to the left (into a contravariant
one):

φ =
Φ

and φ =
Φ†

.
(C19)

It is easy to see that vectorization is an isometry:

〈φ|φ〉 = φ φ =
Φ† Φ

= Tr Φ†Φ
)

= ‖Φ‖2
2 .

(C20)

4. Random unitaries and k-designs

Here we introduce a few essential concepts from quan-
tum information theory, including a discussion of random
unitaries and the notion of a design. First, recall that the
Haar measure is the unique left and right invariant mea-
sure on the unitary group U(d). We are often interested in
moments of the Haar ensemble. Consider an operator X
acting on the k-fold Hilbert space (Cd)⊗k, the k-fold chan-
nel, or k-fold twirl, of the operator with respect to the Haar
measure on the unitary group is

T (k)
U (X ) =

∫
dU U⊗k(X )U†⊗k. (C21)

Similarly, we can average an operator over an ensemble of
unitaries E = {pi, Ui}, a weighted subset of the full unitary
group. The k-fold channel with respect to E is

T (k)
E (X ) =

∑

i

piU⊗k
i (X )U†⊗k

i , (C22)

here written for a discrete ensemble, but such an ensemble
might be discrete or continuous.

Unitary k-designs. We are often interested in how well
an average over an ensemble captures an average over the
full unitary group, i.e., how random the ensemble is with
respect to the Haar measure on U(d). A unitary k-design is
an ensemble of unitaries E = {pi, Ui}, for which the k-fold
twirl equals its Haar-random counterpart:

T (k)
E (X ) = T (k)

U (X ) for all X ∈ H⊗k
d . (C23)

This means that the ensemble E exactly captures the first
k moments of the Haar ensemble. Unitary operator bases,
such as the n-qubit Pauli group, form an exact 1-design.
But very little is known about the construction of exact
designs for higher k, with the notable exception of k = 3
and the n-qubit Clifford group [15–17]. We return to this
point when discussing approximate designs.

Schur-Weyl duality. Many of the important analytic
expressions for Haar averages rely on Schur-Weyl duality
[37,38], a deep connection between irreducible represen-
tations (irreps) of the unitary group U(d) and the sym-
metric group Sk. First, when thinking about k-fold Hilbert
spaces, there is a useful set of operators that acts on this
space, namely permutations of the k copies. A permutation
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operator Pσ acts on the computational basis of (Cd)⊗k as

Pσ |i1, . . . , ik〉 = |iσ−1(1), . . . , iσ−1(k)〉. (C24)

This action can be extended linearly to all of (Cd)⊗k.
Schur-Weyl duality is the statement that an operator acting
on (Cd)⊗k commutes with all k-fold unitaries U⊗k if and
only if it is a linear combination of permutation operators

U⊗kXU†⊗k = X ←→ X =
∑

σ∈Sk

cσPσ . (C25)

Many of the exact expressions for Haar moments and ran-
dom unitary averages in the following subsection follow
directly from this powerful result.

5. Haar integration over the unitary group

We now introduce the general formalism for integrating
arbitrary moments of random unitaries over the full unitary
group with respect to the Haar measure, often referred to as
Weingarten calculus. Note that the k-fold twirl in Eq. (C21)
describes a linear operator on the tensor product space
H⊗k

d . The associated matrix representation is called the
kth moment operator, written as O(k)

U = ∫ dU U⊗k ⊗ Ū⊗k,
where Ū denotes the complex conjugate. Weingarten cal-
culus [40,79] provides exact expressions for individual

matrix elements of the moment operator:
∫

dU Ui1j1 . . .Uikjk Ū�1m1 . . . Ū�kmk

=
∑

σ ,τ∈Sk

δσ (�ı |��)δτ ( �j | �m)Wg(σ−1τ , d), (C26)

where we sum over elements of the permutation group
Sk and define a contraction of indices with respect to a
permutation σ ∈ Sk as

δσ (�ı | �j) :=
k∏

s=1

δisjσ(s) = δi1jσ(1) . . . δik jσ(k) . (C27)

Mixed moments of U and Ū, i.e., averages of U⊗k ⊗ Ū⊗k′

with k  = k′, vanish identically.
It is often convenient to interpret the index contraction

δσ (�ı | �j) as a permutation operator acting on the computa-
tional basis of the k-fold space,

δσ (�ı | �j) = Pσ . (C28)

For instance, two examples of contractions for k = 4 are

δ{2,1,4,3}(�ı |�j ) =

i1

i2

i3

i4

j1

j2

j3

j4

and δ{2,3,4,1}(�ı |�j ) =

i1

i2

i3

i4

j1

j2

j3

j4

.

(C29)

The weight associated to a given contraction is called the
Weingarten function, Wg(σ , d). It is a function on ele-
ments of Sk and admits an expansion in terms of characters
of the symmetric group

Wg(σ , d) = 1
k!

∑

λ!k

fλχλ(σ )
cλ(d)

, (C30)

where we sum over the integer partitions of k that label
the irreps of Sk; χλ(σ ) is an irreducible character of λ, and
fλ is the dimension of the irrep λ. The polynomial in the
denominator is defined as

cλ(d) =
∏

(i,j )∈λ
(d + j − 1), (C31)

where we take a product over the coordinates (i, j ) of the
Young diagram of λ. Writing λ as an integer partition of

k, with elements λi, the product is taken over i from 1
to �(λ), the length of the partition, and j from 1 to λi.
The expression for the Weingarten function in Eq. (C30),
is valid for k ≥ d by restricting the sum over partitions
of length �(λ) ≤ d [such that the polynomial cλ(d) in the
denominator is free of zeroes].

The Weingarten functions depend only on the cycle type
of the permutation, where the cycle type of σ ∈ Sk is an
integer partition of k. We end this brief exposition by list-
ing the first few unitary Weingarten functions, labeled by
cycle type. For k = 1, Wg[(1), d] = (1/d), and for k = 2,
we have

Wg[(1, 1), d] = 1
d2 − 1

, and

Wg[(2), d] = − 1
d(d2 − 1)

. (C32)
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k-fold twirl over U(d). The k-fold twirl, Eq. (C21), of
an operator over the unitary group can be written using
Eq. (C26) as

T (k)
U (X ) = EU

[
U⊗k(X )U†⊗k]

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)PσTr(XPτ ). (C33)

This expression equivalently follows from noting that, by
the invariance of the Haar measure, the k-fold twirl T (k)

U is
invariant both under k-fold unitary conjugation and under
k-fold conjugation of X .

We also note that the k-fold twirl of a permuta-
tion operator is T (k)

U (Pρ) = Pρ . Equation (C33), then
gives that Wg(σ−1τ , d)Tr(PτPρ) = δσ ,ρ . Viewed as a
matrix equation, the matrix of Weingarten functions
Wg(k) is the pseudoinverse of the k! × k! matrix G(k) of
inner products of permutation operators Pσ (the Gram
matrix of Pσ ’s). The elements of G(k) are the inner

products between permutation operators, Tr(PσPτ ) =
d�(σ

−1τ), where �(σ−1τ) simply counts the number of
closed cycles in the permutation product (equivalently, the
length of the cycle type of the product):

Wg(k) = G−1
(k) with Wg(k) =

[Wg(σ−1τ , d)
]
σ ,τ∈Sk

and

G(k) =
[
Tr(PσPτ )

]
σ ,τ∈Sk

. (C34)

For more discussion on this, see Refs. [11,79]. The matrix
inverse exists for k ≤ d. Although elegant, this derivation
of the Weingarten functions quickly becomes intractable
as we need to invert a k! × k! matrix. The representation
theoretic definition in Eq. (C30) is straightforward to use
in computing high moments.

Wiring diagrams for the first few Haar moments. To set
up the calculations that will follow in the next section, we
explicitly write out the wiring diagrams in the first two
moments, detailing the index contractions one must take.
For k = 1, we simply have

EU

[
U U†

]
=

∑

σ,τ∈S1

Wg(σ−1τ, d)
Pσ

Pτ

=
1

d

(C35)

For k = 2, we sum over elements of S2, separately permuting the internal and external indices as

EU

⎡
⎢⎢⎢⎣ U U†

U U†
⎤
⎥⎥⎥⎦ =

∑

σ,τ∈S2

Wg(σ−1τ, d)

Pσ

Pτ

=
1

d2 − 1

⎛
⎜⎜⎝ + − 1

d
− 1

d

⎞
⎟⎟⎠

=
1

d2 − 1

⎛
⎜⎜⎝ + − 1

d
− 1

d

⎞
⎟⎟⎠ .

(C36)

Moments of traces. We can use the formalism introduced above to compute a few simple expressions averaged over
the unitary group, which will be of use in later sections. Consider the 2kth moment of the trace of a random unitary,
|Tr(U)|2k, which we integrate over the unitary group as

EU
[|Tr(U)|2k] =

∑

σ ,τ∈Sk

Wg(σ−1τ , d)Tr(PσPτ ), (C37)
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with Tr(PσPτ ) = d�(στ). View this as a matrix equation,
and recall that for k ≤ d the Weingarten functions are the
inverse of the inner products Eq. (C34). Then, we simply
have the trace of the identity matrix, a sum over Sk:

EU
[|Tr(U)|2k] = k!. (C38)

This quantity is essentially the same as the frame potential
[14], a quantity that quantifies the 2-norm distance between
an ensemble of unitaries E and the Haar ensemble. The
frame potential for any ensemble is lower bounded by this
Haar value.

Averages of pure states. Consider a Haar random state
|ψ〉 = U|0〉, with |0〉 ∈ Cd and U ∈ U(d), and take the k-
fold average with respect to the unitary group. Then,

T (k)
U (|ψ〉〈ψ |⊗k) =

∑

σ ,τ∈Sk

Wg(σ−1τ , d)PσTr(Pτ |ψ〉〈ψ |⊗k)

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)Pσ , (C39)

as permuting and contracting the pure state moments is
the same for any permutation. This also follows from
Schur-Weyl duality by noting that the k-fold average is
invariant under k-fold unitary conjugation and may thus be
expressed as a sum of permutations. Fixing σ above, the
sum over τ just gives the sum over Weingarten functions,
which is

∑

τ∈Sk

Wg(τ , d) = 1
k!

(
k + d − 1

k

)−1

. (C40)

Equivalently, we can fix this coefficient by taking the trace
of Eq. (C39). Thus we find that the k-fold average of a pure
state is

T (k)
U (|ψ〉〈ψ |⊗k) =

(
k + d − 1

k

)−1

�sym, (C41)

where �sym = (1/k!)
∑

σ∈Sk
Pσ is the projector onto the

symmetric subspace and
(

k + d − 1
k

)
is the corresponding

dimension.
A similar calculation is to consider the moments of the

expectation value of a conjugated operator 〈ψ |U†MU|ψ〉,
where |ψ〉 ∈ Cd and a Hermitian operator M ∈ Hd. We
find

EU
[|〈ψ |U†MU|ψ〉|k]

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)Tr(Pσ |ψ〉〈ψ |)Tr(PτM⊗k).

(C42)

Again, as permuting and contracting tensor products of a
pure state just gives one, for any τ the σ sum is just a sum

over Weingarten functions. Using Eq. (C40) and recalling
the definition of the projector onto the symmetric subspace,
we conclude

EU
[〈ψ |U†MU|ψ〉k] =

(
d + k − 1

k

)−1

Tr
(
�symM⊗k) .

(C43)

6. Approximate k-designs and bounds on weight
distributions

Weingarten calculus is a powerful tool. It character-
izes twirls over the diagonal representation of the unitary
group for arbitrary tensor powers k ∈ N. In turn, this for-
mula allows for computing moments of random variables
that involve Haar random unitaries. These then can be
used to establish generic features, such as concentration
of measure. However, full control of all moments comes
at a price. It is excessively difficult to sample unitaries
directly from the Haar measure. Simple dimension count-
ing highlights that circuits of exponential size are required
to implement a Haar-random unitary circuit on n qudits.

The notion of k-designs introduced in Appendix C 4
addresses this issue by allowing one to interpolate between
Haar-random (k = ∞) and highly structured (k = 1)
ensembles. Unfortunately, very few explicit constructions
of k-designs are known. This lack of efficient construc-
tions can be overcome by relaxing the defining property
of a k-design.

Definition 4 (Approximate k-design): Fix k ∈ N and ε >
0. A unitary ensemble E = {pi, Ui}N

i=1 is an ε-approximate
(unitary) k-design if the associated twirling channel
T (k)

E (X ) =∑n
i=1 piU⊗k

i X (U†
i )

⊗k obeys

∥∥∥T (k)
E − T (k)

U

∥∥∥
�
≤ k!

d2k ε. (C44)

Here, T (k)
U denotes the twirl over the full unitary group

(C33) (with respect to the Haar measure).

This definition readily extends to ensembles of infinite
cardinality. Several different definitions of approximate
k-designs can be found in the literature. By and large
these differ in terms of the metric that is used to quantify
closeness. We define an approximate design up to addi-
tive error, but choose ε to scale with d in a manner that
mimics relative error, similar to the strong definition of a
design used in Ref. [12]. This will also simplify exposition
considerably.

The approximate k-design property imposes severe
restrictions on associated distribution of weights and the
ensemble size.

030316-27



FERNANDO G. S. L. BRANDÃO et al. PRX QUANTUM 2, 030316 (2021)

Lemma 20 (Restatement of Lemma 3): Let E =
{pi, Ui}N

i=1 be an ε-approximate k-design for U(d). Then,

max
1≤j≤N

pj ≤ (1 + ε) k!
d2k and N ≥ d2k

(1 + ε)k!
. (C45)

Lower bounds on approximate k-design cardinality are
known, see, e.g., Ref. [12, Lemma 26] for a similar result.
We are not aware of any weight bounds in the literature.

We also consider orbits of approximate k-designs E =
{pi, Ui}N

i=1. Fix |x〉 ∈ Cd arbitrary and define |yi〉 = Ui|x〉
for i ∈ [N ]. Doing so results in a weighted set of unit vec-
tors. These sets are called approximate complex-projective
k-designs [18,80]. They approximately reproduce the first
k moments of the uniform distribution on the complex unit
sphere. Lower bounds on the cardinality of exact spherical
k-designs are known, see, e.g., Ref. [20], but we are not
aware of any statement that bounds the associated weights.

Lemma 21: Let {qi, |yi〉}N ′
i=1 ⊂ Cd be the weighted set of

distinct states contained in an orbit of an ε-approximate
k-design. Then,

max
j∈[N ′]

qj ≤ (1 + ε)
(

d + k − 1
k

)−1

and

N ′ ≥ 1
1 + ε

(
d + k − 1

k

)
. (C46)

The emphasis on distinct states is justified. Two or more
distinct unitaries can give rise to the same state.

Proof of Lemma 20. Fix j ∈ [N ] = {1, . . . , N } and use
Eq. (C38) to conclude

N∑

i=1

pi

∣∣∣Tr(U†
j Ui)

∣∣∣
2k

= EE
[
|Tr(U†

j U)|2k
]
≤ k!

+ EE
[
|Tr(U†

j U)|2k
]
− EU

[
|Tr(U†

j U)|2k
]

︸ ︷︷ ︸
�

. (C47)

The approximate k-design property implies that the mis-
match on the rhs remains small. Let |�〉 = (1/

√
d)
∑d

i=1 |i〉⊗ |i〉 denote the maximally entangled state. Then, Tr(U) =
d〈�|U ⊗ I|�〉 and we apply Definition 4 to bound

� = EE
[
|Tr(U†

j U)|2k
]
− EU

[
|Tr(U†

j U)|2k
]

= d2k〈�|⊗k
(

EE

{ [
(U ⊗ I)|�〉〈�|(U ⊗ I)†

]⊗k
}

− EU

{ [
(U ⊗ I)|�〉〈�|(U ⊗ I)†

]⊗k
})

|�〉⊗k

≤ d2k
∥∥∥∥EE

{
[U ⊗ I(|�〉〈�|)]⊗k

}

− EU

{
[U ⊗ I(|�〉〈�|)]⊗k

}∥∥∥∥
∞

≤ d2k
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤εk!. (C48)

Combining both arguments implies
∑N

i=1 pi

∣∣∣Tr(U†
j Ui)

∣∣∣
2k

≤ (1 + ε)k!. This allows us to conclude

(1 + ε)k! ≥
N∑

i=1

pi

∣∣∣Tr
(

U†
j Ui

)∣∣∣
2k

=
∑

i =j

pi

∣∣∣Tr
(

U†
j Ui

)∣∣∣
2k
+ pj

∣∣∣Tr
(

U†
j Uj

)∣∣∣
2k

≥ pj d2k,

(C49)

for j ∈ [N ] arbitrary. The lower bound on the cardinality
N is an immediate consequence of this weight restriction:

1 =
N∑

i=1

pi ≤
N∑

i=1

(1 + ε) k!
d2k = N (1 + ε) k!

d2k . (C50)

�

Proof of Lemma 21. The argument is very similar to the
proof of Lemma 20. Fix j ∈ [N ′], set M = |yj 〉〈yj | and use
Eq. (C43) to conclude

N ′∑

i=1

qi
∣∣〈yj , yi〉

∣∣2k

=
N∑

i=1

pi
∣∣〈yj |Ui|x〉

∣∣2 = EE
[〈x|UMU†|x〉]

=
(

d + k − 1
k

)−1

Tr
(
�symM⊗k)

+Tr
(
M⊗k{EE

[
(U|x〉〈x|U†)⊗k]−EU

[
(U|x〉〈x|U†)⊗k]})

︸ ︷︷ ︸
�

.

(C51)

Next, observe that the Haar average obeys Tr
(
�symM⊗k

)

= Tr
(
�sym|yj 〉〈⊗k

) = 1. The approximate k-design prop-
erty in addition implies that the deviation from this ideal
value remains small. The matrix Hoelder inequality asserts
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� = Tr
(
M⊗k{EE

[
(U|x〉〈x|U†)⊗k]− EU

[
(U|x〉〈U†)⊗k]})

≤ ‖M⊗k‖∞
∥∥∥T (k)

E
[
(|x〉〈x|)⊗k]− T (k)

U

[
(|x〉〈x|)⊗k]

∥∥∥
1

≤ ‖M‖k
∞
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤ε k!

d2k ≤
(

d + k − 1
k

)−1

ε, (C52)

because ‖M‖∞ = ‖|yj 〉〈‖∞ = 1. This allows us to conclude

(1 + ε)
(

d + k − 1
k

)−1

≥
N ′∑

i=1

qi
∣∣〈yj , yi〉

∣∣2k = qj |〈yj , yj r〉|2k +
∑

i =j

qj |〈yj , yi〉|2k ≥ qj , (C53)

for any j ∈ [N ′]. Both weight and cardinality bound readily follow from this assertion. �

7. A general moment bound for Haar-random unitaries

Theorem 22 (Detailed restatement of Theorem 10): Fix |φ〉 ∈ (Cd)⊗2 and M ∈ H⊗2
d such that I � M � 0. Set

SU (M,φ) := Tr MU ⊗ I(|φ〉〈φ|)
)

= M
U† U

φ φ ,

(C54)

where U ∈ U(d) is chosen uniformly from the Haar measure. Then,

μ(M,φ) := EU [SU (M,φ)] =
1

d Mφφ = Tr (MD ⊗ I(|φ〉〈φ|)) ,

(C55)

where D(X ) = [Tr(X )/d]I is the depolarizing channel. Moreover, the following bounds apply to all centered moments of
order k = 1, . . . , d2/3:

EU

{
[SU(M ,φ)− μ(M ,φ)]k

}
≤ Ck(k!)2

dk/2 . (C56)

Here, Ck = [1/(k + 1)]
(

2k
k

)
is the kth Catalan number.

8. Moment bounds for approximate designs

Corollary 23: With the same assumptions in Theorem 22, but suppose that U ∈ U(d) is chosen from an ε-approximate
unitary k-design E . Then,

EE

⎡
⎣

(
M

U† U
φ φ

︸ ︷︷ ︸
SU (M,φ)

− 1

d
Mφφ

︸ ︷︷ ︸
μ(M,φ)

)k
⎤
⎦ ≤ (k!)2

dk/2

(
Ck +

ε

k!d3k/2

)
.

(C57)

Proof. We can rewrite random variable and (Haar) expectation as

SU(M ,φ) = Tr
[
MU ⊗ I(|φ〉〈φ|)] and μ(M ,φ) = Tr

[
I
d
⊗ Tr1(M )U ⊗ I(|φ〉〈φ|)

]
. (C58)
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Combine them to obtain

S̄U(M ,φ) = SU(M ,φ)− μ(M ,φ) = Tr
[
M̃U ⊗ I(|φ〉〈)] , (C59)

where M̃ = M − (1/d)I ⊗ Tr1(M ) ∈ Hd ⊗ Hd is a traceless difference of two PSD matrices. Next, fix k ∈ N and compare
the kth centered moment to its Haar-averaged counterpart:

EE
[
S̄U(M ,φ)k

] ≤ EU
[
S̄U(M ,φ)k

]+ {EE
[
S̄U(M ,φ)k

]− EU
[
S̄U(M ,φ)k

]}
︸ ︷︷ ︸

�

. (C60)

The first contribution is bounded by Theorem 22 and the approximate k-design property (Definition 4) ensures that the
mismatch � remains controlled:

� = Tr
(

M̃⊗k
{
EE
[
(U ⊗ I)⊗k]− EU

[
(U ⊗ I)⊗k]

} [
(|φ〉〈φ|)⊗k]

)

≤ ‖M̃⊗k‖∞
∥∥(EE
[U⊗k ⊗ I]− EU

[U⊗k ⊗ I]) [(|φ〉〈φ|)⊗k]∥∥
1

≤ ‖M̃‖k
∞
∥∥EE
[U⊗k]− EU

[U⊗k]∥∥
� =‖M̃‖k

∞
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤‖M̃‖k

∞
k!
d2k ε. (C61)

Finally, use the fact that M̃ is the difference of two PSD
matrices to conclude

‖M̃‖∞ ≤ max
{
‖M‖∞, ‖1

d
I ⊗ Tr1(M )‖∞

}

= max
{
‖M‖∞,

1
d
‖Tr1(M )‖∞

}
≤ 1, (C62)

where we also use Eq. (C6). �

Corollary 24 (Moments of k-design orbits): For |x〉 ∈
Cd and a measurement M ∈ Hd (I � M � 0) define

Q̄U(M , x) = 〈x|U†MU|x〉 − Tr(M )

d
, (C63)

where U is sampled from an ε-approximate k-design.
Then,

EE
[
Q̄U(M , x)k

] ≤
(

d + k − 1
k

)−1 (
dk/2 + ε)

≤ (1 + ε)
(

k2

d

)k/2

. (C64)

Proof. Let M̄ = M − [Tr(M )/d]I denote the traceless part
of M and note that this reformulation cannot increase the

operator norm:‖M̄‖∞ ≤ ‖M‖∞ ≤ 1. Moreover,

EE
[
Q̄U(M , x)k

] ≤ EU
[
Q̄U(M , x)k

]

+ EE
[
Q̄U(M , x)k

]− EU
[
Q̄U(M , x)k

]
︸ ︷︷ ︸

�

,

(C65)

and� ≤ ‖M̄‖k
∞

(
d + k − 1

k

)−1

ε follows from arguments

that are analogous to the ones presented in the proof of
Lemma 21. Next, apply Eq. (C43) to the remaining Haar
expectation:

EU
[
Q̄U(M̄ , x)

] = EU
[〈x|U†MU|x〉k]

=
(

d + k − 1
k

)−1

Tr
(
�symM̄⊗k) .

(C66)

This trace can be bounded using tr(M̄ ) = 0, tr(M̄ l) ≤
tr(M̄ 2)l/2 for l ≥ 2 and tr(M̄ 2) = ‖M̄‖2

2 ≤ ‖M‖2
2, see, e.g.,

Ref. [21, Lemma 17]:

Tr
(
�symM̄⊗k) ≤ ‖M̄‖k

2 ≤ ‖M‖k
2 ≤ dk/2‖M‖k

∞ ≤ dk/2.
(C67)

�

9. Proof of the general moment bound

This section is devoted to proving the general moment
bound presented in Theorem 22 in Appendix C 7.
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a. Reformulation and basic norm bounds

Fix M ∈ Hd ⊗ Hd PSD with ‖M‖∞ ≤ 1 and a state |φ〉 ∈ Cd ⊗ Cd. Use the vectorization correspondence |φ〉 =
vec(�) with � ∈ Md×d to rewrite the random variable defined in Theorem 22:

SU (M, φ) = M
U† U

φ φ = M
U†

Φ†
U

Φ
= MΦ

U† U
.

(C68)

Here, we implicitly define M� := (I ⊗�†)M (I ⊗�). Also, recall that vectorization is an isometry, i.e., ‖�‖2 = 〈φ|φ〉 =
1. The following auxiliary result bounds the 2-norm of M� and its partial contractions.

Lemma 25: Fix a PSD matrix M ∈ H⊗2
d with ‖M‖∞ ≤ 1 and a matrix � ∈ Md obeying ‖�‖2 = 1. Then, M� = (I ⊗

�†)M (I ⊗�) ∈ H⊗2
d obeys

‖Tr1(M�)‖2 ≤ d and ‖M�‖2 ≤
√

d, as well as ‖Tr2(M�)‖2 ≤
√

d. (C69)

Proof. Observe

‖Tr1(MΦ)‖2
2 =

Φ† Φ
M M

Φ Φ†
= Tr Φ†ΦTr1(M)Φ†ΦTr1(M)

)
=: h1(Φ

†Φ) .

(C70)

The function X �→ h1(X ) is convex, according to Lemma 19 in Appendix C 2 above [M � 0 implies Tr1(M ) � 0]. More-
over, ρ = �†� ∈ Hd is guaranteed to be a quantum state: ρ = �†� � 0 and Tr(ρ) = ‖�‖2

2 = 1. The extreme points
of the convex set of all quantum states are pure states. The convex function h1 achieves its maximum value at such an
extreme point (Fact 18 in Appendix C 2) and we infer

h1(�
†�) ≤ max

ρ state
h1(ρ) = max

|ψ〉
h1(|ψ〉〈ψ |) = max

|ψ〉
〈ψ |Tr1(M )|ψ〉2 = ‖Tr1(M )‖2

∞. (C71)

Apply Eq. (C6) to conclude the first estimate: ‖Tr1(M )‖2
∞ ≤ d2‖M‖∞ ≤ d2. The second bound can be derived in a similar

fashion. Observe,

‖MΦ‖2
2 =

Φ† Φ
M M

Φ Φ†
= Tr Φ†Φ ⊗ IMI ⊗ Φ†ΦM

)
= h2(Φ

†Φ) .

(C72)

The function h2(X ) is again convex, because X �→ I ⊗ X is a linear transformation and M � 0. Moreover, ρ = �†� is
again a quantum state. We infer

h2(�
†�) ≤ max

ρ state
h2(ρ) = max

|ψ〉
h2(|ψ〉〈ψ |) = max

|ψ〉
‖Tr2 (I ⊗ |ψ〉〈ψ |M )‖2

2 , (C73)

because convex functions achieve their maximum at the boundary of convex sets (Fact 18). Applying the relation ‖X ‖2 ≤√
d‖X ‖∞ for Schatten norms in Hd, we conclude

‖M�‖2
2 ≤ d max

|ψ〉
‖Tr2 (I ⊗ |ψ〉〈ψ |M ) ‖2

∞ = d
(

max
|ψ〉,|x〉

(〈x| ⊗ 〈ψ |)M (|x〉 ⊗ |ψ〉)
)2

≤ d‖M‖2
∞. (C74)

The final bound can be established directly. Set ρ = �†� and observe

‖Tr2(MΦ)‖2
2 = M M

ΦΦ† Φ† Φ
= ‖Tr2 (I ⊗ ρM)‖2

2 .

(C75)
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Apply ‖X ‖2 ≤ √
d‖X ‖∞ to simplify further

‖Tr2(I ⊗ ρM )‖2 ≤
√

d‖Tr2(I ⊗ ρM )‖∞ ≤
√

d max
|x〉
∣∣〈x|Tr2(I ⊗ ρM )|x〉∣∣

=
√

d max
|x〉
∣∣Tr (|x〉〈x| ⊗ ρM )

∣∣. (C76)

Finally, use matrix Hoelder (C4) to infer the advertised bound:
√

d max
|x〉

|Tr (|x〉〈x| ⊗ ρM )| ≤
√

d max
|x〉

‖|x〉〈x| ⊗ ρ‖1‖M‖∞ =
√

d‖M‖∞. (C77)

�

b. Expectation value and centering

The following result is well known in the literature, see, e.g., Ref. [22]. We include a self-contained derivation based
on wiring diagrams for the sake of completeness.

Lemma 26 (Averaging unitary channels produces the depolarizing channel): Fix a PSD matrix M ∈ H⊗2
d and |φ〉 ∈

Cd ⊗ Cd. Let U(X ) = UXU† be a Haar-random unitary channel. Then,

EU{Tr [MU ⊗ I(|φ〉〈φ|)]} = Tr [MD ⊗ I(|φ〉〈φ|)] with D(ρ) = Tr(ρ)
d

I. (C78)

Proof. Averaging over a single unitary U and its adjoint decouples the register in question. Combine this with the
reformulation from the previous subsection to conclude

EU [Tr (MU ⊗ I(|φ〉〈φ|))] = E

[
M

U† U
φ φ

]
= E

[
MΦ

U† U
]

=
1

d
MΦ =

1

d
M

Φ†Φ
=

1

d
Mφφ .

(C79)

The connection to the depolarizing channel readily follows from D ⊗ I(|φ〉〈φ|) = (I/d)⊗ Tr2(|φ〉〈φ|). �

Corollary 27 (Reformulation of the centered random variable): Fix |φ〉 ∈ Cd ⊗ Cd (state) and M ∈ H⊗2
d such that

I � M � 0 (measurement). For channels U(X ) = UXU† and D(X ) = [Tr(X )/d]I define

SU(M ,φ) = Tr [MU ⊗ I(|φ〉〈φ|)] , as well as μ(M ,φ) = Tr [MD ⊗ I(|φ〉〈φ|)] .

Then, we may rewrite the difference of these variables as

S̄U (M,φ) = SU (M,φ) − μ(M,Φ) = M̄Φ
U† U

,
(C80)

where M̄� = M� − [Tr(M�)/d]I ∈ H⊗2
d is the traceless part of M� [i.e., Tr(M̄�) = 0].

This reformulation immediately follows from the proof of Lemma 26, provided that we rewrite

μ(M,φ) =
1

d
Tr(MΦ) =

Tr(MΦ)

d2

U† U
.

(C81)
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c. Bounds on centered moments

Lemma 28: With the same assumptions and notation as in Corollary 27, suppose that U ∈ U(d) is chosen uniformly from
the Haar measure. Then, for any k ≤ d2/3

EU
[
S̄U(M ,φ)k

] ≤ Ck
(k!)2

dk/2 , (C82)

where Ck = [1/(k − 1)]
(

2k
k

)
is the kth Catalan number.

Proof. It is instructive to first analyze and understand the second moment:

EU

[
S̄U (M, φ)2

]
= EU

⎡
⎢⎢⎢⎢⎣

M̄Φ
U† U

M̄Φ
U† U

⎤
⎥⎥⎥⎥⎦

= EU

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U U†

U U†
M̄Φ

M̄Φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C83)

For k = 2 there are two permutations: the identity permutation I = {1, 2} and swap (or flip) S = {2, 1}. This results in
(k!)2 = 4 different contributions to the formula: (I, I), (S, S), (S, I), and (I, S) contribute each. The associated Weingarten
functions are Wg[(1), d] = 1/(d2 − 1) and Wg[(2), d] = −[1/d(d2 − 1)]. Ignoring the common factor 1/(d2 − 1), the
individual contributions become

M̄Φ

M̄Φ

+

M̄Φ

M̄Φ

− 1

d

M̄Φ

M̄Φ

− 1

d

M̄Φ

M̄Φ

= M̄Φ M̄Φ + M̄Φ M̄Φ − 1

d
M̄Φ M̄Φ − 1

d
M̄Φ M̄Φ

(C84)

Each term is a full contraction that is also called a tensor network [41,42]. There are three possible constituents for
each tensor network: M̄�, Tr2(M̄�), and Tr1(M̄�). Importantly, no full self-contractions can contribute to the overall
sum, because M̄φ is traceless. This ensures that networks with self-contractions—like the first term—evaluate to zero.
Moreover, Lemma 25 bounds the 2-norm of each elementary constituent:

M̄Φ

2

≤
√

d , M̄Φ

2

≤
√

d , M̄Φ

2

≤ d .

(C85)

The final bound is considerably larger than the rest. However, the corresponding contribution in the sum (C84) is also
suppressed by an additional dimension factor. This is not a coincidence: term 3 can arise only if the cycle classes of (σ ,τ )
differ from each other. This feature reflects itself in the Weingarten function. For the second moment, we thus obtain the
following simple bound (ignoring signs):

EU
[
S̄(M ,φ)2

] ≤ 0 + d + d/d + d2/d
d2 − 1

= 2d + 1
d2 ≤ 4d−1. (C86)

It immediately follows from upper bounding individual terms using Eq. (C85).
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This general strategy also applies to higher moments.
Fix k ≥ 3 arbitrary. Then, Weingarten calculus implies

EU
[
S̄U(M ,φ)k

] =
∑

σ ,τ∈Sk

Wgd(σ , τ)Nσ ,τ

× [M̄�, Tr2(M̄�), Tr1(M̄�)
]

. (C87)

Here, each Nσ ,τ (·) indicates a tensor network diagram
that combines (at most) three elementary building blocks
according to rules that are dictated by the permutations τ
and σ :

Nσ,τ = M̄⊗k
Φ

σ

τ
.

(C88)

We can without loss restrict summation to tensor networks
without self-contractions, because Tr(M̄�) = 0 ensures
that such contributions vanish identically. Next, we apply
a powerful general bound to individual tensor networks.
Reference [42, Proposition 18] states that the value of a
tensor network (without self-contractions) is bounded by
the product of 2-norms of the individual constituents. For
any σ , τ this implies

|Nσ ,τ | =
∣∣Nσ ,τ
[
M̄�, Tr2(M̄�), Tr1(M̄�)

]∣∣

≤ ‖M̄�‖ν1
2 ‖Tr2(M̄�)‖ν2

2 ‖Tr1(M̄�)‖ν3
2 , (C89)

where ν1, ν2, ν3 ∈ [k] denote the number of times each
basic building block occurred in the network. Clearly,
ν1 + ν2 + ν3 = k and we can combine this with Eq. (C85)
to conclude

|Nσ ,τ | ≤ dν1/2dν2/2dν3 = dk/2+ν3/2. (C90)

The final contribution dν3/2 is always counterbalanced by
the Weingarten function, i.e., the dangerous terms are
always suppressed by powers of 1/d. As we discuss, the
Weingarten functions Wg(σ , d) depend only on the cycle
type of the permutation σ . The asymptotic behavior is
Wg(σ , d) ∼ 1/d2k−�(σ ), where � is the length of the cycle
type, i.e., the number of cycles in the permutation. The
leading-order terms are those for which the cycle type is
(1, 1, . . . , 1), the partition of 2k into 1’s. For Wg(σ−1τ , d)
this corresponds to terms with σ = τ . Returning to the
problem at hand, we contract the upper indices of the k
copies of M̄� with respect to σ and the lower indices with
τ , as shown in Eq. (C88). The leading-order terms are
those in which we act similarly on upper and lower indices.
In order to generate terms in the tensor-network contrac-
tion of M ’s containing a dangerous contribution, Tr1(M̄�),
the lengths of the cycle types of the two permutations must

differ by at least one in order to generate a contraction, a
length one cycle, in the σ indices:

EU
[
S̄U(M ,φ)k

] ≤
∑

τ ,σ∈Sk

|Wg(σ−1τ , d)|Nσ ,τ

≤
∑

σ∈Sk

Wg[(1, . . . , 1), d]dk/2

+
∑

τ  =σ∈Sk

Wg(σ−1τ , d)dk/2+ν3/2.

(C91)

Although, the Tr1(M̄�) terms will only contribute at sub-
leading order, they appear with a larger contribution in
powers of d. Thus, to rigorously upper bound the expres-
sion, we need bounds on the Weingarten functions as well
as on the number of terms ν3 which appear in a given tensor
network Nσ ,τ .

Precise upper bounds on the Weingarten functions are
known [40,81]. For our purposes, it will be convenient to
use the (slightly weaker) bound in Ref. [82], which states
that for k ≤ d2/3

|Wg(σ , d)| ≤ 3
2

Ck−1

d2k−�(σ ) , (C92)

where Ck is the kth Catalan number.
Now we establish that ν3(σ , τ), the number of danger-

ous terms Tr1(M̄�) terms in a given Nσ ,τ , is bounded by the
distance between the permutations σ and τ as ν3(σ , τ) ≤
2d(σ , τ). First we note a few facts about the symmetric
group. d(σ , τ) is defined as the minimal number of trans-
positions needed to take σ to τ , and defines a distance
between the permutations. Specifically, d(σ , τ) is a metric
on the Cayley graph of the symmetric group with the gen-
erating set of transpositions. The length of the cycle type of
a permutation σ ∈ Sk is related to the number of transpo-
sitions needed to build σ from the identity permutation as
�(σ ) = k − d(σ , I). Furthermore, a transposition changes
the number of cycles in a permutation by exactly one.

Recalling Eq. (C88), the terms Tr1(M̄�) appear only in
a given tensor-network diagram when the permutation σ
has a fixed point where τ does not, i.e., there is a self-
contraction in the σ indices of M̄⊗k

� and not the τ indices.
This implies that σ has a length one cycle at a point where
τ does not. As d(σ , τ) is the minimal number of transposi-
tions required to take σ to τ , and a transposition can only
change the number of cycles by exactly 1, then for every
two dangerous terms the distance between the permuta-
tions σ and τ must increase by at least one. This shows
that ν3(σ , τ) is bounded as

ν3(σ , τ) ≤ 2d(σ , τ) = 2[k − �(σ−1τ)]. (C93)

Returning to the general moment bound, we can apply the
bound on Weingarten functions in Eq. (C92) and the bound
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on ν3 to show that

EU
[
S̄U(M ,φ)k

]

≤
∑

τ ,σ∈Sk

|Wg(σ−1τ , d)|Nσ ,τ

≤
∑

τ ,σ∈Sk

3
2

Ck−1d�(σ
−1τ)−2k+k/2+ν3/2

≤
∑

τ ,σ∈Sk

3
2

Ck−1d−k/2 ≤ Ck(k!)2d−k/2, (C94)

which establishes the claim. �

10. ε-coverings of local random circuits

We want to extend our results in Sec. III A on complex-
ity growth to local random circuits, where the gates are
chosen Haar randomly from U(q2). Obviously, the ensem-
ble of size T circuits is continuous and statements about
the number of states of a certain complexity become less
meaningful. Nevertheless, we can consider an ε-covering
of the ensemble of local random quantum circuits (RQCs)
in order to make concrete statements about complexity
growth.

We say that a set of unitaries V is an ε-covering of a set
of unitaries U if for all U ∈ U there is some V ∈ V such
that ‖U(·)U† − V(·)V†‖� ≤ ε.

Consider the set of local random circuits of size T, where
again we act on n local qudits with local dimension q
and with local gates chosen Haar randomly from U(q2).
Following Lemma 27 from Ref. [12], we can bound the
size of an ε-covering of the set ERQC size T local RQCs.
Approximating each local gate to accuracy ε/T, we con-
struct a covering in diamond norm of each gate with size

≤ (10T/ε
)q4

. For the nT choices of gates in the circuit,
we conclude that there exists an ε-covering ẼRQC of size
T RQCs with cardinality

|ẼRQC| ≤ nT
(10T
ε

)Tq4

. (C95)

Furthermore, if an ensemble E forms an ε-approximate
unitary k-design, then the ε-covering of E will form an
ε′-approximate unitary design with ε′ = ε + 2d2kε (from
Proposition 8 in Ref. [12]). Using the lower bound on the
cardinality of an approximate design in Lemma 20 and the
upper bound on the cardinality of an ε-covering of size T
local random circuits in Eq. (C95), means that for ẼRQC to
form an approximate design, we must have

1
1 + ε′

d2k

k!
≤ |ẼRQC| ≤ nT

(10T
ε

)Tq4

. (C96)

This gives a lower bound on the size for local random
circuits to form k-designs

T ≥ 2kn log q
q4 log k

. (C97)

Therefore, an optimal random circuit implementation of
a unitary design will have at least an essentially linear
scaling in both n and k.

APPENDIX D: CONCENTRATION OF MEASURE
FOR HAAR-UNIFORM VECTORS

Proposition 29: Fix M ∈ Hd with ‖M‖∞ ≤ 1 and sup-
pose that |ψ〉 ∈ Cd is chosen uniformly from the complex
unit sphere. Then,

Pr [|〈ψ |M |ψ〉 − E (〈ψ |M |ψ〉)| ≥ τ ]

≤ 2 exp
(
− dτ 2

9π3

)
for any τ ≥ 0. (D1)

The proof is standard and we include it in this Appendix
for completion. It is based on Levy’s lemma, i.e., concen-
tration of measure on the real-unit sphere S2d−1 ⊂ R2d. A
function f : S2d−1 → R is L-Lipschitz (with respect to the
Euclidean norm ‖ · ‖�2 on R2d) if

|f (x)− f (y)| ≤ L‖x − y‖�2 for all x, y ∈ S2d−1. (D2)

Theorem 30 (Levy’s lemma): Let f : S2d−1 → R be a L-
Lipschitz function on the unit sphere. Then, the following
relation is true if x is chosen uniformly from S2d−1:

Pr{|f (x)− E [f (x)]| ≥ τ } ≤ 2 exp
(
− 4dτ 2

9π3L2

)
. (D3)

Proof of Proposition 29. The complex unit sphere in d
dimensions admits an isometric embedding—with respect
to the Euclidean norm—onto the real-valued unit sphere
S2d−1 ⊆ R2d:

|ψ〉 �→ |x〉 = Re(|ψ〉)〉 ⊕ Im(|ψ〉) ∈ S2d−1. (D4)

This embedding maps the uniform distribution on the com-
plex unit sphere in Cd to the uniform distribution on the
real-valued unit sphere in R2d. Under this embedding, the
function of interest 〈ψ |M |ψ〉 becomes

〈ψ |M |ψ〉 = 〈Re(ψ)|M |Re(ψ)〉
+ 〈Im(ψ)|M |Im(ψ)〉 = 〈x|M ⊕ M |x〉,

(D5)

because M is Hermitian. Its expectation is also preserved
and Lemma 31 immediately below states that this function
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is Lipschitz with constant 2‖M‖∞ ≤ 2. The claim then
readily follows from Levy’s lemma (Theorem 30). �

Lemma 31: Fix M ∈ Hd. Then, the following relation is
true for any pair of unit-norm vectors x, y ∈ S2d−1 ⊂ R2d

|〈x|M ⊕ M |x〉 − 〈y|M ⊕ M |y〉| ≤ 2‖M‖∞‖x − y‖�2 .
(D6)

Proof. Fix x, y ∈ S2d−1 and apply Hoelder’s inequality:

|〈x|M ⊕ M |x〉 − 〈y|M ⊕ M |y〉|2

= Tr [M ⊕ M (|x〉〈x| − |y〉〈y|)]2

≤ ‖M ⊕ M‖2
∞‖|x〉〈x| − |y〉〈‖2

1. (D7)

The block structure of M ⊕ M ensures ‖M ⊕ M‖∞ =
‖M‖∞, while the remaining term is the trace norm of a
difference of pure states. This can be computed analytically
and we obtain

‖|x〉〈x| − |y〉〈y|‖2
1

= 4
(
1 − 〈x, y〉2) = 4 (1 + 〈x, y〉) (1 − 〈x, y〉)

≤ 4 (2 − 2|〈x, y〉|) , (D8)

because 〈x, y〉 ≤ ‖x‖�2‖y‖�2 ≤ 1 Finally,

2 − 2〈x, y〉 = 〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉
= 〈x − y, x − y〉 = ‖x − y‖2

�2
, (D9)

and the claim follows. �

APPENDIX E: DESIGNS AND THE TRADITIONAL
DEFINITION OF COMPLEXITY

In the bulk of the paper we focus on a stronger notion
of complexity than the standard definition, an operational
definition involving the complexity of the distinguishing
measurement to differentiate the state from the maximally
mixed state. A more traditional definition is often consid-
ered in the literature, which involves building a quantum
circuit that approximates the state when evolved from an
initial state. This intuitive notion of complexity is related
to the minimal size of such a circuit.

In this Appendix, we work through the counting argu-
ments in Appendix A for the complexity of elements
of a k-design using the more traditional (albeit weaker)
definition of complexity. We refer to this as the weak
complexity of a state or unitary to distinguish it from the
operational definitions presented in Sec. II A.

Consider a system of n qudits with local dimension q,
such that the total dimension is d = qn. Let G ⊂ U(q2)

denote a universal gate set of elementary 2-local gates, and
let Gr be the set of circuits of size r built from our gate set
G.

Definition 5 (Weak δ-state complexity): For δ ∈ [0, 1],
we say that a state |ψ〉 has δ-state complexity of at most r
if there exists a unitary circuit V ∈ Gr such that

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 ≤ δ, which we denote as

× C ′
δ(|ψ〉) ≤ r.

We want to be able to make precise statements about
the complexity of sets of states. More specifically, if we
consider a complex projective design, the requirement that
they form a k-design is sufficiently restrictive to deduce
a quantitative statement about the complexity of the con-
stituent states.

Theorem 32 (Weak complexity of state designs): Con-
sider an ε-approximate complex projective k-design E =
{pi, |ψi〉}N

i=1. Then there are at least

dk

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E1)

states with weak δ-state complexity C ′
δ(|ψi〉) > r.

The number of high complexity states is exponentially
large in k for complexity

r � k(n − log k)
log n

. (E2)

Turning now to the complexity of unitaries, the traditional
definition of complexity is the minimal size of a circuit,
built from our gate set, which approximates that unitary.

Definition 6 (Weak δ-unitary complexity): For δ ∈
[0, 1], we say that a unitary U has δ-unitary complexity
of at most r if there exists a circuit V ∈ Gr such that

1
2

∥∥U − V
∥∥
�≤δ, which we denote as C ′

δ(U) ≤ r,

where U(ρ) = UρU† and V(ρ) = VρV†.

Again, we ask if the structure of a unitary k-design
allows us to conclude anything about the complexity
of unitaries. Once more, we find that we can turn the
statement that k-design elements have a certain expected
complexity into a quantitative one.

030316-36



MODELS OF QUANTUM COMPLEXITY GROWTH PRX QUANTUM 2, 030316 (2021)

Theorem 33 (Weak complexity of unitary designs):
Consider an ε-approximate unitary k-design E = {pi, Ui}N

i=1.
Then there are at least

d2k

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E3)

unitaries in E with weak δ-unitary complexity C ′
δ(Ui) > r.

The number of high-complexity unitaries is again expo-
nentially large in k for complexity less than

r � k(2n − log k)
log n

. (E4)

We now provide details and proofs of the above statements
about the complexity of spherical and unitary designs.

1. Weak state complexity for spherical designs

Proof of Theorem 32. First, as stated in Lemma 6, we note
that the definition of weak δ-state complexity in Definition
5 is equivalently written as

|〈ψ |V|0〉|2 ≥ 1 − δ2. (E5)

We can show this by first noting that X := |ψ〉〈ψ | −
V|0〉〈0|V† has rank at most two. Directly computing the
eigenvalues of X from

Tr(X ) = λ1 + λ2 = 0 and

Tr(X 2) = λ2
1 + λ2

2 = 2 − 2|〈ψ |V|0〉|2, (E6)

we find λ1,2 = ±
√

1 − |〈ψ |V|0〉|2. Then as ‖X ‖1 = |λ1| +
|λ2| we have that

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 =
√

1 − |〈ψ |V|0〉|2, (E7)

from which the claim follows.
We want to ask, given some state |ψ〉 chosen uni-

formly from an ε-approximate spherical k-design, what is
the probability that the state has δ complexity at most r:
C ′
δ(|ψ〉) ≤ r? We know that the state will have δ complex-

ity r if there exists a V ∈ Gr such that Eq. (E5) holds. A
union bound then gives that

Pr
[C ′
δ(|ψ〉) ≤ r

] = Pr

⎡

⎣
⋃

V∈Gr

{|〈ψ |V|0〉|2 ≥ 1 − δ2}
⎤

⎦

≤
∑

V∈Gr

Pr
[
|〈ψ |V|0〉|2 ≥ 1 − δ2

]
. (E8)

We can bound the probability that a state drawn from a
spherical k-design satisfies Eq. (E5) as a straightforward

consequence of Markov’s inequality:

Pr
[
|〈ψ |V|0〉|2 ≥ 1 − δ2

]

= Pr
[
|〈ψ |V|0〉|2k ≥ (1 − δ2)k

]

≤ E|ψ〉
[|〈ψ |V|0〉|2k

]

(1 − δ2)k
≤
(1 + ε)

(
d + k − 1

k

)−1

(1 − δ2)k
.

(E9)

In the last step here, we use Eq. (C43) and proceeding
similarly as in the proof of Lemma 21 in Appendix C 6,
noting that for a fixed state |φ〉 and |ψ〉 averaged over an
ε-approximate spherical k-design, we have

E|ψ〉
[|〈ψ |φ〉|2k] ≤ (1 + ε)

(
d + k − 1

k

)−1

. (E10)

This claim readily follows from an argument similar to the
proof of Lemma 21. Returning to Eq. (E8), we find that the
probability that a state in a spherical design has complexity
of at most r is

Pr
[C ′
δ(|ψ〉) ≤ r

] ≤ (1 + ε)
(

d + k − 1
k

)−1 nr|G|r
(1 − δ2)k

,

(E11)

using the bound on the expectation and a bound on the
cardinality of Gr.

We now turn to proving the primary claim. Negating the
above assertion implies that

Pr
[C ′
δ(|ψ〉) > r

] ≥ 1 − (1 + ε)
(

d + k − 1
k

)−1 nr|G|r
(1 − δ2)k

.

(E12)

Furthermore, we may also write this probability as the
expectation of the associated event, which yields

Pr
[C ′
δ(|ψ〉) > r

] = E|ψ〉
[
1
{C ′

δ(|ψ〉) > r
}]

=
∑

i

pi 1
{C ′

δ(|ψi〉) > r
}

≤ (1 + ε)
(

d + k − 1
k

)−1

N , (E13)

where 1 is the indicator function, and in the last step we use
the bound on the weights of an ε-approximate spherical k-
design in Lemma 21. N denotes the number of states in the
spherical design |ψi〉 with weak δ complexity greater than
r. Combining the previous two equations, we find that

N ≥ dk

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E14)

which completes the proof. �
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2. Weak unitary complexity for unitary designs

Proof of Theorem 33. We start by noting an equivalent
definition of weak δ-unitary complexity as shown in the
proof of Lemma 7. A necessary, but in general not suffi-
cient, condition for weak unitary complexity in Definition
6 is

∣∣Tr(V†U)
∣∣2 ≥ d2(1 − δ2). (E15)

Now we again ask, given some unitary U chosen uniformly
from an ε-approximate unitary k-design, what is the proba-
bility that it has δ-unitary complexity at most r: C ′

δ(U) ≤ r?
As this holds if there exists a V ∈ Gr such that the channels
are close in diamond distance, a union bound then gives
that

Pr
[C ′
δ(U) ≤ r

] = Pr

⎡

⎣
⋃

V∈Gr

{
1
2

∥∥U − V
∥∥
�≤δ
}⎤

⎦

≤
∑

V∈Gr

Pr
[∣∣Tr(V†U)

∣∣2 ≥ d2(1 − δ2)
]
,

(E16)

using the reformulation above. We can bound the proba-
bility that a unitary drawn from a k-design satisfies this
condition again by using Markov’s inequality:

Pr
[∣∣Tr(V†U)

∣∣2 ≥ d2(1 − δ2)
]

= Pr
[∣∣Tr(V†U)

∣∣2k ≥ d2k(1 − δ2)k
]

≤ EE
[∣∣Tr(V†U)

∣∣2k

d2k(1 − δ2)k
≤ (1 + ε)k!

d2k(1 − δ2)k
, (E17)

where in the last step, we use the moments of traces for
unitary designs and as in Lemma 20 in Appendix C 6 above
find that for a fixed unitary V and a unitary U averaged over
an ε-approximate unitary k-design, we have

EE
[
Tr(V†U)

∣∣2k] ≤ (1 + ε)k!. (E18)

Returning to the expression above in Eq. (E16), we find
that the probability C ′

δ(U) ≤ r is

Pr
[C ′
δ(U) ≤ r

] ≤ (1 + ε) k!
d2k

nr|G|r
(1 − δ2)k

, (E19)

using the bound on the expectation and a bound on the
cardinality of Gr. Negating the expression gives a lower
bound on the probability that a unitary in a k-design has
complexity greater than r. Furthermore, we may also write

this probability as the expectation

Pr
[C ′
δ(U) > r

] =
∑

i

pi 1
{C ′

δ(Ui) > r
} ≤ (1 + ε) k!

d2k N ,

(E20)

where we use the bound on the unitary design weights
in Lemma 20. N denotes the number of untiaries in a k-
design with weak δ complexity greater than r. Combining
the previous two equations, we find that

N ≥ d2k

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E21)

which completes the proof. �
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Chapter 5

Improving near-term quantum algorithms by
derandomization
or: Efficient estimation of Pauli observables by derandomization

Abstract

We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial

subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an

efficient derandomization procedure that iteratively replaces random single-qubit measurements by

fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform

at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables,

a deterministic measurement on only of order log(L) copies of a quantum state suffices. In some

cases, for example, when some of the Pauli observables have high weight, the derandomized procedure

is substantially better than the randomized one. Specifically, numerical experiments highlight the

advantages of our derandomized protocol over various previous methods for estimating the ground-state

energies of small molecules.
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We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial
subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an
efficient derandomization procedure that iteratively replaces random single-qubit measurements by fixed
Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least
as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a
deterministic measurement on only of order logðLÞ copies of a quantum state suffices. In some cases,
for example, when some of the Pauli observables have high weight, the derandomized procedure is
substantially better than the randomized one. Specifically, numerical experiments highlight the advantages
of our derandomized protocol over various previous methods for estimating the ground-state energies of
small molecules.
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Introduction.—Noisy intermediate-scale quantum (NISQ)
devices are becoming available [1]. Though less powerful
than fully error-corrected quantum computers, NISQ devices
used as coprocessors might have advantages over classical
computers for solving some problems of practical interest.
For example, variational algorithms using NISQ hardware
have potential applications to chemistry, materials science,
and optimization [2–10].
In a typical NISQ variational algorithm, we need to

estimate expectation values for a specified set of operators
fO1; O2;…; OLg in a quantum state ρ that can be prepared
repeatedly using a programmable quantum system. To
obtain precise estimates, each operator must be measured
many times, and finding a reasonably efficient procedure
for extracting the desired information is not easy in general.
In this Letter, we consider the special case where each Oj

is a Pauli operator; this case is of particular interest for
near-term applications.
Suppose we have quantum hardware that produces

multiple copies of the n-qubit state ρ. Furthermore, for
every copy, we can measure all the qubits independently,
choosing at our discretion to measure each qubit in the
X, Y, or Z basis. We are given a list of L n-qubit Pauli
operators (each one a tensor product of n Pauli matrices),
and our task is to estimate the expectation values of all L
operators in the state ρ, with an additive error no larger than
ε for each operator. We would like to perform this task
using as few copies of ρ as possible.
If all L Pauli operators have relatively low weight (act

nontrivially on only a few qubits), there is a simple

randomized protocol that achieves our goal quite efficiently:
For each of M copies of ρ, and for each of the n qubits,
we chose uniformly at random to measure X, Y, or Z. Then
we can achieve the desired prediction accuracy with high
success probability if M ¼ Oð3w log L=ε2Þ, assuming that
all L operators on our list have weight no larger than w
[11,12]. If the list contains high-weight operators, however,
this randomized method is not likely to succeed unless M is
very large.
In this Letter, we describe a deterministic protocol for

estimating Pauli-operator expectation values that always
performs at least as well as the randomized protocol and
performs much better in some cases. This deterministic
protocol is constructed by derandomizing the randomized
protocol. The key observation is that we can compute a
lower bound on the probability that randomized measure-
ments on M copies successfully achieve the desired error ε
for every one of our L target Pauli operators. Furthermore,
we can compute this lower bound even when the meas-
urement protocol is partially deterministic and partially
randomized; that is, when some of the measured single-
qubit Pauli operators are fixed, and others are still sampled
uniformly from fX; Y; Zg.
Hence, starting with the fully randomized protocol, we

can proceed step by step to replace each randomized single-
qubit measurement by a deterministic one, taking care in
each step to ensure that the new partially randomized
protocol, with one additional fixed measurement, has suc-
cess probability at least as high as the preceding protocol.
When all measurements have been fixed, we have a fully
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deterministic protocol. In numerical experiments, we find
that this deterministic protocol substantially outperforms
randomized protocols [12–16]. The improvement is espe-
cially significant when the list of target observables includes
operators with relatively high weight. Further performance
gains are possible by executing (at least) linear-depth circuits
before measurements [17–20]. Such procedures do, how-
ever, require deep quantum circuits. In contrast, our protocol
only requires single-qubit Pauli measurements, which are
more amenable to execution on near-term devices.
The manuscript is organized as follows. We first provide

some statistical background, explain the randomized meas-
urement protocol, then analyze the derandomization pro-
cedure. We then provide numerical results showing how the
derandomized protocol improves on previous methods. We
conclude with remarks and outlooks. Further examples and
details of proofs are in the Supplemental Material [21].
Statistical background.—Let ρ be a fixed, but unknown,

quantum state on n qubits. We want to accurately predict L
expectation values

ωlðρÞ ¼ trðOolρÞ for 1 ≤ l ≤ L; ð1Þ

where each Ool ¼ σol½1� ⊗ � � � ⊗ σol½n� is a tensor product
of single-qubit Pauli matrices, i.e., ol ¼ [ol½1�;…; ol½n�]
with ol½k� ∈ fI; X; Y; Zg. To extract meaningful informa-
tion, we perform M (single-shot) Pauli measurements on
independent copies of ρ. There are 3n possible measure-
ment choices. Each of them is characterized by a full-
weight Pauli string pm ∈ fX; Y; Zgn and produces a
random string of n outcome signs qm ∈ f�1gn.
Not every Pauli measurement pm (1 ≤ m ≤ M) pro-

vides actionable advice about every target observable ol
(1 ≤ l ≤ L). The two must be compatible in the sense
that the latter corresponds to a marginal of the former;
i.e., it is possible to obtain ol from pm by replacing
some local nonidentity Pauli matrices with I. If this is
the case, we write ol▹pm and say that measurement pm
“hits” target observable ol. For instance, ½X; I�; ½I; X�;
½X;X�▹½X;X�, but ½Z; I�; ½I; Z�; ½Z; Z� ▹ ½X;X�. We can
approximate each ωlðρÞ by empirically averaging (appro-
priately marginalized) measurement outcomes that
belong to Pauli measurements that hit ol,

ω̂l ¼ 1

hðol; ½p1;…;pM�Þ
X

m∶ol▹pm

Y

j∶ol½j�≠I
qm½j�; ð2Þ

where hðol;½p1;…;pM�Þ¼
P

M
m¼11fol▹pmg∈f0;1;…;Mg

counts how many Pauli measurements hit target observ-
able ol.
It is easy to check that each ω̂l exactly reproduces ωlðρÞ

in expectation [provided that hðol;PÞ ≥ 1]. Moreover, the
probability of a large deviation improves exponentially
with the number of hits.

Lemma 1. (Confidence bound). Fix ε ∈ ð0; 1Þ (accu-
racy) and 1 − δ ∈ ð0; 1Þ (confidence). Suppose that Pauli
observables O ¼ ½o1;…; oL� and Pauli measurements
P ¼ ½p1;…;pM� are such that

ConfεðO;PÞ ≔
XL

l¼1

exp

�
−
ε2

2
hðol;PÞ

�
≤
δ

2
: ð3Þ

Then, the associated empirical averages (2) obey

jω̂l − ωlðρÞj ≤ ε for all 1 ≤ l ≤ L ð4Þ

with probability (at least) 1 − δ.
See Supplemental Material Sec. B.1 for a detailed

derivation [21]. We call the function defined in Eq. (3)
the “confidence bound.” It is a statistically sound summary
parameter that checks whether a set of Pauli measurements
(P) allows for confidently predicting a collection of Pauli
observables (O) up to accuracy ε each.
Randomized Pauli measurements.—Intuitively speaking,

a small confidence bound (3) implies a good Pauli estimation
protocol. But how should we choose our M Pauli measure-
ments (P) in order to achieve ConfεðO;PÞ ≤ δ=2? The
randomized measurement toolbox [12,13,16,22,23] provides
a perhaps surprising answer to this question. Let wðolÞ
denote the weight of Pauli observable ol, i.e., the number
of qubits on which the observable acts nontrivially: wðolÞ ¼P

n
k¼1 1fol½k� ≠ Ig. These weights capture the probability

of hitting ol with a completely random measurement string:
Probp½ol▹p� ¼ 1=3wðolÞ. In turn, a total of M randomly
selected Pauli measurements will, on average, achieve
EP½hðol;PÞ�¼M=3wðolÞ hits, regardless of the actual Pauli
observable ol in question. This insight allows us to compute
expectation values of the confidence bound (3)

EP½ConfεðO;PÞ� ¼
XL

l¼1

ð1 − ν=3wðolÞÞM; ð5Þ

where ν ¼ 1 − expð−ε2=2Þ ∈ ð0; 1Þ. Each of the L terms is
exponentially suppressed in ε2M=3wðolÞ. Concrete realiza-
tions of a randomized measurement protocol are extremely
unlikely to deviate substantially from this expected behavior
(see, e.g., [11]). Combined with Lemma 1, this observation
implies a powerful error bound.
Theorem 1. (Theorem 3 in Ref. [11].)—Empirical

averages (2) obtained from M randomized Pauli measure-
ments allow for ε-accurately predicting L Pauli expectation
values trðOo1ρÞ;…; trðOoLρÞ up to additive error ε given
that M ∝ logðLÞmaxl 3wðolÞ=ε2.
In particular, order logðLÞ randomized Pauli measure-

ments suffice for estimating any collection of L low-weight
Pauli observables. It is instructive to compare this result
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to other powerful statements about randomized measure-
ments, most notably the “classical shadow” paradigm
[12,16]. For Pauli observables and Pauli measurements,
the two approaches are closely related. The estimators (2)
are actually simplified variants of the classical shadow
protocol (in particular, they do not require median of means
prediction) and the requirements onM are also comparable.
This is no coincidence; information-theoretic lower bounds
from [12] assert that there are scenarios where the scaling
M ∝ logðLÞmaxl 3wðolÞ=ε2 is asymptotically optimal and
cannot be avoided.
Nevertheless, this does not mean that randomized

measurements are always a good idea. High-weight observ-
ables do pose an immediate challenge, because it is
extremely unlikely to hit them by chance alone.
Derandomized Pauli measurements.—The main result

of this Letter is a procedure for identifying “good” Pauli
measurements that allow for accurately predicting many
(fixed) Pauli expectation values. This procedure is designed
to interpolate between two extremes: (i) completely ran-
domized measurements (good for predicting many local
observables) and (ii) completely deterministic measure-
ments that directly measure observables sequentially (good
for predicting few global observables).
Note that we can efficiently compute concrete confi-

dence bounds (3), as well as expected confidence bounds
averaged over all possible Pauli measurements (5).
Combined, these two formulas also allow us to efficiently
compute expected confidence bounds for a list of mea-
surements that is partially deterministic and partially
randomized. Suppose that P♯ subsumes deterministic
assignments for the first (m − 1) Pauli measurements, as
well as concrete choices for the first (k − 1) Pauli labels of
the mth measurement, see Fig. 1 (center). There are three
possible choices for the next Pauli assignment: P♯½k;m� ¼
W with W ¼ X, Y, Z. For each choice, we can explicitly
compute the resulting conditional expectation value,

EP½ConfεðO;PÞjP♯;P½k;m� ¼ W�

¼
XL

l¼1

exp

�
−
ε2

2

Xm−1

m0¼1

Yn

k0¼1

1fol½k0�▹P♯½k0; m0�g
�

×

�
1 − ν

1fol½k�▹Wg
3wÄkðolÞ

Yk−1

k0¼1

1fol½k0�▹P♯½k0; m�g
�

× ð1 − ν3−wðolÞÞM−m; ð6Þ

where ν¼1−expð−ε2=2Þ, wÄkðolÞ¼wð[ol½kþ1�;…;ol½n�]Þ
and ol½k0�▹P♯½k0; m� if ol½k0� ¼ I or ol½k0� ¼ P♯½k0; m�. This
formula allows us to build deterministic measurements one
Pauli label at a time.
We start by envisioning a collection of M completely

random n-qubit Pauli measurements. That is, each Pauli
label is random and Eq. (5) captures the expected con-
fidence bound averaged over all 3nM assignments. There
are three possible choices for the first label in the first Pauli
measurement: P½1; 1� ¼ X, P½1; 1� ¼ Y, and P½1; 1� ¼ Z.
At least one concrete choice does not further increase the
confidence bound averaged over all remaining Pauli signs,

min
W∈fX;Y;Zg

EP[ConfεðO;PÞjP½1; 1� ¼ W]

≤
1

3

X

W∈fX;Y;Zg
EP[ConfεðO;PÞjP½1; 1� ¼ W]

¼ EP½ConfεðO;PÞ�: ð7Þ
Crucially, Eq. (6) allows us to efficiently identify a
minimizing assignment

P♯½1; 1� ¼ argmin
W∈fX;Y;Zg

EP[ConfεðO;PÞjP½1; 1� ¼ W]: ð8Þ

Doing so replaces an initially random single-qubit meas-
urement setting by a concrete Pauli label that minimizes the
conditional expectation value over all remaining (random)

FIG. 1. Illustration of the derandomization algorithm (Algorithm 1): We envision M randomized n-qubit measurements as a two-
dimensional array composed of n ×M Pauli labels. Blue squares are place holders for random Pauli labels, while green squares denote
deterministic assignments (either X, Y, or Z). Starting with a completely unspecified array (left), the algorithm iteratively checks how a
concrete Pauli assignment (red square) affects the confidence bound [Eq. (3)] averaged over all remaining assignments. A simple update
rule [Eq. (8)] replaces the initially random label with a deterministic assignment that keeps the remaining confidence bound expectation
as small as possible (center). Once the entire grid is traversed, no randomness is left (right) and the algorithm outputs M deterministic
n-qubit Pauli measurements.
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assignments. This procedure is known as derandomization
[24–26] and can be iterated. Figure 1 provides visual
guidance, while pseudo-code can be found in
Algorithm 1. There are a total of n ×M iterations. Step
ðk;mÞ is contingent on comparing three conditional expect-
ation values EP[ConfεðO;PÞjP♯;P½k;m� ¼ W] and
assigning the Pauli label that achieves the smallest score.
These update rules are constructed to ensure that (appro-
priate modifications of) Eq. (7) remain valid throughout
the procedure. Combining all of them implies the
following rigorous statement about the resulting Pauli
measurements P♯.
Theorem 2. (Derandomization promise).—Algorithm 1

is guaranteed to output Pauli measurements P♯ with below
average confidence bound: ConfεðO;P♯Þ≤EP½ConfεðO;PÞ�.
We see that derandomization produces deterministic

Pauli measurements that perform at least as favorably as
(averages of) randomized measurement protocols. But the
actual difference between randomized and derandomized
Pauli measurements can be much more pronounced. In the
examples we considered, derandomization reduces the
measurement budget M by at least an order of magnitude,
compared to randomized measurements. Furthermore,
because Algorithm 1 implements a greedy update pro-
cedure, we have no assurance that our derandomized
measurement procedure is globally optimal or even close
to optimal. Using dynamic programming, the derandom-
ization algorithm runs in time OðnMLÞ; see Supplemental
Material Sec. C 3 for a detailed implementation [21].
Numerical experiments.—The ability to accurately esti-

mate many Pauli observables is an essential subroutine for
variational quantum eigensolvers (VQEs) [4,8–10,27].
Randomized Pauli measurements [11,12]—also known
as classical shadows in this context—offer a conceptually
simple solution that is efficient both in terms of quantum
hardware and measurement budget.

Derandomization can and should be viewed as a refine-
ment of the original classical shadows idea. Supported by
rigorous theory (Theorem 2), this refinement is only
contingent on an efficient classical preprocessing step,
namely, running Algorithm 1. It does not incur any extra
cost in terms of quantum hardware and classical postpro-
cessing, but can lead to substantial performance gains.
Numerical experiments visualized in Ref. [12], Fig. 5, have
revealed unconditional improvements of about one order of
magnitude for a particular VQE experiment [28] (simulat-
ing quantum field theories).
In this section, we present additional numerical studies

that support this favorable picture. These address a slight
variation of Algorithm 1 that does not require fixing the
total measurement budget M in advance. We focus on the
“electronic structure problem”: determine the ground-state
energy for molecules with unknown electronic structure.
This is one of the most promising VQE applications in
quantum chemistry and material science. Different encod-
ing schemes—most notably Jordan-Wigner (JW) [29],
Bravyi-Kitaev (BK) [30] and parity (P) [30,31]—allow
for mapping molecular Hamiltonians to qubit Hamiltonians
that correspond to sums of Pauli observables. Several
benchmark molecules have been identified whose
encoded Hamiltonians are just simple enough for an
explicit classical minimization, so that we can compare
Pauli estimation techniques with the exact answer.
Figure 2 illustrates one such comparison. We fix a

benchmark molecule BeH2, a BK encoding and plot
the ground-state energy approximation error against the

Algorithm 1. The derandomization algorithm proposed in this
work for finding an efficient scheme for measuring a collection of
n-qubit Pauli observables.

Derandomization.

Input: measurement budget M, accuracy ε, and L n-qubit Pauli
observables O ¼ ½o1;…; oL�.

Output: M Pauli measurements P♯ ∈ fX; Y; Zgn×M.
1 function DERANDOMIZATION ðO;M; εÞ
2 initialize P♯ ¼ [½�] (empty n ×M array)
3 for m ¼ 1 to M do ▹ loop over measurements
4 for k ¼ 1 to n do ▹ loop over qubits
5 for W ¼ X, Y, Z do compute
6 fðWÞ ¼ EP½ConfεðO;PÞj

P♯;P½k;m� ¼ W�
7 [see Eq. (6) for a precise formula]
8 P♯½k;m� ← argminW∈fX;Y;ZgfðWÞ
9 output P♯ ∈ fX; Y; Zgn×M

FIG. 2. BeH2 ground-state energy estimation error (in Har-
tree) under Bravyi-Kitaev encoding [30] for different meas-
urement schemes: The error for derandomized shadow is the
root-mean-squared error (RMSE) over ten independent runs.
The error for the other methods shows the RMSE over infinitely
many runs and can be evaluated efficiently using the variance of
one experiment [14].
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number of Pauli measurements. The plot highlights that
derandomization outperforms the original classical shad-
ows procedure (randomized Pauli measurements) [12],
locally biased classical shadows [12], and another popular
technique known as LDF grouping [14,32]. The discrep-
ancy between randomized and derandomized Pauli mea-
surements is particularly pronounced.
This favorable picture extends to a variety of other

benchmark molecules and other encoding schemes, see
Table I. For a fixed measurement budget, derandomization
consistently leads to a smaller estimation error than other
state-of-the-art techniques. One could also repeat the meas-
urement scheme found by the derandomization algorithm
multiple times to improve the estimation error; see
Supplemental Material Sec. C.4 [21]. Finally, we note that
in the presence of measurement noise, the various
approaches we have considered are likely to suffer about
equally, as they were all based on single-qubit Pauli
measurements. One could mitigate such noise by incorpo-
rating recently proposed noise inversion techniques [33,34].
Conclusion and outlook.—We consider the problem of

predicting many Pauli expectation values from few Pauli
measurements. Derandomization [24–26] provides an effi-
cient procedure that replaces originally randomized single-
qubit Pauli measurements by specific Pauli assignments.
The resulting Pauli measurements are deterministic, but
inherit all advantages of a fully randomized measurement
protocol. Furthermore, the derandomization procedure

can accurately capture the fine-grained structure of the
observables in question. Predicting molecular ground-state
energies based on derandomized Pauli measurements
scales favorably and improves upon many existing tech-
niques [11,14,16,32]. Source code for an implementation of
the proposed procedure is available at [35].
Randomized measurements have also been used to esti-

mate entanglement entropy [12,36–38], topological invari-
ants [39,40], benchmark physical devices [12,22,41,42],
and predict outcomes of physical experiments [43].
Derandomization provides a principled approach for adapting
randomized measurement procedures to fine-grained struc-
ture and is closely related to an algorithmic technique—
multiplicative weight update [44]—commonly used in
machine learning and game theory. So far, we have only
considered estimations of Pauli observables, but measure-
ment designvia derandomization should applymore broadly;
we look forward to applying derandomization to other tasks
such as estimating non-Pauli observables and entanglement
entropies. Additional improvements in performancemight be
achieved by modifying the cost function fðWÞ used in
Algorithm 1, for example, by greedily assigning more than
one single-qubit Pauli measurement in each iteration.
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Appendix A: Illustrative derandomization examples

The exact workings of Algorithm 1 depend on the structure of the set of Pauli observables. In this appendix
section, we provide several examples to illustrate the mechanism of the derandomization procedure.

1. Many local Pauli observables.

Many near-term applications of quantum devices rely on repeatedly estimating a large number of low-weight
Pauli observables. For example, low-energy eigenstates of a many-body Hamiltonian may be prepared and
studied using a variational method, in which the Hamiltonian, a sum of local terms, is measured many times.
Using randomized measurements, we can predict many low-weight observables simultaneously at comparatively
little cost. It is known that a logarithmic number of randomized Pauli measurements allows for accurately
predicting a polynomial number of low-weight observables [22].

This desirable feature provably extends to derandomized measurements. From Theorem 2 and Eq. (5),
we infer that the measurement budget M = 4 log(2L/�) max` 3w(o`)/"2 suffices to ensure that Algorithm 1
outputs Pauli measurements P] that obey Conf"(O;P)  �/2. With Lemma 1, we may convert this into an
error bound: empirical averages (2) formed from appropriate measurement outcomes are guaranteed to obey
|!̂` � tr(Oo`

⇢)|  " for all 1  `  L with high probability (at least 1 � �). This error bound is roughly on
par with the best rigorous result about predicting local Pauli observables from randomized Pauli measurements
[16]. But this argument implicitly assumes that Conf"(O;P]) (which we can compute) is comparable to
EP [Conf"(O;P)] (which is characterized by Eq. (5)). This assumption is extremely pessimistic, because
often Conf"(O;P]) ⌧ EP [Conf"(O;P)]. If this is the case, derandomized Pauli measurements perform
substantially better.

2. Few global Pauli observables.

We have seen that derandomized measurements never perform worse than randomized measurements. But
they can perform much better. This discrepancy is best illustrated with a simple example: design Pauli
measurements to predict both a complete Y -string (o1 = [Y, . . . , Y ]) and a complete Z-string (o2 = [Z, . . . , Z]).
Here, randomized measurements are a terrible idea, because it is exponentially unlikely to hit either string by
chance alone.

Contrast this with derandomization. For the very first assignment (k = 1,m = 1), Algorithm 1 starts by
computing three conditional expectations. Comparing them reveals f(Y ) = f(Z) < f(X) and the algorithm
determines that assigning X is likely a bad idea. The two remaining choices should be equivalent and the
algorithm assigns, say, P][1, 1] = Y . This initial choice does affect the expected confidence bound associated
with the second Pauli label (k = 2,m = 1): f(Y ) < f(X) = f(Z). Taking into account the already assigned
first Pauli label, both X and Z become equally unfavorable and the algorithm sticks to assigning P][2, 1] = Y .
This situation now repeats itself until the first Pauli measurement is completely assigned: p]1 = [Y, . . . , Y ] = o1.
The algorithm has successfully kept track of an entire global Pauli string.

It is now time to assign the first Pauli label of the second Pauli measurement (k = 1, m = 2). While X is
still a bad idea, taking into account that we have already measured o1 once also breaks the symmetry between
Y and Z assignments: f(Z) < f(Y ) < f(X). So the algorithm chooses P][1, 2] = Z and subsequently sticks
to assigning Z for all qubits: p]2 = [Z, . . . , Z] = o2. Having measured both o1 and o2 an equal number of
times restores the initial symmetry and the algorithm basically resets. This process resets until all M Pauli
measurements are assigned and Algorithm 1 outputs P] = [o1,o2, . . . ,o1,o2]. In words: measure both global
observables equally often. Although statistically optimal, this measurement protocol is neither surprising nor
particularly interesting. What is encouraging, though, is that Algorithm 1 has (re-)discovered it all by itself.

3. Very many global Pauli observables (non-example):

The derandomization algorithm is not without flaws. The greedy update rule in line 8 of Algorithm 1 can be
misguided to produce non-optimal results. This happens, for instance, for a very large collection of global Pauli
observables that appears to have favorable structure but actually doesn’t. For instance, set o1 = [X, . . . ,X]

and o` = [Z; õ`], where õ` 2 {X, Y, Z}n�1 ranges through all 3n�1 possible Pauli strings of size (n� 1). There
are L = 3n�1 +1 target observables, all of which are global and therefore incompatible. However, 3n�1 of them
start with a Pauli-Z label. This imbalance leads the algorithm to believe that assigning P][1, m] = Z for all
1  m M is always a good idea (provided that M is not much larger than 3n�1). By doing so, it completely
ignores the first target observable which starts with an X-label. But at the same time, it cannot capitalize on
this particular decision, because observables o2 to oL are actually incompatible. This results in an imbalanced
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output P] that treats observables o2 to oL roughly equally, but completely forgets about o1. Needless to say,
the resulting confidence bound will not be minimal either. We emphasize that this highly stylized non-example
is not motivated by actual applications. Instead it is intended to illustrate how greedy update procedures can
get stuck in local minima.

Appendix B: Additional details and proofs

1. Proof of Lemma 1

Let us briefly recapitulate the general setting. A n-qubit Pauli measurement p 2 {X, Y, Z}n produces a
random string of n signs q̂ 2 {±1}n. Information about the underlying n-qubit state ⇢ is encoded in the
distribution of outcome strings

Pr [q̂ = q|p, ⇢] = tr

0
@

mO

j=1

1
2

�
�I + q[j]�p[j]

�
⇢

1
A for all q 2 {±1}n. (B1)

Now, suppose that o 2 {I, X, Y, Z}n is another Pauli string that is hit by p (o B p). Then, we can appropriately
marginalize n-qubit outcome strings q 2 {±1}n to reproduce !(⇢) = tr (Oo⇢) in expectation:

E
Y

j:o[j] 6=I

q[j] =
X

q2{±1}n

Pr [q|p, ⇢]
Y

j: oj 6=I

q[j] (B2)

=
X

q2{±1}n

tr

0
@ O

j:o[j] 6=I

1
2

�
q[j] + �p[j]

� O

j:o[j]=I

1
2

�
�I + q[j]�p[j]

�
⇢

1
A

= 1
2n

X

q2{±1}n

tr

0
@ O

j: o[j] 6=I

�o[j]

O

j: o[j]=I

�I⇢

1
A = tr

0
@

nO

j=1

�o[j]⇢

1
A = tr (Oo⇢) ,

whenever o B p (which ensures o[j] = p[j] whenever o[j] 6= I). Now, suppose that we perform a total of M Pauli
measurements p1, . . . ,pM . The above relation suggests to approximate Pauli observables !`(⇢) = tr(Oo`

⇢) by
empirical averages:

!̂` =

(
1

h(o`;P)

P
m:o`Bpm

Q
j:o`[j] 6=I qm[j] if h(o`;P) � 1

0 if h(o`;P) = 0.
(B3)

Here, h(o`;P) =
PM

m=1 1 {o` B pm} denotes the hitting count, i.e. the number of times a Pauli measurement
pm provides meaningful information about observable o`. If h(o`;P) = 0, not a single Pauli measurement is
compatible with the target observable in question and we set !̂` = 0, because we do not have any actionable
advice. The above procedure allows us to jointly estimate L Pauli observables based on M Pauli measurement
outcomes. The quality of reconstruction is exponentially suppressed in the number of times we hit each target
Pauli observable.

Lemma 2. Fix a collection of M Pauli measurements P = [p1, . . . ,pM ], a collection of L Pauli observables
!`(⇢) = tr (Oo`

⇢). Then, for all " > 0

Pr


max

1`L
|!̂` � !`(⇢)| � "

�
 2

LX

`=1

exp
⇣
� "22 h(o`;P)

⌘
. (B4)

Lemma 1 in the main text is an immediate consequence of this concentration inequality.

Proof. The union bound – also known as Boole’s inequality – states that the probability associated with a union
of events is upper bounded by the sum of individual event probabilities. For the task at hand, it implies

Pr


max

1`L
|!̂` � !`(⇢)| � "

�
= Pr

"
L[

`=1

{|!̂` � !`| � "}
#


LX

`=1

Pr [|!̂` � !`(⇢)| � "] . (B5)

This allows us to treat individual deviation probabilities separately. Fix 1  `  L and note that !̂` is an
empirical average of M` = h(o`;P) random signs s

(`)
i =

Q
j: o`[j] 6=I qi[j] 2 {±1} that are independent each

(they arise from different measurement outcomes). Empirical averages of independent signed random variables
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tend to concentrate sharply around their true expectation value Es
(`)
i = tr(Oo`

⇢). Hoeffding’s inequality makes
this intuition precise and asserts for any " > 0

Pr [|!̂` � !`(⇢)| � "] =Pr

"�����
1

M`

MX̀

i=1

⇣
s
(`)
i � Es

(`)
i

⌘����� � "
#
 2 exp

⇣
� "22 M`

⌘
. (B6)

The claim follows, because such an exponential bound is valid for each term in Eq. (B5). This also includes
terms with zero hits (M` = 0), because Pr [|!̂` � !`| � "]  1 = exp (�0/2) – and the claim follows.

2. Derivation of Eq. (6)

Note that each hitting count h(o`;P) =
PM

m=1 1 {o` B pm} is a sum of M indicator functions that can take
binary values each. This structure allows us to rewrite the confidence bound (3) as

Conf"(O;P) =
LX

`=1

exp
⇣
� "22 h(o`;P)

⌘
=

LX

`=1

MY

m0=1

exp
⇣
� "22 1 {o` B pm0}

⌘
(B7)

=
LX

`=1

MY

m0=1

(1� ⌫1 {o` B pm0}) ,

where ⌫ = 1 � exp
�
�"2/2

�
2 (0, 1). Next, note that each remaining indicator function can be further decom-

posed into a product of more elementary indicator functions:

1 {o` B pm0} =
nY

k0=1

1 {o`[k0] B pm0 [k0]} =
nY

k0=1

(1 {o`[k0] = I} + 1 {o`[k0] = pm0 [k0]}) . (B8)

Finally, note that a randomly assigned single-qubit label pm[j] 2 {X, Y, Z} hits non-identity Pauli label o`[j] 6=
I with probability 1/3. More precisely,

Epm[j] [1 {o`[j] B pm[j]}] = Prpm[j] [o`[j] B pm[j]] = (1/3)1{o`[j] 6=I} =

(
1/3 if o`[j] 6= I,
1 if o`[j] = I.

(B9)

Together with independence, this observation allows us to compute expectation values of confidence bounds that
are partially assigned already. Let P] denote the already assigned part that encompasses the first m� 1 Pauli
measurements, as well as the first k single-qubit labels of the m-th Pauli measurement: P] =

h
p]1, . . . ,p

]
m�1

i
[

⇥
p]m[1], . . . ,pm[k]]

⇤
. We also assume that all remaining Pauli labels are assigned independently and uniformly

at random (Pr [pm0 [k0] = X] = Pr [pm0 [k0] = Y ] = Pr [pm0 [k0] = Z] = 1/3). Independence ensures that the
conditional expectation factorizes nicely into individual components:

EP

⇥
Conf"(O;P)|P]

⇤
=

LX

`=1

m�1Y

m0=1

⇣
1� ⌫1{o` B p]m0}

⌘
(B10)

⇥
 

1� ⌫
kY

k0=1

{o`[k0] B pm[k0]}
nY

k0=k+1

Epm[k0]{o`[k0] B pm[k0]}
!

⇥
MY

m0=m+1

 
1� ⌫

nY

k0=1

Epm0 [k0]1{o`[k0] B pm0 [k0]}
!

=
LX

`=1

m�1Y

m0=1

⇣
1� ⌫1{o` B p]m0}

⌘ 
1� ⌫

kY

k0=1

{o`[k0] B pm[k0]}
nY

k0=k+1

(1/3)1{o`[k
0] 6=I}

!

⇥
MY

m0=m+1

 
1� ⌫

nY

k0=1

(1/3)1{o`[k
0] 6=I}

!
.

Now, note that the exponent
Pn

k0=k+1 1{o`[k0] 6= I} = w¬k(o`) captures the weight of the reduced Pauli
string [o`[k + 1], . . . ,o`[n]] (in particular, w¬0(o`) = w(o`)) Reading Eq. (B7) backwards to recognizeQm�1

m0=1

⇣
1� ⌫1{o` B p]m0}

⌘
= exp

⇣
� "22 h(o`; [p

]
1, . . . ,p

]
m�1])

⌘
further simplifies the expression:

EP

⇥
Conf"(O;P])|P]

⇤
=

LX

`=1

exp
⇣
� "22 h(o`; [p

]
1, . . . ,p

]
m�1])

⌘ 
1� ⌫

kY

k0=1

{o`[k0] B pm[k0]}3�w¬k(o`)

!
(B11)
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⇥
⇣
1� ⌫3�w(o`)

⌘M�m

.

Appendix C: Further details regarding numerical experiments

1. Quantum chemistry applications

We consider a molecular electronic Hamiltonian that has been encoded into an n-qubit system. The Hamil-
tonian can be written as a sum of Pauli observables.

H =
X

P2{I,X,Y,Z}n

↵P P. (C1)

The number of qubits for different molecules is given by

H2 : n = 8, LiH : n = 12, BeH2 : n = 14, H2O : n = 14, NH3 : n = 16. (C2)

Each molecule is represented by a fermionic Hamiltonian in a minimal STO-3G basis, ranging from 4 to 16 spin
orbitals. The 8-qubit H2 example is represented using a 6-31G basis. The fermionic Hamiltonian is mapped to
a qubit Hamiltonian using three different common encodings: Jordan-Wigner (JW) [27], Bravyi-Kitaev (BK)
[5] and Parity (P) [5, 44]. The Pauli decomposition considered here has already been featured in many existing
works; see [4, 18, 28] for more details.

In our numerical experiments, the measurement procedure is applied to the exact ground state of the encoded
n-qubit Hamiltonian H:

⇢ = |gihg|, where |gi = arg min
| i

h | H | i . (C3)

The ground state |gi is obtained by exact diagonalization using the Lanczos method, see e.g. [33] for a recent
survey. We focus on root-mean squared error (RMSE) to quantify the measurement error. For M independent
repetitions of the measurement procedure giving rise to M estimates Ê1, . . . , ÊM , the RMSE is given by:

RMSE =

vuut 1

M

MX

i=1

(Êi � EGS)2, (C4)

where EGS is the exact ground state electronic energy tr(H⇢) = h | H | i. We consider the ground state
electronic energy of the molecule without the static Coulomb repulsion energy between the nuclei. Hence the
total ground state energy of the molecule is the sum of the ground state electronic energy and the static Coulomb
repulsion energy (Born-Oppenheimer approximation). We do not focus on the static Coulomb repulsion energy
because it is not encoded in the molecular electronic Hamiltonian H and is considered to be a fixed value.

2. Methods we compare to

We elaborate the alternative measurement procedures with which we compared our derandomized procedure.

1. LDF grouping : The largest-degree-first (LDF) grouping strategy and other heuristics have been considered
and investigated in [47]. The conclusion is that the LDF grouping strategy results in good performance
(differing from the best heuristics by at most 10%) and is generally recommended. The measurement
error (RMSE) of LDF grouping strategy can be computed exactly given an exact representation of the
ground state |gi; see [18] for details.

2. Classical shadow : The measurement procedure measures each qubit in a random X, Y, Z Pauli basis.
This procedure is known to allow estimation of any L few-body observables from only order log(L)
measurements [11, 16, 22]. However, the performance would degrade significantly when we consider
many-body observables. Hence, this approach will likely perform less well for molecular Hamiltonians
due to the presence of many high-weight Pauli observables.

3. Locally-biased classical shadow : This is an improvement over classical shadows, proposed by [18], designed
to overcome disadvantages in estimating the expectation of many-body observables. The idea is to bias
the distribution over different Pauli bases (X, Y or Z) for each qubit to minimize the variance when we
measure the quantum Hamiltonian given in Equation (C1). Ref. [18] demonstrated that this approach
would yield similar or better performance compared to LDF grouping and outperforms classical shadows.
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3. Details of the derandomization algorithm

In what follows, we provide a detailed description of the cost function used to derandomize the single-qubit
Pauli observables for our numerical experiments. In Algorithm 1, we used the cost function

f(W ) = EP

⇥
Conf"(O;P)|P],P[k, m] = W

⇤
. (C5)

The conditional expectation is given by Eq. (6) and is restated here for convenience

EP

⇥
Conf"(O;P)|P]

⇤
=

LX

`=1

exp

 
�"

2

2

m�1X

m0=1

nY

k0=1

1
�
o`[k

0] B P][k0, m0]
 
!

⇥
 

1� ⌫
kY

k0=1

1
�
o`[k

0] B P][k0, m]
 

3�w¬k(o`)

!

⇥
⇣
1� ⌫3�w(o`)

⌘M�m

,

where ⌫ = 1 � exp(�"2/2) and w¬k(o`) = w([o`[k + 1], . . . ,o`[n]]). This formula requires us to fix the total
number of measurements M beforehand. However, one may want to keep measuring until certain criteria are
satisfied, e.g., that all of the L Pauli observables has been measured sufficiently many times. In such a scenario,
it is unclear what M should be. One approach is to try out various different values of M and choose the one
that works best. In the numerical experiments, we consider the following alternative strategy, where we simply
remove

�
1� ⌫3�w(o`)

�M�m
since it only depends on the weight of the Pauli observable o`. The results are

similar and one does not have to choose M beforehand. The precise formula we used in Algorithm 1 is now
given by a modified cost function instead of the conditional expectation value,

f(W ) = C(P],P[k, m] = W ). (C6)

The modified cost function is a sum of single-observable cost functions exp
�
�V (o`,P

])
�
,

C(P]) =
LX

`=1

exp
�
�V (o`,P

])
�
, (C7)

V (o`,P
]) =

⌘

2

m�1X

m0=1

nY

k0=1

1
�
o`[k

0] B P][k0, m0]
 

� log

 
1� ⌫

3w([o`[k+1],...,o`[n]])

kY

k0=1

1
�
o`[k

0] B P][k0, m]
 
!

, (C8)

where ⌘, ⌫ > 0 are hyperparameters that need to be chosen properly. In the numerical experiments, we
consider ⌘ = 0.9 and ⌫ = 1� exp(�⌘/2). The larger V (o`,P

]) is, the lower the single-observable cost function
exp

�
�V (o`,P

])
�

will be. The following discussion provides an intuitive understanding for the role of the two
terms in V (o`,P

]).

1. The first term in V (o`,P
]) is proportional to

m�1X

m0=1

nY

k0=1

1
�
o`[k

0] B P][k0, m0]
 

, (C9)

which determines how many times the Pauli observable o` has been measured in the first m � 1 Pauli
measurements. If the Pauli observable o` has been measured many times, then V (o`,P

]) is large, and
therefore exp

�
�V (o`,P

])
�

is close to zero.

2. The second term in V (o`,P
]) is approximately equal to the following by Taylor expansion,

⌫

3w([o`[k+1],...,o`[n]])

kY

k0=1

1
�
o`[k

0] B P][k0, m]
 

. (C10)

It would be nonzero only when o`[k
0] B P][k0, m] for all k0 = 1, . . . , k. Furthermore if the weight of

[o`[k + 1], . . . ,o`[n]] is smaller, then the single-observable cost function exp
�
�V (o`,P

])
�

incurred by o`
would be smaller.
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When the entire set of M measurements has been decided, V (o`,P
]) will consist only of the first term and is

proportional to the number of times the observable o` has been measured.
For quantum chemistry applications, the coefficients of different Pauli observable are different, e.g., in

Eq. (C1), the Hamiltonian H consists of Pauli observable P with varying coefficients ↵P . In such a case,
one would want to measure each Pauli observable o` with a number of times proportional to |↵o`

| [34]. In order
to include the proportionality to |↵o`

|, we consider the following modified cost function that depends on the
coefficients ↵,

C↵(P]) =
LX

l=1

exp
�
�V (o`,P

])/wo`

�
, where wo`

=
|↵o`

|
maxp |↵op

| . (C11)

The definition of V (o`,P
]) is given in Eq. (C8). Recall that V (o`,P

]) will be proportional to the number
of times the observable o` has been measured, hence the weight factor wo`

will promote the proportionality
of V (o`,P

]) to wo`
/ |↵o`

|. While the cost function is derived from derandomizing the powerful randomized
procedure [22], it is not clear if this is the optimal cost function. We believe other cost functions that are
tailored to the particular application could yield even better performance; we leave such an exploration as goal
for future work.

For illustration purposes, we present a Python implementation for the derandomization algorithm. We main-
tain two arrays (lists in Python language): num_of_measurements_so_far and num_of_matches_needed_in_this_round.
The former array stores the number of successful measurements for each Pauli observable o`, while the lat-
ter array stores the required number of matches needed to measure each pauli observable o`. Keeping these
two arrays enables us to compute the cost function f(W ) in time O(L). Because the cost function is com-
puted a total of O(M ⇥ n) times, the time complexity of the derandomization algorithm amounts to O(nML).
Furthermore, in the C++ implementation of the derandomization algorithm – available at https://github.
com/momohuang/predicting-quantum-properties/blob/master/data_acquisition_shadow.cpp – we im-
plement an improved algorithm using a basic data structure for updating the two arrays, which results in a
time complexity of O(L⇥PL

`=1 w(o`)), where w(o`) is the number of non-identity component in the `th Pauli
observable o`. We note that the time complexity for performing the derandomization algorithm is equal to
the time complexity for estimating the expectation value of the Pauli observables after measurements (up to a
multiplicative constant).

def derandomized_classical_shadow(all_observables ,\

num_of_measurements_per_observable , system_size , weight=None):

#
# Implementation of the derandomized classical shadow
#
# all_observables : a l i s t of Pauli observables , each Pauli observable is a l i s t of tuple
# of the form ("X", position) or ("Y", position) or ("Z", position)
# num_of_measurements_per_observable: int for the number of measurement for each observable
# system_size: int for how many qubits in the quantum system
# weight: None or a l i s t of coefficients for each observable
# None�� neglect this parameter
# a l i s t �� modify the number of measurements for each observable
#. by the corresponding weight
#
if weight is None:

weight = [1.0] ∗ len(all_observables)
assert(len(weight) == len(all_observables))

def cost_function(num_of_measurements_so_far , num_of_matches_needed_in_this_round):

eta = 0.9 # a hyperparameter that can be tuned
nu = 1 � math.exp(�eta / 2)

cost = 0

for i, zipitem in enumerate(zip(num_of_measurements_so_far ,\

num_of_matches_needed_in_this_round)):

measurement_so_far , matches_needed = zipitem

if num_of_measurements_so_far[i] >= math.floor(weight[i] ∗\
num_of_measurements_per_observable):

continue

if system_size < matches_needed:

V = eta / 2 ∗ measurement_so_far
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else:

V = eta / 2 ∗ measurement_so_far � math.log(1 � nu / (3 ∗∗ matches_needed))
cost += math.exp(�V / weight[i])

return cost

def match_up(qubit_i, dice_roll_pauli , single_observable):

for pauli, pos in single_observable:

if pos != qubit_i:

continue

else:

if pauli != dice_roll_pauli:

return �1
else:

return 1

return 0

num_of_measurements_so_far = [0] ∗ len(all_observables)
measurement_procedure = []

for repetition in range(num_of_measurements_per_observable ∗ len(all_observables)):
# A single round of parallel measurement over "system_size" number of qubits
num_of_matches_needed_in_this_round = [len(P) for P in all_observables]

single_round_measurement = []

for qubit_i in range(system_size):

cost_of_outcomes = dict([("X", 0), ("Y", 0), ("Z", 0)])

for dice_roll_pauli in ["X", "Y", "Z"]:

# Assume the dice rollout to be "dice_roll_pauli"
for i, single_observable in enumerate(all_observables):

result = match_up(qubit_i, dice_roll_pauli , single_observable)

if result == �1:# impossible to measure
num_of_matches_needed_in_this_round[i] += 100 ∗ (system_size+10)

if result == 1: # match up one Pauli X/Y/Z
num_of_matches_needed_in_this_round[i] �= 1

cost_of_outcomes[dice_roll_pauli] = cost_function(num_of_measurements_so_far ,\

num_of_matches_needed_in_this_round)

# Revert the dice rol l
for i, single_observable in enumerate(all_observables):

result = match_up(qubit_i, dice_roll_pauli , single_observable)

if result == �1:# impossible to measure
num_of_matches_needed_in_this_round[i] �= 100 ∗ (system_size+10)

if result == 1: # match up one Pauli X/Y/Z
num_of_matches_needed_in_this_round[i] += 1

for dice_roll_pauli in ["X", "Y", "Z"]:

if min(cost_of_outcomes.values()) < cost_of_outcomes[dice_roll_pauli]:

continue

# The best dice rol l outcome will come to this line
single_round_measurement.append(dice_roll_pauli)

for i, single_observable in enumerate(all_observables):

result = match_up(qubit_i, dice_roll_pauli , single_observable)

if result == �1:# impossible to measure
num_of_matches_needed_in_this_round[i] += 100 ∗ (system_size+10)

if result == 1: # match up one Pauli X/Y/Z
num_of_matches_needed_in_this_round[i] �= 1

break

measurement_procedure.append(single_round_measurement)

for i, single_observable in enumerate(all_observables):
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if num_of_matches_needed_in_this_round[i] == 0: # finished measuring al l qubits
num_of_measurements_so_far[i] += 1

success = 0

for i, single_observable in enumerate(all_observables):

if num_of_measurements_so_far[i] >= math.floor(weight[i] ∗\
num_of_measurements_per_observable):

success += 1

if success == len(all_observables):

break

return measurement_procedure

4. Error scaling by repeating the deterministic measurement procedure

Since it may be relatively inconvenient to change the measurement setting, an experimentalist may prefer to
measure the same Pauli observable multiple times, each time on an independently prepared copy of the quantum
state. Naturally, repeating each Pauli observable measurement multiple times, while keeping the number of
distinct Pauli operators measured fixed, improves the prediction performance.

To illistrate this improvement, we consider the estimation error (in Hartree) for the BeH2 ground state
energy under Bravyi-Kitaev encoding [5]. The numerical results are shown in Figure 4, indicating how the error
decreases as we increase the number of measurement repetitions for a particular deterministic measurement
procedure designed by the derandomization procedure. The variance in the estimation error also decreases
substantially as the number of repetitions increases.

Figure 4: BeH2 ground state energy estimation error (in Hartree) under Bravyi-Kitaev encoding [5] for various numbers
of repetitions: The horizontal axis is the number of measured Pauli observables in the measurement procedure found by
the derandomization algorithm. The vertical axis is the estimation error, the absolute value of the difference between
the estimated ground state energy and the true energy. We consider repeating the deterministic measurement procedure
1, 3, 9, and 27 times. The shaded region surrounding each curve indicates the standard deviation due to quantum
measurement fluctuations for the fixed deterministic Pauli measurement scheme.



Chapter 6

Quantum algorithms for convex optimization
or: Faster quantum and classical SDP approximations for quadratic binary

optimization

Abstract

We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary

quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded

quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent

updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances,

our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. We also provide

an efficient randomized rounding procedure that converts approximately optimal SDP solutions into

constant factor approximations of the original quadratic optimization problem.

Authors

Fernando G.S.L. Brandão, Richard Kueng, Daniel Stilck França.

Journal

to appear in Quantum (2021)

137



Confirmation of declaration of author contributions (Fernando G.S.L. Brandão)

Publication:

F.G.S.L. Brandão, R. Kueng, D. Stilck França, Faster quantum and classical SDP approximations

for quadratic binary optimization, under review at Quantum (2021)

Declaration of author contributions:

Daniel Stilck França and Richard Kueng developed the theoretical aspects of this work. Fernando

G.S.L. Brandão conceived the original project and provided guidance. All authors wrote the

manuscript.

Confirmation by co-author:

I confirm this declaration of author contributions, as well as my co-authorship.

Fernando G.S.L. Brandão



Confirmation of declaration of author contributions (Daniel Stilck França)

Publication:

F.G.S.L. Brandão, R. Kueng, D. Stilck França, Faster quantum and classical SDP approximations

for quadratic binary optimization, under review at Quantum (2021)

Declaration of author contributions:

Daniel Stilck França and Richard Kueng developed the theoretical aspects of this work. Fernando

G.S.L. Brandão conceived the original project and provided guidance. All authors wrote the

manuscript.

Confirmation by co-author:

I confirm this declaration of author contributions, as well as my co-authorship.

Daniel Stilck França

 

David Fry



Faster quantum and classical SDP approximations for
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We give a quantum speedup for solving the canonical semidefinite program-
ming relaxation for binary quadratic optimization. This class of relaxations for
combinatorial optimization has so far eluded quantum speedups. Our methods
combine ideas from quantum Gibbs sampling and matrix exponent updates. A
de-quantization of the algorithm also leads to a faster classical solver. For generic
instances, our quantum solver gives a nearly quadratic speedup over state-of-the-
art algorithms. Such instances include approximating the ground state of spin
glasses and MaxCut on Erdös-Rényi graphs. We also provide an efficient ran-
domized rounding procedure that converts approximately optimal SDP solutions
into approximations of the original quadratic optimization problem.

1 Introduction

Quadratic optimization problems with binary constraints are an important class of optimiza-
tion problems. Given a (real-valued) symmetric n× n matrix A the task is to compute

maximize 〈x|A|x〉 subject to x ∈ {±1}n (MaxQP). (1)

This problem arises naturally in many applications across various scientific disciplines, e.g.
image compression [OP83], latent semantic indexing [Kol98], community detection [MS16],
correlation clustering [CW04, MMMO17] and structured principal component analysis, see
e.g. [KT19a, KT19b] and references therein. Mathematically, MaxQPs (1) are closely related
to computing the∞→ 1 norm of matrices. This norm, in turn, closely relates to the cut norm
(replace x ∈ {±1}n by x ∈ {0, 1}n), as both norms can only differ by a constant factor. These
norms are an important concept in theoretical computer science [FK99, AFdlVKK03, AN06],
since problems such as identifying the largest cut in a graph (MaxCut) can be naturally
formulated as instances of these norms. This connection highlights that optimal solutions of
(1) are NP-hard to compute in the worst case. Despite their intrinsic hardness, quadratic

1



optimization problems do admit a canonical semidefinite programming (SDP) relaxation1

[GW95]:

maximize tr (AX) subject to diag(X) = 1, X ≥ 0 (MaxQP SDP) (2)

Here, X ≥ 0 indicates that the n×n matrix X is positive semidefinite (psd), i.e. 〈y|X|y〉 ≥ 0
for all y ∈ Rn. SDPs comprise a rich class of convex optimization problems that can be solved
efficiently under mild assumptions, e.g. by using interior point methods [BV04].

Perhaps surprisingly, the optimal value of the MaxQP relaxation often provides a con-
stant factor approximation to the optimal value of the original quadratic problem. However,
the associated optimal matrix X] is typically not in one-to-one correspondence with an op-
timal feasible point x] ∈ {±1}n of the original problem (1). Several randomized round-
ing procedures have been devised to overcome this drawback since the pioneering work
of [GW95]. These transform X] into a random binary vector x̃ ∈ {±1}n that achieves
〈x̃|A|x̃〉 ≥ γmaxx∈{±1}n〈x|A|x〉 in expectation for some constant γ. Explicit values of γ are
known for instance for the case of A being the adjacency matrix of a graph [GW95] or positive
semidefinite [AN06].

Although tractable in a theoretical sense, the runtime associated with general-purpose
SDP solvers quickly becomes prohibitively expensive in both memory and time. This practical
bottleneck has spurred considerable attention in the theoretical computer science community
over the past decades [AHK05, BM05, BVB16, TYUC17]. (Meta) algorithms, like matrix
multiplicative weights (MMW) [AHK05] solve the MaxQP SDP (2) up to multiplicative
error ε‖A‖`1 in runtime O((n/ε)2.5s), where s denotes the column sparsity of A. Further
improvements are possible if the problem description A has additional structure, such as A
being the adjacency matrix of a graph [AK16].

Very recently, a line of works pointed out that quantum computers can solve certain SDPs
even faster [BS17, vAGGdW17, vAG19, BKL+17, KP20]. However, the current runtime guar-
antees depend on problem-specific parameters. These parameters scale particularly poorly
for most combinatorial optimization problems, including the MaxQP SDP, and negate any
potential advantage.

In this work, we tackle this challenge and overcome the shortcomings of existing quantum
SDP solvers by considering the following further relaxation of problem (2):

find X (renormalized, relaxed, feasibility MaxQP SDP) (3)

subject to tr
(

1
‖A‖AX

)
≥ λ− ε

∑

i

∣∣∣∣〈i|X|i〉 −
1
n

∣∣∣∣ ≤ ε

tr(X) = 1, X ≥ 0.

Here we introduced two additional parameters λ and ε. The λ parameter comes from a
standard trick to reduce the problem in (2) to a sequence of feasibility problems, as we will

1Rewrite the objective function in (1) as tr (A|x〉〈x|) and note that every matrix X = |x〉〈x| with x ∈ {±1}n
has diagonal entries equal to one and is psd with unit rank. Dropping the (non-convex) rank constraint
produces a convex relaxation.
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explain later. The ε parameter encodes a further relaxation of the constraints of Eq. (2). Let
us first discuss the case where ε = 0, that is, we have the normalized diagonal constraints
〈i|X|i〉 = 1

n .

This renormalization of the original problem pinpoints connections to quantum mechan-
ics: Every feasible point X obeys tr (X) = 1 and X ≥ 0, implying that it describes the state ρ
of a n-dimensional quantum system. In turn, such quantum states can be represented approx-
imately by a renormalized matrix exponential ρ = exp(−H)/tr(exp(−H)), the Gibbs state
associated with Hamiltonian H. We capitalize on this correspondence by devising a meta
algorithm – Hamiltonian Updates (HU) – that is inspired by matrix exponentiated gradient
updates [TRW05], see also [LRS15, BKL+17, Haz16] for similar approaches. Another key
insight is that the diagonal constraints also have a clear quantum mechanical interpretation:
the feasible states are those that are indistinguishable from the uniform or maximally mixed
state when measured in the computational basis.

This interpretation points the way to another key component to obtaining speedups for
MaxQP SDP: by setting ε > 0 we further relax the problem and optimize over all states
that are approximately indistinguishable from the maximally mixed state when measured in
the computational basis. This further relaxation will allow us to overcome shortcomings of
previous solvers when dealing with SDPs of this form, as it bundles up the n linear constraints
in Eq. (3) into one. As we ultimately want to solve Eq. (2) and not (3), a significant part of
the technical contribution of this work is to show that this further relaxation is mild. Indeed,
we will be able to convert a solution to (3) into one to (2) by only slightly changing the
objective value.

This will allow us to solve the relaxed problem up to an ε additive error by only imposing
a relaxation parameter ε4. As it is the case with this and many other related algorithms
to solve SDPs, ensuring that we only require a dimension-independent ε4 precision for the
constraints is essential to guarantee speedups. Note that to obtain the same level of precision
in the formulation given in (3) would require enforcing that each constraint is satisfied up to
an error of order O(n−1).

Although originally designed to exploit the fact that quantum architectures can sometimes
create Gibbs states efficiently and inspired by interpreting the problem from the point of
view of quantum mechanics, it turns out that this approach also produces faster classical
algorithms.

To state our results, we instantiate standard computer science notation. The symbol O(·)
describes limiting function behavior, while Õ(·) hides poly-logarithmic factors in the problem
dimension and polynomial dependencies on the inverse accuracy 1/ε. We are working with
the adjacency list oracle model, where individual entries and location of nonzero entries of
the problem description A can be queried at unit cost. We refer to Section 3.4 for a more
detailed discussion.

Theorem I (Hamiltonian Updates: runtime). Let A be a (real-valued), symmetric n × n
matrix with column sparsity s. Then, the associated MaxQP SDP (2) can be solved up to
additive accuracy n‖A‖ε in runtime Õ

(
n1.5 (

√
s)1+o(1)

ε−28+o(1) exp(1.6
√

12 log(ε−1))
)

on a
quantum computer and Õ (min{n2s, nω}ε−12) on a classical computer.

Here ω is the matrix multiplication exponent. With some abuse of terminology, the word
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“solves” is used with slightly different meanings for the classical and quantum algorithms in
the statement above. For the classical algorithm we can indeed output a feasible solution
of MaxQP SDP that is nε close to the optimal target value. In the quantum case, the
output is in the form of a quantum state ρ such that nρ is O(nε) close in trace distance to
a feasible point and with value that is n‖A‖ε close, what we will call approximately feasible.
We emphasize that the quantum algorithm also outputs a classical description of a solution
that is approximately feasible in a sense that will be made precise below. The polynomial
dependency on inverse accuracy is rather high (e.g. (1/ε)12 for the classical algorithm). We
expect future work to be able to improve this.

Already the classical runtime improves upon the best known existing results and we refer
to Section 2.5 for a detailed comparison. Access to a quantum computer would increase this
gap further. However, it is important to point out that Theorem I has an approximation error
of order n‖A‖ε. In contrast, MMW [AHK05] – the fastest existing algorithm – incurs an error
proportional to ε‖A‖`1 , where ‖A‖`1 = ∑

i,j |Ai,j |, making a straightforward comparison more
difficult. Importantly, the scaling of our algorithm is favorable for generic problem instances
and spin glass models, see Section 2.5.

The quantum algorithm outputs a classical description of a Hamiltonian H] that encodes

an approximately optimal, approximately feasible solution ρ] = exp(−H])/ tr
(
exp(−H])

)

of the renormalized MaxQP SDP (3). This classical output can subsequently be used for
randomized rounding for the ∞→ 1 norm of a matrix A, ‖A‖∞→1 = max

x,y∈{±1}n
〈x|A|y〉.

Theorem II (Rounding). Suppose that H] encodes an approximately optimal solution of the
renormalized MaxQP SDP (3) with accuracy ε4 for the target matrix

A′ =
(

0 A
AT 0

)
,

where A is a n× n real matrix with at most s nonzero entries per column (column sparsity).
Then, there is a classical Õ(ns)-time randomized rounding procedure that converts H] into
binary vectors x̃, ỹ ∈ {±1}n that obey

γ (‖A‖∞→1 −O(n‖A‖ε)) ≤ E [〈x̃|A|ỹ〉] ≤ ‖A‖∞→1,

where γ = 2
π if A is positive semidefinite and 4

π − 1 else.

This result recovers the randomized rounding guarantees of [AN06] in the limit of perfect
accuracy (ε = 0). However, for ε > 0 the error scales with n‖A‖. In turn, randomized
rounding only provides a multiplicative approximation if ‖A‖∞→1 is of the same order. This
result on the randomized rounding also relies on a detailed analysis of the stability of the
rounding procedure w.r.t. to approximate solutions to the problem.

2 Detailed summary of results

We present Hamiltonian Updates – a meta-algorithm for solving convex optimization prob-
lems over the set of quantum states based on quantum Gibbs sampling – in a more general
setting, as we expect it to find applications to other problems. Throughout this work, ‖ · ‖tr
and ‖ · ‖ denote the trace (Schatten-1) and operator (Schatten-∞) norms, respectively.
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2.1 Convex optimization and feasibility problems

SDPs over the set of quantum states are a special instance of a more general class of convex
optimization problems. For a bounded, concave function f from the set of symmetric matrices
to the real numbers and closed convex sets C1, . . . , Cn, solve

maximize f(X) (CPopt) (4)
subject to X ∈ C1 ∩ · · · ∩ Cm,

tr(X) = 1, X ≥ 0.

The constraint tr(X) = 1 enforces normalization, while X ≥ 0 is the defining structure
constraint of semidefinite programming. Together, they restrict X to the set of n-dimensional
quantum states Sn = {X : tr(X) = 1, X ≥ 0}. We will now specialize to the case f(A) =
tr (AX) for a symmetric matrix A, as this is our main case of interest, but remark that
it is simple to generalize the discussion that follows for more general classes. This trace
normalization constraint implies fundamental bounds on the optimal value: |tr(AX])| ≤
‖A‖‖X]‖tr = ‖A‖, according to Matrix Hölder [Bha97, Ex. IV.2.12]. Binary search over
potential optimal values λ ∈ [−‖A‖, ‖A‖] allows for reducing the convex optimization problem
into a sequence of feasibility problems:

find X ∈ Sn (CPfeas(λ)) (5)
subject to tr (AX) ≥ λ,

X ∈ C1 ∩ · · · ∩ Cm.

The convergence of binary search is exponential. This ensures that the overhead is benign:
a total of log(‖A‖/ε) queries of CPfeas(λ) suffices to determine the optimal solution of
CPopt (4) up to accuracy ε. In summary:

Fact 2.1. Binary search reduces the task of solving convex optimization problems (4) to the
task of solving convex feasibility problems (5).

2.2 Meta-algorithm for approximately solving convex feasibility problems

We adapt a meta-algorithm developed by Tsuda, Rätsch and Warmuth [TRW05], see also
[LRS15, AK16, Haz16, BKL+17] for similar ideas and [Bub15] for an overview of these tech-
niques. All these algorithms, including the variation presented here, can be seen as instances
of mirror descent with the mirror map given by the von Neumann entropy with adaptations
tailored to the problem at hand. We believe our variation provides a path for also obtaining
quantum speedups for nonlinear convex optimizations, so we state it in more detail.

For our algorithm, we require subroutines that allow for testing ε-closeness (in trace norm)
to each convex set Ci.

Definition 2.1 (ε-separation oracle). Let C ⊂ Sn be a closed, convex subset of quantum
states and C∗ ⊂ {X = X† ∈ Cn×n : ‖X‖ ≤ 1} be a closed, convex subset of observables of
operator norm at most 1. For ε > 0 an ε-separation oracle (with respect to C∗) is a subroutine
that either accepts a state ρ (in the sense that observables from C∗ cannot distinguish ρ from
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elements of C), or provides a hyperplane P that separates ρ from the convex set using a test
from C∗:

OC,ε(ρ) =
{

accept ρ if minY ∈C maxP∈C∗ tr(P (ρ− Y )) ≤ ε,
else: output P ∈ C∗s.t. tr(P (ρ− Y )) ≥ ε

2 for all Y ∈ C.

We note that the Oracle is well-defined in the sense that if minY ∈C maxP∈C∗ tr(P (ρ−Y )) >
ε, then there exists P such that P ∈ C∗ and for all Y ∈ C

tr(P (ρ− Y )) ≥ ε

2 .

Indeed, by Sion’s min-max theorem [Sio58] we have

max
P∈C∗

min
Y ∈C

tr (P (ρ− Y )) = min
Y ∈C

max
P∈C∗

tr (P (ρ− Y )) > ε.

This implies that there even exists a P that separates the state ρ from the set C by ε.
Nonetheless, we instantiate the weaker requirement with only ε/2 separation. This will be
vital to ensure that the algorithm can tolerate errors and/or approximations in the samples
from ρ.

By allowing for fine-tuning of C∗ we are able to reduce the number of closeness conditions
we need to test. Hamiltonian Updates (HU) a general meta-algorithm for approximately
solving convex feasibility problems (5) (CPfeas). The task is to find a state ρ that is ε-close to
each convex set Ci with respect to observables in some C∗i (maxPi∈C∗i minYi∈Ci tr (Pi(ρ− Yi)) ≤
ε) and also obeys ρ ∈ Sn (ρ ≥ 0 and tr(ρ) = 1). A change of variables takes care of
positive semidefiniteness and normalization: replace X in problem (5) by a Gibbs state
ρH = exp (−H) /tr(exp(−H)). At each iteration, we query ε-separation oracles. If they all
accept, the current iterate is ε-close to feasible in the sense that there is a matrix in each
Ci that is ε close in trace distance to the accepted state, and we are done. Otherwise, we
update the matrix exponent to penalize infeasible directions: H → H + ε

16P , where P is a
separating hyperplane that witnesses infeasibility. This process is visualized in Figure 1 and
we refer to Algorithm 1 for a detailed description.

Algorithm 1 Meta-Algorithm for approximately solving convex feasibility problems (5).
Require: Query access to m ε-separation oracles O1,ε(·), . . . , Om,ε(·)

1: function HamiltonianUpdates(T, ε)
2: ρ = n−1I and H = 0 . initialize the maximally mixed state
3: for t = 1, . . . , T do
4: for i = 1, . . . ,m do . Query oracles and check feasibility
5: if Oi,ε(ρ) = P then
6: H ← H + ε

16P . Penalize infeasible direction
7: ρ← exp (−H) /tr(exp(−H)) . Update quantum state
8: break loop
9: end if

10: end for
11: return (ρ,H) and exit function . Current iterate is ε-feasible
12: end for
13: end function
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Theorem 2.1 (HU: convergence). Algorithm 1 requires at most T = d64 log(n)/ε2e + 1
iterations to either certify that (5) is infeasible or output a state ρ satisfying:

for all 1 ≤ i ≤ m : max
Pi∈C∗i

min
Yi∈Ci

tr (Pi(ρ− Yi)) ≤ ε (6)

As it is also the case for the aforementioned variations of the algorithm above, the proof
follows from establishing sufficiently large step-wise progress in quantum relative entropy.
The quantum relative entropy between any feasible state and the initial state ρ0 = n−1I
(maximally mixed state) is bounded by log(n). Therefore, the algorithm must terminate after
sufficiently many iterations. Otherwise, the problem is infeasible. We refer to Section 3.1 for
details. Note that, unlike related previous quantum solvers [BKL+17, vAGGdW17, vAG19],
our algorithm only considers the primal problem.

Theorem 2.1 has important consequences: The runtime of approximately solving quantum
feasibility problems is dominated by the cost of implementing m separation oracles Oi,ε and
the cost associated with matrix exponentiation. This reduces the task of efficiently solving
convex feasibility problems to the quest of efficiently identifying separating hyperplanes and
developing fast routines for computing Gibbs states.

The latter point already hints at a genuine quantum advantage: quantum architec-
tures can efficiently prepare (certain) Gibbs states [CS17, Fra18, KBa16, PW09, TOV+09,
TOV+09, YAG12, vAGGdW17].

It should be stressed that the approximate feasibility guarantee in (6) is not very strong
and a careful choice of the Ci, C

∗
i and a careful analysis of the continuity of the problem is

usually required to ensure that it gives a good approximation to CPopt (4).

2.3 Classical and quantum solvers for the renormalized MaxQP SDP

Let us now formulate the renormalized, relaxed problem in Eq. (3) in this framework and
discuss the appropriate oracles. For fixed λ ∈ [−1, 1] the (feasibility) MaxQP SDP is
equivalent to a quantum feasibility problem:

find ρ ∈ Sn ∩ Aλ ∩ Dn
where Aλ =

{
X : tr

(
A‖A‖−1X

)
≥ λ

}
, A∗λ =

{
−A‖A‖−1

}

Dn = {X : 〈i|X|i〉 = 1/n, i ∈ [n]} , D∗n = {X : ‖X‖ ≤ 1, X is diagonal} .

The set Aλ corresponds to a half-space, while Dn is an affine subspace with codimension n.
Let us now see that the convergence promises of Thm. 2.1 indeed convert to the renormalized,
relaxed, feasibility MaxQP SDP, see Eq. (3). Let us start with observing

max
P∈A∗

λ

min
Y ∈Aλ

tr (P (ρ− Y )) ≤ ε⇐⇒ −tr
(
A‖A‖−1(ρ− Y )

)
≤ ε for all Y ∈ Aλ. (7)

Combined with the defining halfspace condition for Aλ, this display asserts tr
(
A‖A‖−1ρ

) ≥
λ− ε. We can analyze the oracle for Dn in a similar fashion. Note that,

max
P∈D∗n

min
Y ∈Dn

tr (P (ρ− Y )) ≤ ε⇐⇒
n−1∑

i=0
|〈i|ρ|i〉 − 1/n| ≤ ε. (8)

7



Thus, we indeed obtain Eq. (3) from this formulation up to an error ε for the target value.
It will be important to ensure that both quantum and classical algorithms work only having
access to approximations of the current iteration. The simple structure of both sets readily
suggests two separation oracles that take this into account:

OAλ : compute an approximation ã ∈ R up to additive error ε
4 of tr(A‖A‖−1ρ). Check if

ã ≥ λ− 3ε
4 and output P = −A‖A‖−1 if this is not the case.

ODn : compute an approximation p̃ ∈ Rn of p(i) = 〈i|ρ|i〉 satisfying
∑
i |p(i) − p̃(i)| ≤ ε

4 .
Check

∑
i |p̃(i)− 1/n| ≤ 3ε

4 and output

P =
n∑

i=1
(I {p̃(i) > 1/n} − I {p̃(i) < 1/n})|i〉〈i| (9)

if this is not the case.

Note that the oracles are only defined for quantum states as inputs. Let us briefly check that
it satisfies the definitions in 2.1. For OAλ we have that if ã ≥ λ− 3ε

4 , then tr(A‖A‖−1ρ) ≥ λ−ε,
as desired. The other case is similar.

For the oracle for ODn , let us first assume that we are in the case that
∑
i |p̃(i)−1/n| ≥ 3ε

4 .
Clearly, we have that P defined in Eq. (9) is diagonal and of operator norm at most 1. For
ease of notation let f : [n] → {−1, 1} be −1 if p̃(i) < 1/n and 1 else. By construction we
have for any Y ∈ ODn ∩ Sn:

tr (P (ρ− Y )) =
∑

i

f(i)
(
p(i)− 1

n

)

(1)
≥ −

∑

i

|p(i)− p̃(i)|+
∑

i

f(i)
(
p̃(i)− 1

n

)
=
∑

i

|p(i)− p̃(i)|+
∑

i

∣∣∣p̃(i)− 1
n

∣∣∣

≥ − ε4 +
∑

i

|p̃(i)− 1
n | ≥

ε

2 ,

where in (1) we used Hölder’s inequality. On the other hand, if
∑
i |p̃(i) − 1/n| ≥ 3ε

4 , then
a similar argument shows that

∑
i |p(i)− 1/n| ≤ ε. Thus, we conclude that both oracles are

correct.

The key insight to later obtain quantum speedups for the MaxQP SDP is that the second
oracle can be interpreted as trying to distinguish the current state from the maximally mixed
through computational basis measurements. This view is similar in spirit to [LRS15, Lemma
4.6], although here we focus on using this approach to construct solutions and to show that
this notion of approximate feasibility is good enough for the MaxQP SDP.

2.3.1 Classical runtime

For fixed ρH = exp(−H)/tr (exp(−H)) both separation oracles are easy to implement on a
classical computer given access to ρH . Hence, matrix exponentiation is the only remaining
bottleneck. This can be mitigated by truncating the Taylor series for exp(−H) after l′ =
O(‖H‖+ 1/ε) many steps. Approximating ρ in this fashion only requires

O(min
{
n2s, nω

}
log(n)ε−1)
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steps and only incurs an error of ε in trace distance. Moreover, it is then possible to convert an
approximately feasible to point to a strictly feasible one with a similar value, see Section 3.3.
The following result becomes an immediate consequence of Fact 2.1 and Theorem 2.1.

Corollary 2.1 (Classical runtime for the MaxQP SDP). Suppose that A has row-sparsity s.
Then, the classical cost of solving the associated (renormalized) MaxQP SDP up to additive
error ε is O(min{n2s, nω} log(n)ε−12).

The comparatively poor accuracy scaling with ε−12 stems largely from the fact that we
need to convert an approximately feasible optimal solution into a strictly feasible optimal
solution. This conversion is contingent on running Algorithm 1 with accuracy ε̃ = ε4 � ε
(see Proposition 3.1 below). The total accuracy scaling ε−12 = ε̃−3 results from combining
the O(log(n)/ε̃)-cost for approximating the matrix exponential within a single iteration with
the iteration bound T = O(log(n)/ε̃2) from Theorem 3.1.

2.3.2 Quantum runtime

Quantum architectures can efficiently prepare (certain) Gibbs states and are therefore well
suited to overcome the main classical bottleneck. In contrast, checking feasibility becomes
more challenging, because information about ρ is not accessible directly. Instead, we must
prepare multiple copies of ρ and perform quantum mechanical measurements to test feasibil-
ity:

• O(ε−2) copies of ρ suffice to ε-approximate tr(A‖A‖−1ρ) via phase estimation.

• O(nε−2) copies suffice with high probability to estimate the diagonal entries of ρ (up
to accuracy ε in trace norm) via repeated computational basis measurements.

Combining this with the overall cost of preparing a single Gibbs state implies the following
runtime for executing Algorithm 1 on a quantum computer. This result is based on the sparse
oracle input model and we refer to Sec. 3.4 for details.

Corollary 2.2 (Quantum runtime for the MaxQP SDP). Suppose that A has row-sparsity
s. Then, the quantum cost of solving the MaxQP SDP up to additive error εn‖A‖ is

Õ(n1.5s0.5+o(1)poly(1/ε)).

The quantum algorithm also outputs a classical description of the Hamiltonian H] cor-
responding to an approximately optimal, approximately feasible Gibbs state and its value.
More precisely, it outputs a real number a and a diagonal matrix D such that H] = aA+D
and nρH] is O(nε) close in trace distance to a feasible point of MaxQP SDP. Moreover,
we have the potential to produce samples from the associated approximately optimal Gibbs

state ρ] = exp(−H])/ tr
(
exp(−H])

)
in sub-linear runtime Õ(

√
n) on a quantum computer.

In the next section we show that the output of the algorithm is enough to give rise to good
randomized roundings.
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2.4 Randomized rounding

The renormalized MaxQP SDP (3) arises as a convex relaxation of an important quadratic
optimization problem (1). However, the optimal solution X] is typically not of the form
|x〉〈x|, with x ∈ {±1}n. Goemans and Williamson [GW95] pioneered randomized rounding
techniques that allow for converting X] into a cut x] that is close to optimal. However,
their rounding techniques rely on the underlying matrix being entrywise positive and a more
delicate analysis is required to derive analogous results for broader classes of matrices. We
will now follow the analysis of [AN06] to do the randomized rounding for the ∞→ 1 norm.
First, let us make the connection between this norm and the MaxQP SDP clearer. Let A
be a real matrix and define

A′ =
(

0 A
AT 0

)
.

It is easy to see that for two binary vectors x, y ∈ {±1}n we have 〈x⊕ y|A′|x⊕ y〉 = 2〈x|A|y〉
(with a slight abuse of notation, we also use the bra-ket notation for inner products of
unnormalized vectors). This immediately shows that 2‖A‖1→∞ = maxz∈{±1}2n〈z|A′|z〉, which
is an instance of MaxQP SDP. We will now show that the rounding procedure is stable,
i.e. randomized rounding of an approximately feasible, approximately optimal point, such
as the ones outputted by the quantum algorithm, still result in a good binary vector for
approximating this norm. We strengthen the stability of the rounding even further by showing
that rounding with a truncated Taylor expansion of the solution is still good enough, saving
runtime. The rounding procedure is described in Algorithm 2.

Algorithm 2 Randomized rounding based on optimal Hamiltonian H]

1: function RandomizedRounding(H], ε)
2: Draw a random vector g ∈ Rn with i.i.d. N (0, 1) entries.
3: Compute z = ∑l

k=0
(−H])k

2kk! g for l = O(‖H]‖+ log(1/ε)).
4: output xi = sign(zi).
5: end function

Proposition 2.1. Let A be a real matrix and H] be such that ρ] = exp(−H])/tr(exp(−H]))
is an ε-approximate solution to the renormalized MaxQPSDP for A′ (3) with value α] =
tr
(
A′‖A′‖−1ρ]

)
. Then, the (random) output x = (x1 ⊕ x2) ∈ {±1}2n of Algorithm 2 can be

computed in Õ(ns)-time and obeys

γn‖A‖
(
α] −O(ε)

)
≤ E〈x1|A|x2〉 ≤ n‖A‖(α] +O(ε)),

where γ = 2/π for A p.s.d. and 4/π − 1 else.

This rounding procedure is fully classical and can be executed in runtime Õ(ns). We
refer to Sec. 3.5 for details. What is more, it applies to both quantum and classical solutions
of the MaxQP SDP. Even the quantum algorithm provides H] in classical form, while the
associated ρ] is only available as a quantum state. Rounding directly with ρ] would necessitate
a fully quantum rounding technique that, while difficult to implement and analyze, seems
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to offer no advantages over the classical Algorithm 2. Thus, it is possible to perform the
rounding even with the output of the quantum algorithm. We prove this theorem in two
steps. First, we follow the proof technique of [AN06] to show that our relaxed notion of
approximately feasible is still good enough to ensure a good rounding in expectation. This
shows that our notion of feasibility is strong enough for the problem at hand. The stability
of the rounding w.r.t. to truncation of the Taylor series then follows by showing appropriate
anticoncentration inequalities for the random vector.

Note that in [AN06] the authors prove that the constant 2
π in Proposition 2.1 is optimal.

2.5 Comparison to existing work

The MaxQP SDP has already received a lot of attention in the literature. Table 1 contains
a runtime comparison between the contributions of this work and the best existing classical
results [AHK05, AK16]. It highlights regimes, where we obtain both classical and quantum
speedups. In a nutshell, Hamiltonian Updates outperforms state of the art algorithms when-
ever the target matrix A has both positive and negative off-diagonal entries and the optimal
value of the SDP scales as n‖A‖. It is worthwhile to explore the following examples.

2.5.1 Quadratic quantum speedups and classical speedups for generic instances and spin glasses

Recall that Hamiltonian Updates can only offer speedups for MaxQP SDP instances where
the optimal value scales like n‖A‖, as opposed to the ‖A‖`1 scaling required for MMW.
Intuitively speaking, such a scaling should arise whenever A has both positive and negative
entries, causing cancellations. In order to formalize this intuition, we show that Hamiltonian
Updates offers speedups for generic matrices that have both positive and negative entries, see
Appendix A for details. Our main result is as follows. Suppose that A is a random Hermitian
matrix with entries

Aij = τij(gij + λ), (10)

where gij are independent centered random variables with bounded fourth moment, τij is a
Bernoulli random variable with parameter p and λ > 0 is some fixed parameter. This ran-
dom generative model covers many relevant MaxQP instances. Note that if we set p = s

n ,
the matrix A is O(s) sparse in expectation. Let us first discuss the (centered) λ = 0-
case in more detail. There, E‖A‖`1 = Θ(ns), ‖A‖∞→1 = Θ(n

√
s), E‖A‖ = Θ(

√
s) and

concrete realizations of A concentrate sharply around these expected values. These concen-
tration arguments are derived in Appendix A and imply that, indeed, n‖A‖, and not ‖A‖`1 ,
provides the right scaling for such generic instances. The scaling for MMW [AHK05] is
Õ(min{(n/ε)2.5s, n3α−1‖A‖`1ε−3.5}) to achieve an error of ε‖A‖`1 . Thus, to obtain a multi-

plicative error for such instances using MMW we need to divide ε by s−
1
2 , yielding an expected

scaling of Õ(min{(n/ε)2.5s4.5, n3s2.25ε−3.5}). This implies that the runtime of Hamiltonian
Updates improves upon MMW [AHK05], both classically and quantumly.

To the best of our knowledge, the quantum implementation of Hamiltonian Updates
establishes the first quantum speedup for problems of this type. Corollary 2.2 establishes a
nearly quadratic speedup for generic MaxQP SDP instances compared to the current state
of the art SDP solvers.
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It is worth noting that the random matrix defined in Eq. (10) corresponds to a widely
studied model in spin glasses: the (diluted) Sherrington-Kirkpatrick (SK) model [Pan13,
Tal11]. This problem has received considerable attention in the statistical physics literature.
In particular, recent work [Mon19] shows that, under some conjectures, it is possible to
approximately solve the quadratic optimization in (1) with high probability in time Õ(n2)
for the standard, undiluted SK model (τij = 1). This is the same time complexity as our
quantum solver, as the target matrix of these instances is dense (s = Ω(n)). To the best
of our knowledge, a variation of [Mon19] for the diluted model (p < 1) has not yet been
discussed.

Furthermore, there is an integrality gap for the SDP relaxation of this problem in the
Gaussian setting [KB20, MS16] whenever λ = 0. As we discuss in more detail in Appendix B,
this implies that the value of the problem in the case τij = 1 converges to the largest eigenvalue
of A in the limit n → ∞. On top of that, [MS16] gives a construction of an approximately
optimal feasible point that can be computed in O(nω) time, where ω > 2 is the exponent
of matrix multiplication. Correspondingly, we do not obtain a classical speedup for such
instances. Once again we refer to Appendix B for more details and we are not aware of
similar results for the diluted model.

Let us now discuss the undiluted case with λ > 1, as the behaviour of the model is not
qualitatively different for λ < 1 [MS16]. To the best of our knowledge, the exact value of the
MaxQP SDP is not known for this setting. But, numerical evidence suggests that there is no
integrality gap [MS16, JMRT16], and no constructions of approximately optimal points are
known. Thus, we expect that it is this regime, where we obtain both quantum and classical
speedups.

2.5.2 Speedups for MaxCut and the hidden partition problem:

Additional structure can substantially reduce the runtime of existing MMW solvers [AK16].
For weighted MaxCut, in particular, A is related to the adjacency matrix of a graph and
has exclusiely non-negative entries. This additional structure facilitates the use of powerful
dimensionality reduction and sparsification techniques that outperform our algorithm for
general graphs. Recently, it was shown that quantum algorithms can speed up spectral
graph sparsification techniques [Ad20]. As the sparsification step dominates the complexity
of these algorithms, this leads to faster solvers for MaxCut, albeit solving the sparsified
SDP on a classical computer. However, these sparsification techniques do not readily apply
to general problem instances, where the entries of A can have both positive and negative
signs (sign problem). We refer to Appendix C for a more detailed discussion.

More direct speedups do, however, apply for approximating MaxCut in Erdös-Rényi
graphs. An Erdös-Rényi graph G(n, p) with n vertices is a random graph in which each edge
is present independently at random with probability p. One can show that for such graphs,

a random balanced partition of the vertices achieves an expected cut of value n2p
2 . Thus,

obtaining a cut up to an approximation of order εm, where m is the number of edges, is
trivial for random graphs: just sample a random one. In [DMS17] the authors show that

12



whenever pn→∞, the MaxCut of such graphs satisfies :

n2p

2 +
(
n3p(1− p)

2

) 1
2

P∗ + o(n
3
2 ), (11)

where P∗ is the so-called Parisi constant. Thus, obtaining approximations to the MaxCut
of such graphs is only interesting whenever we can achieve an error scaling as O(n 3

2
√
p)

and the usual Goemans-Wiliamson relaxation is not suitable. In order to address this issue,
Montanari et al. [MS16] showed that is advisable to instead solve MaxQP SDP relaxation
for the matrix

B = A− p1T1, (12)

where 1 is the all ones vector and A the (random) adjacency matrix of the graph. This

then has the value 2n 3
2
√
p + o(

√
p/n) with high probability. See [Theorem 1][MS16] for

more details. Note that the matrix in Eq. (12) has both negative and positive entries with
expected value 0 and bounded variance. We conclude that we are in the same setting as
in the spin glasses for this dense instance and, thus, we also obtain speedups compared to
MMW. However, once again the recent work [Mon19] shows that, under some conjectures, it
is possible to approximately solve the underlying MaxQP for B directly in time O(n2) with
high probability.

Another relevant random graph model is that of the planted partition, whose distribution
we will denote by G(n, a/n, b/n) for parameters a, b > 0. This distribution over graphs with
n vertices is defined as follows. First, we partition the n vertices into two subsets S1, S2
with |S1| = n/2 uniformly at random. Conditional on this partition we pick the edges
independently at random with probabilities:

P((i, j) ∈ E|S1, S2) =
{
a
n , if {i, j} ⊂ S1 or {i, j} ⊂ S1,
b
n , else.

Solving the MaxQP SDP for the target matrix described in Eq. (12) with p = a+b
2 is relevant

to solving the planted partition problem [MS16] and closely related to the model in Eq. (10)
with λ = a−b√

2(a−b)
. We refer to [MS16] for details on this, but roughly speaking the problem

is to decide if a graph was sampled from Erdös-Rényi distribution with parameter p or from
the planted partition with p = a+b

2 . Note that also for the planted partition the adjacency
matrix in Eq. (12) satisfies the conditions under which we obtain speedups.

In [MS16, Theorem 3] the authors show that for certain parameter ranges of a, b, solving
the MaxQP SDP in Eq. (12) and using its value to decide which distribution we sampled
from gives rise to a good test for this problem. As for both the planted partition and the
Erdös-Rényi model the MaxQP SDP in Eq. (12) can be solved faster with our methods, we
obtain a speedup for this problem.

2.5.3 Previous quantum SDP solvers:

Previous quantum SDP solvers [BS17, vAGGdW17, vAG19, BKL+17] with inverse polyno-
mial dependence on the error do not provide speedups for solving the MaxQP SDP in the
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worst case, as their complexity depends on a problem specific parameter, the width of the
SDP. We refer to the aforementioned references for a precise definition of this parameter and
for the complexity of the solvers under different input models. As shown in [vAGGdW17,
Theorem 24], the width parameter scales at least linearly in the dimension n for what they
call combinable SDPs [Definition 23][vAGGdW17]. In a nutshell, these are SDP classes for
which direct sum combinations of two instances and constraints yield another valid SDP in
the class and we refer to [vAGGdW17] for a precise definition. For our purposes, it suffices
to note that the MaxQP SDP class of SDPs is combinable, as shown in [vAGGdW17]. Al-
though the authors only observe that their conditions apply to MaxCut, it is easy to see that
their results do not require any assumptions on the sign of entries of A. Thus, their results
show that the MaxQP SDP also admits instances with linearly growing width. To the best
of our knowledge, the solvers mentioned above have a dependence that is at least quadratic
in the width and at least a n

1
2 dependence on the dimension. Thus, the combination of the

term stemming from the width and the dimension already gives a higher complexity than our
solver. One reason why we bypass these restrictions is that we do not use the primal-dual
approach to solve the SDP from the aforementioned references.

Although this gives an indication as to why our algorithm might be better suited for
MAX QP in the worst case, it does not necessarily means that our algorithm outperforms
the aforementioned ones on the random instances discussed before on average. In Prop. B.1
of Appendix B we show that for the random model in (10) with λ > 1 it is indeed the
case that the width scales linearly with the dimension with high probability, albeit under the
assumption that the problem does not have an intregrality gap. The absence of an integrality
gap is supported by the numerics of [MS16, JMRT16]. These results show that previous
quantum SDP solvers are likely not to provide a speedup on average for such instances with
λ > 1. On the other hand, we also show that for λ < 1, the width does not necessarily
scale with system size. These results certainly motivate further studies on the width of such
randomized instances, also for the random graph models.

Another, and arguably conceptually more interesting, reason why our algorithm outper-
forms other solvers is how we enforce the diagonal constraint.

Enforcing that each diagonal constraint of the renormalized MAXQP SDP in Eq. (3) is
satisfied up to an additive error, i.e.

|〈i|ρ|i〉 − 1/n| ≤ ε

would require an error ε of order n−1 to ensure a solution with a quality comparable to ours.
This would translate into a width parameter that scales linearly in n in the worst case. What
is even worse, we do not know any better width bounds for special cases of the MaxQP SDP.
This severely limits the scope of existing quantum SDP solvers – they do not readily apply
and have worse runtimes than available classical algorithms. Let us illustrate this by example.

In [KP20], the authors give a quantum SDP solver whose complexity is Õ
(
n2.5

ξ2 µκ
3 log

(
ε−1)).

Here κ and µ are again problem-specific parameters and ξ is the precision to which each
constraint is satisfied. As noted before, a straightforward implementation of the MAXQP
SDP requires ξ to be at most of order n−1, which establishes a runtime of order at least n4.5

using those methods. Thus, we conclude that all current quantum SDP solvers do not offer
speedups over state of the art classical algorithms, see Table 1 for more details.
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Algorithm Runtime Error Speedup

This work (Classical) Õ(min{n2s, nω}ε−12) εn‖A‖ -

This work (Quantum) Õ(n1.5s0.5+o(1)ε−28) εn‖A‖ -

MMW [AHK05] Õ(min{(n/ε)2.5s, n3α−1‖A‖`1ε
−3.5}) ε‖A‖`1 ‖A‖`1 ≥ n‖A‖, ε = Θ(1)

Interior Point [LSW15] O(nω+1 log(ε−1)) ε ε = Θ(1)

MMW for MaxCut [AK16] Õ(ns) ε‖A‖`1 Erdös-Rényi random graphs

(non-negative entries only)

Table 1: comparison of different classical algorithms to solve the original MaxQP SDP (2). The speedup
column clarifies in which regimes we obtain speedups and ω denotes the exponent of matrix multiplication.
Here α corresponds to the value of MAXQP SDP.

This discussion showcases that our technique to relax the diagonal constraints gives rise to
a novel way of enforcing constraints that allows for better control of errors in quantum SDP
solvers and could be used for other relevant SDPs. Moreover, the fact that the approximate
solution can still be used to obtain good roundings highlights the fact that our notion of
approximate feasibility does not render the problem artificially easy.

Finally, we want to point out that subtleties regarding error scaling do not arise for
MaxCut. If A is the adjacency matrix of a d-regular graph on n vertices, then n‖A‖ = nd =
‖A‖`1 and the different errors in Table 1 all coincide.

3 Technical details and proofs

3.1 Proof of Theorem 2.1

By construction, Algorithm 1 (Hamiltonian Updates) terminates as soon as it has found a
quantum state ρ that is ε-close to being feasible. Correctly flagging infeasibility is the more
interesting aspect of Theorem 2.1 (convergence to feasible point). Several variations of the
statement and proof below can be found in the literature [TRW05, Haz16, AK16, LRS15,
Bub15, BKL+17, ACH+19], but we present it for completeness.

Lemma 3.1. Suppose Algorithm 1 does not terminate after T = d64 log(n)/ε2e + 1 steps.
Then, the feasibility problem (5) is infeasible.

Proof. By contradiction. Suppose there exists a feasible point ρ∗ in the intersection of allm+1
sets and we ran the algorithm for T steps. Instantiate the short-hand notation ρt = ρHt =
exp(−Ht)/tr(exp(−Ht)) for the t-th state and Hamiltonian in Algorithm 1. Initialization
with H0 = 0 and ρ0 = I/n is crucial, as it implies that the quantum relative entropy between
ρ∗ and ρ0 is bounded:

S (ρ∗‖ρ0) = tr (ρ∗ (log ρ∗ − log ρ0)) ≤ log(n).

We will now show that the relative entropy between successive (infeasible) iterates ρt+1, ρt
and the feasible state ρ∗ necessarily decreases by a finite amount. Let Pt be the hyperlane that
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Check feasibility Find separating hyperplane Update:




H ← H + ε

16P

ρ← exp(−H)
tr(exp(−H))

ρ ρ

P

ρ
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ρ

Figure 1: Caricature of Hamiltonian Update iterations in Algorithm 1: Schematic illustration of the inter-
section of three convex sets (i) a halfspace (blue), (ii) a diamond-shaped convex set (red) and (iii) the
set of all quantum states (clipped circle). Algorithm 1 (Hamiltonian Updates) approaches a point in the
convex intersection (magenta) of all three sets by iteratively checking feasibility (left column), identifying a
separating hyperplane (central column) and updating the matrix exponent to penalize infeasible directions
(right column).
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separates ρt from the feasible set providade by the oracle. The update rule Ht+1 = Ht+ ε
16Pt

then asserts

S (ρ∗‖ρt+1)− S (ρ∗‖ρt) = tr (ρ∗(Ht+1 −Ht)) + log
(tr (exp(−Ht+1))

tr (exp(−Ht))

)

= ε
16 tr (Ptρ∗)− log

(
tr
(
exp

(−Ht+1 + ε
16Pt

))

tr (exp(−Ht+1))

)
. (13)

The logarithmic ratio can be bounded using the Peierls-Bogoliubov inequality [AL70, Lemma
1]: log (tr (exp(F +G))) ≥ tr (F exp(G)) provided that tr (exp(G)) = 1. This implies

log
(

tr
(
exp

(−Ht+1 + ε
16Pt

))

tr (exp(−Ht+1))

)
= log

(
tr
(
exp

(−Ht+1 − log
(
tr (exp(−Ht+1)) I + ε

16Pt
))))

≥ tr
(
ε

16Pt exp (−Ht+1 − log(tr (exp(−Ht+1)))I)
)

= ε
16 tr (Pt exp(−Ht+1)/ tr (exp(−Ht+1))) = ε

16 tr (Ptρt+1) .
(14)

Combining Eq. (13) with Eq. (14) we arrive at

S (ρ∗‖ρt+1)− S (ρ∗‖ρt) ≤ ε
16 tr (Pt(ρ∗ − ρt+1)) .

Next, note that the updates are mild in the sense that ρt+1 and ρt are close in trace distance.
[BS17, Lem. 16] implies ‖ρt1 − ρt‖tr ≤ 2

(
exp( ε

16‖Pt‖)− 1
) ≤ ε

4 , because ‖Pt‖ ≤ 1 by con-
struction and we can also assume ε

16 ≤ log(2). Combining these insights with Matrix Hölder
[Bha97, Ex. IV.2.12] ensures

S (ρ∗‖ρt+1)− S (ρ∗‖ρt) ≤ ε
16 tr (Ptρ∗)− ε

16 tr (Ptρt+1)
= ε

16 (tr (Pt (ρt − ρt+1))− tr (Pt (ρt − ρ∗)))
≤ ε

16 (‖Pt‖‖ρt − ρt+1‖tr − tr (Pt (ρt − ρ∗))) .

The first contribution is bounded by ε
4‖Pt‖ ≤ ε

4 , while Definition 2.1 ensures tr (Pt(ρt − ρ∗)) ≥
ε
2 (ρ∗ is feasible and Pt is an ε

2 -separation oracle for the infeasible point ρt). In summary,

S (ρ∗‖ρt+1)− S (ρ∗‖ρt) ≤ ε
16
(
ε
4 − ε

2
)

= − ε2

64 for all iterations t = 0, . . . , T

and we conclude

S (ρ∗‖ρT ) =
T∑

t=0
(S (ρ∗‖ρt+1)− S (ρ∗‖ρt)) + S (ρ∗‖ρ0) ≤ −T ε2

64 + log(n).

This expression becomes negative as soon as the total number of steps T surpasses 64 log(n)/ε2.
A contradiction, because the quantum relative entropy is always non-negative.

3.2 Stability of the relaxed MaxQP SDP

Note that even if Algorithm 1 accepts a candidate point, it does not necessarily mean that
this point is exactly feasible. Theorem 2.1 only asserts that this point is ε-close to all sets
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of interest with respect to a set of observables. For the MaxQP SDP (3), this means that
the outputs of the algorithm will only satisfy the diagonal constraints approximately and, in
principle, the value of this further relaxed problem could differ significantly from the original
value. In the next Proposition we show that this is not the case:

Proposition 3.1. Let αε4 = tr (Aρ) be the value attained by – up to accuracy ε4 – solution ρ
to the relaxed MaxQP SDP (3) with input matrix A. Then there is a quantum state ρ] at
trace distance O(ε) of ρ such that nρ] is a feasible point of MaxQP SDP (2). In particular:

∣∣∣αε4n‖A‖ − tr
(
nρ]A

)∣∣∣ = O(εn‖A‖), (15)

Moreover, it is possible to construct ρ] in time O(n2) given the entries of ρ.

Proof. Let ρ be a solution to the relaxed MaxQP SDP (3) with relaxation parameter ε4. We
will now construct ρ] such that nρ] is an exactly feasible point of the MaxQP SDP (3). These
modifications are mild enough to ensure that the associated SDP value will only change by
O(εn‖A‖). We proceed in two steps: (i) ρ 7→ ρ′: Identify diagonal entries that substantially
deviate from 1/n in the sense that |〈i|ρ|i〉 − 1/n| > ε2/n. Subsequently, replace ρii by 1/n
and set all entries in the i-th row and i-th column to zero. This ensures that ρ′ remains
positive semidefinite. (ii) ρ′ → R: Replace all remaining diagonal entries by 1/n. This may
thwart positive semidefiniteness, but the following convex combination restores this feature:

ρ] = 1
1+ε2

(
R+ ε2

n I
)
.

By construction, this matrix is both psd and obeys 〈i|ρ]|i〉 = 1/n for all i ∈ [n]. In words: it
is a feasible point of the renormalized MaxQP SDP (3).

We now show that these reformulations are mild. To this end, letB =
{
i : |n〈i|ρ|i〉 − 1| > ε2

} ⊂
[n] be the indices associated with large deviations. Without loss of generality, we can assume
that these are the first |B| indices. Then,

‖ρ′ − ρ‖tr =
∥∥∥∥∥

(
n−1IB 0

0 ρ22

)
−
(
ρ11 ρ12
ρ21 ρ22

)∥∥∥∥∥
tr

=
∥∥∥∥∥

(
n−1IB − ρ11 −ρ12
−ρ21 0

)∥∥∥∥∥
tr

≤‖ρ11‖tr + 2‖ρ12‖tr + ‖n−1IB‖tr. (16)

Next, note that ε4-approximate feasibility implies ∑n
i=1 |〈i|ρ|i〉 − 1/n| ≤ ε4. This, in turn,

demands |B| ε2n ≤ ε4 or, equivalently |B| ≤ nε2. The definition of B moreover asserts

‖ρ22‖tr ≥ (n− |B|)1−ε2
n ≥ (1− ε2)2.

Moreover, as shown in [Kin03], we have
∥∥∥∥∥

[
‖ρ11‖tr ‖ρ12‖tr
‖ρT12‖tr ‖ρ22‖tr

]∥∥∥∥∥
tr

≤
∥∥∥∥∥

[
ρ11 ρ12
ρT12 ρ2

]∥∥∥∥∥
tr

= ‖ρ‖tr = tr(ρ) = 1.

As ‖ · ‖tr ≥ ‖ · ‖2 (the Frobenius, or Schatten-2 norm), it follows from the last equation that

‖ρ11‖2tr + 2‖ρ12‖2tr + ‖ρ22‖2tr ≤ 1.
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And, as ‖ρ22‖2tr ≥ (1 − ε2)4, we conclude ‖ρ11‖2tr + 2‖ρ12‖2tr = O(ε2). which in turn implies
‖ρ11‖tr + 2‖ρ12‖tr = O(ε). Inserting this relation into Eq. (16) yields

‖ρ′ − ρ‖tr = O(ε). (17)

Next, note that we obtain R from ρ′ by just replacing all diagonal entries of ρ′ by 1/n. As
by construction all the diagonal elements of ρ′ are in the range 1/n± ε2/n, we can write

R = ρ′ +D,

where D is a diagonal matrix whose entries are in the range [−ε2/n, ε2/n]. Thus, D + ε2

n I is
psd. Normalizing the trace we see that

ρ] = 1
1 + ε2

(
ρ′ +D + ε2

n
I

)

is psd with diagonal entries 1/n and, thus, nρ# is a feasible point of MaxQP SDP (2). We
also have that:

‖ρ′ − ρ]‖tr = 1
1 + ε2

‖ε2ρ′ +D + ε2
I

n
‖tr = O(ε2). (18)

by a triangle inequality. Thus, combining Eq. (18) and Eq. (17) we conclude from another
triangle inequality that:

‖ρ− ρ]‖tr = O(ε).

The claim then follows from a (matrix) Hölder inequality:
∣∣∣tr (nAρ)− tr

(
nAρ]

)∣∣∣ ≤ n‖A‖‖ρ− ρ]‖tr = O(n‖A‖ε).

Note that the proof technique above is constructive and allows us to construct a feasible point
from an approximately feasible one in O(n2) time by manipulating the entries.

3.3 Approximately solving the MaxQP SDP on a classical computer

We will now show how to use Hamiltonian Updates (Algorithm 1) to solve the MaxQP
SDP (3) on a classical computer. It turns out that the main classical bottleneck is the cost
of computing matrix exponentials ρ = exp(−H)/ tr (exp(−H)). The following result, also
observed in [LRS15], asserts that coarse truncations of the matrix exponential already yield
accurate approximations.

Lemma 3.2. Fix a Hermitian n× n matrix H, an accuracy ε and let l be the smallest even
number that obeys (l + 1)(log(l + 1) − 1) ≥ 2‖H‖ + log(n) + log(1/ε). Then, the truncated
matrix exponential Tl = ∑l

k=0
1
k!(−H)k is guaranteed to obey
∥∥∥∥

exp(−H)
tr (exp(−H)) −

Tl
tr (Tl)

∥∥∥∥
tr

≤ ε.
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Proof. First note, that truncation at an even integer l ensures that Tl is positive semidefinite.
This is an immediate consequence of the fact that even-degree Taylor expansions of the
(scalar) exponential are non-negative polynomials. In particular, ‖Tl‖tr = tr (Tl). Combine
this with tr (X) ≤ ‖X‖tr ≤ n‖X‖ for all Hermitian n× n matrices to conclude
∥∥∥∥

exp(−H)
tr (exp(−H)) −

Tl
tr (Tl)

∥∥∥∥
tr

≤ 1
tr (exp(−H)) ‖exp(−H)− Tl‖tr + |tr (exp(−H))− tr (Tl)|

tr (Tl) tr (exp(−H)) ‖Tl‖tr

≤2‖ exp(−H)− Tl‖tr
tr (exp(−H)) ≤ 2n exp(‖H‖)‖ exp(−H)− Tl‖,

where we have also used tr (exp(−H)) ≥ ‖ exp(−H)‖ ≥ exp(−‖H‖). By construction, both
exp(−H) and Tl commute and are diagonal in the same eigenbasis. Let λ1, . . . , λn be the
eigenvalues of H. Then, Taylor’s remainder theorem asserts

‖ exp(−H)− Tl‖ = max
1≤i≤n

∣∣∣∣∣exp(−λi)−
l∑

k=0

1
k!(−λ)k

∣∣∣∣∣ ≤
maxi exp (−λi)

(l + 1)! ≤ exp(‖H‖)
(l + 1)! .

The value of l is chosen such that

2n exp(2‖H‖)
(l + 1)! ≤ exp(2‖H‖+ log(2) + log(n)− 1− (l + 1)(log(l + 1)− 1)) ≤ ε,

because (l + 1)! ≥ e ((l + 1)/e)l+1.

Corollary 3.1. Given an s sparse, symmetric n × n matrix A and ε > 0, we can solve
the MaxQP SDP (3) up to an additive error O(εn‖A‖) in time Õ(min{n2s, nω}ε−12) on a
classical computer.

Although the dependency in ε for our algorithm is high, we expect that a more refined
analysis of the error could improve this significantly. This is because the approximately
feasible to feasible conversion behind Proposition 3.1 requires ε4 accuracy.

Proof. As each run of Algorithm 1 takes at most Õ(1) iterations, we only need to implement
the oracles in time Õ(n2sε−1) to establish the advertised runtime for an approximate solution.
First, note that the operator norm ‖Ht‖ only grows modestly with the number of iterations
t = 0, . . . , T . This readily follows from H0 = 0, and ‖Ht+1 − Ht‖ ≤ ε

16‖Pt‖ ≤ ε
16 . What is

more, the maximal number of steps is T = d64 log(n)/ε2e, implying ‖Ht‖ ≤ 4 log(n)/ε for all
t.

In turn, Lemma 3.2 implies that computing the Taylor series of exp(−Ht) up to a term
of order O(log(n)/ε) suffices to compute a matrix ρ̃t that is ε

4 -close to the true iterate ρt =
exp(−Ht)/ tr (exp(−Ht)) in trace distance. Now note that the complexity of multiplying any
matrix with Ht is O(min{n2s, nω}), as Ht is a linear combination of a diagonal matrix and
A. Thus, we conclude that computing ρ̃t takes time O(n2s log(n)/ε). Checking the diagonal
constraints then takes time O(n) and computing tr

(
A‖A‖−1ρ̃t

)
takes time O(ns). This

suffices to implement both ε-separation oracles and highlights that the runtime is dominated
by computing approximations of the matrix exponential.
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Finally, we show in Proposition 3.1 that in order to ensure an additive error of order
O(εn‖A‖) for the MaxQP SDP, it suffices to solve the relaxed one up to an error ε4, from
which the claim follows and we can then convert the approximately feasible solution to a
feasible solution in time O(n2).

3.4 Approximately solving the MaxQP SDP on a quantum computer

We will now show how to implement ε-separation oracles on a quantum computer. As dis-
cussed before, implementing the oracle requires us to evaluate diagonals of the Gibbs states
ρ = exp(−H)/ tr (exp(−H)) and the value of tr

(
ρA‖A‖−1). These two tasks can be per-

formed easily on a quantum computer given the ability to prepare approximate copies of the
quantum state ρ.

Lemma 3.3. We can implement ε-separation oracles for the MaxQP SDP (3) on a quantum
computer given access to ε

8 approximate O(nε−2) copies in trace distance of the input state ρ
and the ability to measure tr (Aρ) ‖A‖−1. Moreover, the classical postprocessing time needed
to implement the oracle is O(nε−2).

Proof. Let ρ̃ be the approximation to ρ. We implement the oracle by first measuring O(nε−2)
approximate copies ρ̃ of the input ρ in the computational basis. This is enough to ensure
that with probability of failure at most O(e−cn) the resulting empirical distribution of the
measurement outcomes, p̂ = ∑

i p̂(i)|i〉〈i|, satisfies

‖
∑

i

〈i|ρ̃|i〉|i〉〈i| − p̂‖tr ≤
ε

8 .

If ‖I/n− p̂‖tr ≤ 3ε
4 , then the oracle for the diagonal constraints accepts the current state. If

not, we output

P =
n∑

i=1
(I {p̃(i) > 1/n} − {p̃(i) < 1/n})|i〉〈i|.

To see that this indeed satisfies the definition of the oracle, note that the empirical distribution
p̂ is at most ε

4 away in total variation distance to the distribution on the diagonals of ρ. This
is because we obtain a ε

8 contribution from the approximation ρ̃ and ε
8 from statistical noise.

Thus, if ‖I/n− p̂‖tr ≤ 3ε
4 ,

‖
∑

i

〈i|ρ|i〉|i〉〈i| − I

n
‖tr ≤ ε.

by a triangle inequality, as desired. A similar argument shows that we also have

tr
(
P

(
ρ− I

n

))
≥ ε

2

whenever ‖I/n− p̂‖tr ≥ 3ε
4 . Indeed, we have:

tr
(
P

(
ρ− I

n

))
= tr

(
P

(
p̂− I

n

))
+ tr (P (ρ̃− p̂)) + tr (P (ρ− ρ̃)) . (19)
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By the definition of P we have:

tr
(
P

(
p̂− I

n

))
= ‖I/n− p̂‖tr ≥

3ε
4 (20)

and

tr (P (ρ̃− p̂)) + tr (P (ρ− ρ̃)) ≥ − ε8 −
ε

8 = − ε4 . (21)

This step requires a classical postprocessing time of order O(nε−2). For implementing the
second oracle, we simply measure A‖A‖−1 directly. A total of O(ε−2) copies of ρ̃ suffice to
determine tr

(
A‖A‖−1ρ

)
up to precision ε

4 via phase estimation [NC00].

Lemma 3.3 reduces the task of implementing separation oracles to the task of preparing
independent copies of a fixed Gibbs state. There are many different proposals for prepar-
ing Gibbs states on quantum computers [CS17, Fra18, KBa16, PW09, TOV+09, TOV+09,
YAG12, vAGGdW17]. Here, we will follow the algorithm proposed in [PW09]. This approach
allows us to reduce the problem of preparing ρH = exp(−H)/ tr (exp(−H)) to the task of
simulating the Hamiltonian H. More precisely, [PW09, Appendix] highlights that Õ (√nε−3)

invocations of a controlled U , where U satisfies

‖U − eit0H‖ ≤ O(ε3) where t0 = π/(4‖H‖)

suffice to produce a state that is ε
8 close in trace distance to ρH . The probability of failure

is constant. We expect that a more refined analysis can lead to a better dependence on the
error ε. The methods presented in [vAGGdW17] seem like a good starting point for such
future improvements. Here, however, we prioritize the scaling in the problem dimension n
only.

By construction, the Hamiltonians we wish to simulate are all of the form H = aA‖A‖−1+
bD, where a, b = O(log(n)ε−1) and D is a diagonal matrix with bounded operator norm

‖D‖ ≤ 1. It follows from [CW12, Theorem 1] that Õ
(
t(a+ b) exp(1.6

√
log(log(n)tε−3))

)

separate simulations of aA and bD suffice to simulate H for time t up to an error ε3. Thus,
we further reduce the problem of simulating H to simulating A and D separately.

At this point, it is important to specify input models for the matrix A, the problem
description of the MaxQP SDP. We will work in the sparse oracle input model. That is, we
assume to have access to an oracle Osparse that gives us the position of the nonzero entries.
Given indices i for a column of A and a number 1 ≤ j ≤ s, where A is s-sparse, the oracle
acts as:

Osparse |i, j〉 = |i, f(i, j)〉 .

Here f(i, j) is the index of the j−th nonzero element of the i−th column of A. Moreover, we
assume that the magnitude of individual entries are accessible by means of another oracle:

OA |i, j, z〉 = |i, j, z ⊕ (Aij‖A‖−1)〉 ,

Here, the entry
[
A‖A‖−1]

ij is represented by a bit string long enough to ensure the desired

precision. The results of [Low19] then highlight that it is possible to simulate exp(itA‖A‖−1)
in time O

(
(t
√
s)1+o(1)

εo(1)
)
.
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Let us now turn to the task of simulating diagonal Hamiltonians D. Let OD be the matrix
entry oracle for D. We suppose that it acts on Cn ⊗ (C2)⊗m, where m is large enough to
represent the diagonal entries to desired precision in binary, as

OD |i, z〉 7→ |i, z ⊕Dii〉 . (22)

It is then possible to simulate H = D for times t = Õ(ε−1) with Õ(1) queries to the oracle
OD and elementary operations [BACS07]. Thus, efficient simulation of e−iDt follows from
an efficient implementation of the oracle OD. The latter can be achieved with a quantum
RAM [GLM08]. We consider the quantum RAM model from [Pra14]. There, it is possible to
make insertions in time Õ (1). Thus, given a classical description of a diagonal matrix D, we
may update the quantum RAM in time Õ (n). After we have updated the quantum RAM,
we may implement the oracle OD in time Õ(1). Combining all these subroutines establishes
the second main result of this work.

Corollary 3.2. Given an s-sparse, symmetric n×n matrix A (with appropriate oracle access)
and ε > 0, we can solve the MaxQP SDP (2) up to an additive error εn‖A‖ in time
Õ
(
n1.5 (

√
s)1+o(1)

ε−28+o(1) exp(1.6
√

12 log(ε−1))
)

on a quantum computer. The output of
the quantum algorithm consists of a real number a and a diagonal matrix D such that for
H = a A

‖A‖ +D we have that nρH is at trace distance nε to a feasible point of MaxQP SDP
(2).

Proof. As we saw before, the ability to solve the relaxed MaxQP SDP (3) up to precision
ε̃ = ε4 is sufficient to ensure an output with the properties above.

It follows from Theorem 3.3 that producing Õ(nε̃−2) copies of Gibbs states suffices to
implement the oracle. The results of [PW09] then imply that each copy can be obtained with
with Õ(

√
nε̃−3) Hamiltonian simulation steps, which, as discussed above, can each be done

in time

Õ
((√

s
)1+o(1)

ε̃o(1) exp(1.6
√

log(log(n)ε̃−1))
)

=

Õ
((√

s
)1+o(1)

ε̃o(1) exp(1.6
√

log(ε̃−1))
)
.

Thus, the cost per iteration of the algorithm is

Õ
(
n1.5 (√s)1+o(1)

ε̃−5+o(1) exp
[
1.6
√

log(ε−1)
])

.

As the algorithm requires Õ(ε̃−2) iterations and replacing ε̃ = O(ε−2) we obtain the claim.

3.5 Randomized rounding

As pioneered by the seminal work of Goemans and Williamson [GW95], it is possible to use
randomized rounding techniques to obtain an approximate solution to the original quadratic
optimization problem for certain instances (1). These solutions are in expectation within a
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multiplicative factor of the value of the SDP relaxation (3) and the exact constant depends
on the structure of the matrix A . We will explore Rietz’s method, as in [AN06], to show that
it is possible to perform the rounding on a classical computer to approximate ‖A‖∞→1 with
our approximately feasible solutions to MaxQP SDP and still obtain good approximations.

First, recall that the rounding algorithms usually work by first multiplying a random
Gaussian vector by the square root of the solution. The approximate solution is then given
by the signs of this random vector. Note that both classical and quantum algorithms output
a classical description of the Hamiltonian H] associated with an approximately optimal,
approximately feasible Gibbs state ρ] to (3). Pseudocode for the rounding algorithm is
provided in Algorithm 2. The first important proof ingredient is an adaptation of [AN06,
Eq. (4.1)].

Lemma 3.4. Fix v, w ∈ Rn (non-zero) and let g ∈ Rn be a random vector with standard
normal entries. Then,

π
2E [sign(〈v|g〉) sign(〈w|g〉)] (23)

=〈 v
‖v‖ ,

w
‖w‖〉+ E

[(
〈 v
‖v‖ |g〉 −

√
π
2 sign

(
〈 v
‖v‖ |g〉

)) (
〈 w
‖w‖ |g〉 −

√
π
2 sign

(
〈 w
‖w‖ |g〉

))]
.

Proof. In [AN06, Eq. (4.1)] the authors use rotation invariance to establish this identity for
two unit vectors. The claim then follows from observing that the distribution of sign(〈v|g〉) sign(〈w|g〉)
is invariant under scaling both v and w by non-negative numbers. In particular, v 7→ v/‖v‖
and w 7→ w/‖w‖ does not affect the distribution.

The next step involves a technical continuity argument.

Lemma 3.5. Fix ε > 0 and let ρ be a quantum state s.t.:

‖
∑

i

〈i|ρ|i〉|i〉〈i| − I/n‖tr ≤ ε4

Define the set B = {i ∈ [i] :
∣∣∣ρii − 1

n

∣∣∣ > ε2

n } and let ρB̄ be the submatrix with indices in the
complement B̄ of B. Then, the matrix σ with entries σij = ρij

n
√
ρiiρjj

is a quantum state that
obeys ‖ρB̄ − σB̄‖tr ≤ 3ε.

Proof. Note that σB̄ = D (ρB̄) , where D is the linear map given by D(X) = DB̄XDB̄ and
DB̄ is a |B̄| × |B̄| diagonal matrix with entries √nρii−1 for i ∈ B̄. This implies

‖ρB̄ − σB̄‖tr = ‖ (id−D) (ρB̄) ‖tr ≤ ‖id−D‖tr→tr‖ρB̄‖tr ≤ ‖id−D‖∞→∞,

because ‖ρB̄‖tr ≤ ‖ρ‖tr = tr(ρ) = 1. Duality of norms and the fact that both id and D are
self-adjoint with respect of the Frobenius inner product tr

(
XTY

)
implies ‖id − D‖∞→∞ =

‖id−D‖tr→tr. This allows us to bound ‖id−D‖∞→∞ instead. By construction, we have that
all the entries of DB̄ are in 1 ± ε. Write DB̄ = I + Dε, where Dε is a diagonal matrix with
entries that are bounded by ε in absolute value. Then,

id−D(X) = DεX +XDε +DεXDε for any matrix X.

24



Submultiplicativity of the operator norm then implies

‖DεX +XDε +DεXDε‖∞ ≤ 2‖Dε‖∞‖X‖+ ‖Dε‖2∞‖X‖∞ ≤ 3ε‖X‖∞.
and, in turn, ‖id−D‖∞→∞ ≤ 3ε.

We are now ready to prove the main stability result required for randomized rounding.

Theorem 3.1. Let ρ] be an approximately feasible, optimal point of (3) with accuracy ε4 > 0
and input matrix A′ with

A′ =
(

0 A
AT 0

)
,

where A is a real n× n matrix. Let v1, . . . , v2n be the columns of
√
ρ], sample g ∈ R2n with

i.i.d. Gaussian entries and set xi = sign(〈vi|g〉) and y = (x1, . . . , xn), z = (xn+1, . . . , x2n).
Then,

tr
(
ρ]A

)
n+O(εn‖A‖) ≥

∑

i,j

AijE(yizj) ≥ (4/π − 1) tr
(
ρ]A

)
n−O(εn‖A‖).

Proof. The upper bound follows immediately from the fact MaxQP SDP (2) relaxations
(renormalized or not) provide upper bounds to the original problem (1). The factors n‖A‖
is an artifact of the renormalization (3).

For the lower bound, we once more define B = {i ∈ [i] : |ρii − 1/2n| ≥ ε2/2n} ⊂ [2n].
Plugging in vi and vj in (23), multiplying both sides by A′ij and summing over i, j implies

π

2
∑

i,j

A′ijE(xixj) = 2n
∑

i,j

A′ij (σij + τij) with σij = ρij
2n√ρiiρjj and

τij =E
[(
〈 vi
‖vi‖ |g〉 −

√
π
2 sign

(
〈 vi
‖vi‖ |g〉

)) (
〈 vj
‖vj‖ |g〉 −

√
π
2 sign

(
〈 vj
‖vj‖ |g〉

))]
.

Following the same proof strategy as in [AN06, Sec. 4.1], we note that the matrix T defined
by [T ]ij = τij is a Gram matrix and, thus, psd. Moreover, in [AN06, Sec. 4.1] the author
shows that τii = π

2 −1. These two properties imply that
(
π
2 − 1

)−1 (2n)−1T is a feasible point
of (3). Moreover, because of the structure of the matrix A′, we have that

| tr (TA′) | ≤
(
π

2 − 1
)

tr
(
ρ]A′

)
n−O(εn‖A‖) (24)

To see this, consider the block unitary

U =
(

0 I
−I 0

)
.

Then for any psd matrix X we have that tr
(
A′UXU †

)
= − tr (A′X) and so tr

(
A′Uρ]U †

)

provides a lower bound to the value over the approximately feasible set . Thus,
π

2
∑

i,j

A′ijE(yizj) = 2n
∑

i,j

A′ij (σij + τij) ≥

2n
∑

i,j

A′ijσij −
(
π

2 − 1
)

tr
(
ρ]A′

)
n−O(εn‖A‖)
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We now have to relate tr
(
ρ]A′

)
to tr (σA′). To do so, we can argue like in Proposition 3.1

and see that tr (σ11) , tr (ρ11) = O(ε2) (these correspond to the |B| × |B| psd submatrices
with entries in B only). As both σ and ρ are states, we conclude

‖ρ12‖tr, ‖σ12‖tr = O(ε)

by reusing the analysis provided in the proof of Proposition 3.1. Thus, it follows from Hölders
inequality and Lemma 3.5 that

tr
(
A′(ρ− σ)

)
= tr

(
A′(ρ22 − σ22)

)
+ tr

(
A′(ρ11 − 2ρ12 − σ11 − 2σ12)

)

=‖A‖ (‖σ22 − ρ22‖tr + ‖ρ11‖tr + 2‖ρ12‖tr + 2‖σ11‖tr + 2‖σ12‖tr) = O(‖A‖ε),

from which the claim follows.

Proposition 3.1 highlights that performing the rounding with approximate solutions to the
MaxQP SDP (3) still ensures a good approximate solution in expectation for the ‖A‖∞→1
norm. In the case of matrices A that are psd it is possible to improve the constant in the
rounding and we do not to resort to lifting the problem to a matrix with double the dimension:

Corollary 3.3. Let ρ] be an approximately feasible, optimal point of (3) with accuracy ε4 > 0
and psd input matrix A. Let v1, . . . , vn be the columns of

√
ρ], sample g ∈ Rn with i.i.d.

Gaussian entries and set xi = sign(〈vi|g〉). Then,

tr
(
ρ]A

)
n+O(εn‖A‖) ≥

∑

i,j

AijE(xixj) ≥ (2/π) tr
(
ρ]A

)
n−O(εn‖A‖).

Proof. The proof follows by following the same proof as above but noting that we may use
the estimate tr (TA) ≥ 0 instead of (24), as both A and T are psd. Optimality of the constant
was shown in [AN06].

As Alon and Naor [AN06] also show that for psd matrices A we have

‖A‖∞→1 = max
x∈{±1}n

〈x|A|x〉,

i.e. we may restrict to the same vector on the left and right, it follows that Corollary 3.3
gives almost optimal rounding guarantees. These two statements certify that, as longs as
‖A‖∞→1 = Θ(n‖A‖), performing the rounding with our approximately feasible solutions
gives rise to approximations of the ∞→ 1 norm that are almost as good the strictly feasible
solutions.

But computing
√
ρ]g = exp(−H/2)g/

√
tr (exp(−H)) directly still remains expensive be-

cause of matrix exponentiation. We will surpass this bottleneck by truncating the Taylor
series of the matrix exponential in a fashion similar to Lemma 3.2. The following standard
anti-concentration result for Gaussian random variables will be essential for this argument.

Fact 3.1. Let X be a N (0, σ2) random variable. Then P(|X| ≤ σε) = O(ε).
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Lemma 3.6. Let ρ] with associated Hamiltonian H] be an approximately optimal solution
to the MaxQP SDP (3) with ‖H]‖ = O(log(n)/ε). Set Sl = ∑l

k=0
1
k!(−H]/2)k with l =

O(log(n)/ε). Then, a random vector g ∈ Rn with standard normal entries obeys

sign
[(
eH

]/2g
)
i

]
= sign [(Slg)i] for all i ∈ [n] such that

∣∣∣ρ]ii − 1
n

∣∣∣ < ε
n

with probability at least 1−O(ε−1).

Note that the design of Algorithm 1 ensures that optimal Hamiltonians always obey
‖H]‖ = O(log(n)/ε).

Proof. Define h = exp(−H]/2)g and note that this is a Gaussian random vector with co-
variance matrix exp(−H]). Let B =

{
i : |ρii − 1/n| > ε

n

} ⊂ [n] denote the set of indices for
which ρii deviates substantially from 1/n. Then, every entry of h that is not contained in
this index set obeys

[h]i = [exp(−H/2)g]i ∼ N
(
0, cntr(exp(−H))

)
with c ∈ (1− ε, 1 + ε).

The assumption ‖H]‖ = O(log(n)/ε) ensures tr(exp(−H]))/n ≥ n−c
′/ε−1 for some constant

c′. We can combine this with Fact 3.1 (Gaussian anti-concentration) to conclude

P
[
| [h]i | ≤ n−2−c′/(2ε)

]
= O(1/n2) for all i ∈ B̄ = [n] \B.

A union bound then asserts

P
[
∃i ∈ B̄ : | [h]i | ≤ n−2−c′/ε

]
= O(1/n).

Moreover, it follows from standard concentration arguments that

P
[
n− n 1

4 ≤ ‖g‖2 ≤ n+ n
1
4
]
≥ 1− 2e−

√
n/8.

Thus, with probability at least 1−O(n−1), we have that ‖g‖2 ≤ n+n
1
4 and | [h]i | ≥ n−2−c′/ε

for every entry i ∈ B̄. Following the same proof strategy as in Lemma 3.2, it is easy to see
that picking l = O(ε−1 log(n)) suffices to ensure that

‖Sl − exp(−H/2)‖ ≤ n−4− c′2ε

Conditioning on the events emphasized above, implies

max
i∈[n]
|[(exp(−H/2)− Sl) g]i| ≤ ‖ (exp(−H/2)− Sk) g‖ ≤ ‖ exp(−H/2)− Sk‖‖g‖ ≤ n−4− c′2ε ‖g‖.

This in turn ensures max
i∈B̄
|[(exp(−H/2)− Sl) g]i| ≤ n−3− c′2ε , which then gives

sign ([h]i) = sign ([(exp(−H/2)g)]i) = sign ([Skg]i) for all i ∈ B̄,

because conditioning ensures |[exp(−H/2)g]i| ≥ n−2− c′2ε .

27



Combining the statements we just proved we conclude that:

Proposition 3.2 (Restatement of Proposition 2.1). Let ε > 0 and A a real, psd matrix be
given. Moreover, let H be the solution Hamiltonian to the relaxed MaxQP SDP (3) with
error parameter ε4 and α∗ its value. Then, with probability at least 1− n−1, the output x of
Algorithm 2 satisfies:

n‖A‖(α∗ +O(ε)) ≥ E
[∑

ij

Aijxixj
] ≥ 2

π
n‖A‖(α∗ −O(ε)), (25)

Proof. It follows from Lemma 3.6 that the output of Algorithm 2 will only differ from the
vector obtained by performing the rounding with the approximate solution on a set of size
O(nε2) with probability at least 1− n−1. This is because, as argued before, by picking ε4 we
have at most O(ε2n) diagonal entries that do not satisfy |ρii−1/n| ≤ ε/n. We will now argue
that sign vectors that differ at O(nε2) position can differ in value by at most O(εn‖A‖). Let
x be the vector obtained by the ideal rounding and x′ the one with the truncated Taylor
series. Then there exists a vector e with at most O(nε2) nonzero entries bounded by 2 such
that x = x+ e by our assumption. By Cauchy-Schwarz:

|〈x|A|x〉 − 〈x′|A|x′〉| ≤ |〈e|A|x〉|+ |〈x|A|e〉|+ |〈e|A|e〉| ≤ ‖A‖
(
2‖x‖‖e‖+ ‖e‖2

)
.

Now, as x is a binary vector, ‖x‖ =
√
n and, as e has at most O(ε2n) nonzero entries, it

follows that ‖e‖ = O(ε
√
n) and we conclude

|〈x|A|x〉 − 〈x′|A|x′〉| = O(εn‖A‖)

As Theorem 3.1 asserts that performing the rounding with the approximate solution is enough
to produce a sign vector that satisfies (25) in expectation, this yields the claim.

The analogous claim, i.e. that truncating still gives rise to good solutions, clearly also
holds in the setting of Proposition 3.1.

Thus, we conclude that the rounding can be performed in time Õ(ns) on a classical
computer, as multiplying a vector with H takes time Õ(ns) and we only need to perform
these operations for a total number of steps that is logarithmic in the problem dimension n
(but polynomial in inverse accuracy 1/ε). As ns ≤ n1.5√s for s ≤ n, we conclude that the
cost of solving the relaxed MaxQP SDP (3) dominates the cost of rounding.

4 Conclusion and Outlook

By adapting ideas from [TRW05, Haz16, LRS15, BKL+17], we have provided a general meta-
algorithm for approximately solving convex feasibility problems with psd constraints. Hamil-
tonian Updates is an iterative procedure based on a simple change of variables: represent
a trace-normalized, positive semidefinite matrix as X = exp(−H)/ tr (exp(−H)). At each
step, infeasible directions are penalized in the matrix exponent until an approximately feasi-
ble point is reached. This procedure can be equipped with rigorous convergence guarantees
and lends itself to quantum improvements: X = exp(−H) tr (exp(−H)) is a Gibbs state and
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H is the associated Hamiltonian. Quantum architectures can produce certain Gibbs states
very efficiently.

We have demonstrated the viability of this approach by considering semidefinite program-
ming relaxations of quadratic problems with binary constraints (MaxQP SDP) (2). The
motivation for considering this practically important problem class was two-fold: (i) MaxQP
SDPs have received considerable attention in the (classical) computer science community.
Powerful meta-algorithms, like matrix multiplicative weights [AK16], have been designed to
solve these SDPs very quickly. (ii) So far, quantum SDP solvers [BS17, vAGGdW17, vAG19,
BKL+17, KP20] have failed to provide speedups for MaxQP SDPs. The quantum runtime
associated with these solvers depends on problem-specific parameters that scale particularly
poorly for MaxQP SDPs. Moreover, the notions of approximate feasibility championed in
these other works are too loose for this class of problem.

The framework developed in this paper has allowed us to address these points. Firstly,
we shown that a classical implementation of Hamiltonian Updates already improves upon
the best existing results. A runtime of Õ(n2s) suffices to find an approximately optimal
solution. Secondly, we have showed that quantum computers do offer additional speedups. A
quantum runtime of Õ(n1.5s0.5+o(1)) is sufficient. We emphasize that this is the first quantum
speedup for MaxQP SDP relaxations. Subsequently, we have devised a classical randomized
rounding procedure that converts both quantum and classical solutions into close to optimal
solutions of the original quadratic problem.

We note in passing that our algorithm is very robust, in the sense that it only requires
the preparation of Gibbs states up to a precision ε that can be taken to be constant in the
number of qubits. This requirement is combined with other simple tasks like computational
basis measurements and the ability to estimate the expectation value of the target matrix on
states. Although the subroutines used in this work to perform these tasks certainly require
nontrivial quantum circuits, it would be interesting to identify classes of target matrices A
for which preparing the corresponding Gibbs state and estimating the expectation values is
feasible on near-term devices.

We believe that the framework presented here lends itself to further applications.

One concrete application of Hamiltonian Updates, in particular the idea to treat con-
straints as the statistics of measurements, is quantum state tomography, see e.g. [BCG13]
and references therein. Sample-optimal tomography protocols have revealed that classical
postprocessing is the main bottleneck for reconstructing density matrices [FGLE12, OW16,
KRT17, HHJ+17, GKKT20]. A classical implementation of Hamiltonian Updates allows for
optimizing postprocessing costs at the expense of a worse dependence on accuracy [BKF20].
Further improvements are possible by executing the algorithm on a quantum computer, giving
a quantum speedup for quantum state tomography.

Another promising and practically relevant application is binary matrix factorization. A
recent line of works [KT19a, KT19b] reduces this problem to a sequence of SDPs. Impor-
tantly, each SDP corresponds to a MAXQP SDP (2) with a random rank-one objective
A = |a〉〈a| and an additional affine constraint tr (PX) = n. Here, P is a fixed low-rank
orthoprojector. This application, however, is likely going to be more demanding in terms
of approximation accuracy. Hence, improving the runtime scaling in inverse accuracy will
constitute an important first step that is of independent interest.
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A Norms of random matrices

There is an interesting discrepancy in the error scaling between the methods presented here
and existing ones by Arora et al. [AHK05]: ‖A‖`1 (existing work) vs n‖A‖ (here). The
following fundamental relations relate these norms [Nik09]:

‖A‖∞→1 ≤ n‖A‖, ‖A‖∞→1 ≤ ‖A‖`1 , ‖A‖ ≤ ‖A‖`1 ≤ n
√

rank(A)‖A‖.

All inequalities are tight up to constants. The above inequalities highlight that it is a priori
not clear what the correct scaling for errors approximating the cut norm should be. The goal
of this section will be to show that for random matrices A with independent, standardized
entries that have bounded fourth moment n‖A‖ reproduces the correct error behavior, while
‖A‖`1 does not.

Proposition A.1 (Cut norm of random matrices). Let A be a n× n random matrix whose
entries are sampled independently from a real-valued distribution α that obeys E [α] = 0,
E
[
α2] = 1 and E

[
α4] = O(1). Then,

E [‖A‖`1 ] = Θ(n2), E [‖A‖∞→1] = Θ(n1.5), E [‖A‖] = O (√n) .

Proof. We refer to Latala’s work for the third claim [Lat05]. A key ingredient for establishing
the second claim is [Git13, Corollary 3.10]:

1√
2E (‖A‖col) ≤ E (‖A‖∞→1) ≤ 4E (‖A‖col) ,

where ‖A‖col = ∑
i

√∑
j [A]2ij is the sum of the Euclidean norms of the columns of A. Now,

note that the entries of A are i.i.d. copies of the random variable α. In turn, the expected

34



column norm of A is just n times the expected Euclidean norm of the random vector a =
(a1, . . . , an)T , where each ai is an independent copy of α. Jensen’s inequality then asserts

E [‖a‖2] ≤
(
E
[
n∑

i=1
a2
i

])1/2

=
√
nE [α2] =

√
n,

while a matching lower bound follows from
√
x ≥ 1

2(1 + x − (x − 1)2). Indeed, define y =
‖a‖22/n = 1

n

∑n
i=1 a

2
i and note that this new random variable obeys E[y] = 1 and E[(y−1)2] =

O(1/n) by assumption. This ensures a matching lower bound:

E [‖a‖2] =
√
nE [√y] ≥

√
n

2

(
1 + E [y]− E

[
(y − 1)2

])
= Ω(

√
n),

This ensures E [‖A‖∞→1] = nE [‖a‖2] = Θ(n3/2) and establishes the second claim.
The first claim follows from the fact that the fourth-moment bound E

[
α4] = O(1) de-

mands E [|α|] = Θ(1). Combine this with i.i.d. entries of the random matrix A to conclude

E [‖A‖`1 ] = n2E [|α|] = Θ(n2).

In the case of random matrices with Gaussian entries, such as in the case of the SK-
model, we have also have exponential concentration around these expectation values, as
shown in [Pan13, Theorem 1.2].

Another family of random matrices for which we expect that n‖ · ‖ provides the correct
error scaling for cut norms are matrices of the form B = A∗A, where A again has i.i.d. entries
of mean 0 and unit variance. Indeed, in [RV18] the authors show that

E (‖A‖∞→2) ≤ O (√nE (‖A‖2→∞)
)
.

with high probability. One can combine these recent results with more standard relations,
like ‖A‖22→∞ = ‖B‖1→∞, ‖A‖2→∞ ≤ ‖A‖ and ‖B‖ = ‖A‖2. This asserts E [‖B‖1→∞] ≤
nE [‖B‖] = O(n2), while E [‖B‖`1 ] = Ω(n2.5).

B Random instances of the MaxQP SDP

The following random instances of the MaxQP SDP have received significant attention in
recent literature [MS16, KB20, JMRT16]: we define the Gaussian orthogonal ensemble (GOE)
to be the random matrix distribution over symmetric n × n matrices A with i.i.d. normal
entries Aii ∼ N (0, 2/n) on the diagonal and Aij ∼ N (0, 1/n) for i < j. For a parameter
λ ≥ 0, we also define the deformed GOE as B(λ) = (λ/n)11T +A, where 1 = (1, . . . , 1)T ∈ Rn
is the vector of ones and A is sampled form the GOE.

This random matrix model is intimately connected to the Sherrington-Kirkpatric model
and determining the MaxCut of random graphs. We will instantiate the notation from [MS16]
and write MaxQP(B(λ)) for the optimal value of the MaxQP SDP with input B(λ).
In [MS16], Montanari ans Sen showed the following interesting result.
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Theorem B.1 (Theorem 5 of [MS16]). Fix λ ≥ 0 and sample B(λ) from the associated
deformed GOE.

1. If 0 ≤ λ ≤ 1, then for any ε > 0, we have MaxQP(B(λ))/n ∈ [2 − ε, 2 + ε] with
probability converging to 1 as n→∞.

2. Else if λ > 1, then there exists a constant ∆(λ) > 0 such that MaxQP(B(λ))/n ≥
2 + ∆(λ) with probability converging to 1 as n→∞.

This seemingly abstract theorem has profound implications to our work. To appreciate
them, it is worth noting that for 0 ≤ λ ≤ 1, it is known that the maximal eigenvalue of B(λ)
is also contained in the interval [2− ε, 2 + ε] with high probability [KY13]. Thus, the optimal
value of MaxQP is comparable in size to the re-scaled largest eigenvalue n‖B(λ)‖. Moreover,
it also follows that for these instances ‖B(λ)‖`1 = Ω(MaxQP(B(λ))

√
n in expectation.

On the other hand, if λ > 1, the largest eigenvalue of the matrix and B(λ) is given by
λ+λ−1 [KY13]. We see that both the largest eigenvalue and the value of MaxQP(B(λ)) go
through a phase transition at λ = 1.

Let us now focus on the case λ < 1. Note that the dual of the MaxQP SDP with target
matrix A is given by optimizing over y ∈ Rn+1 as follows:

minimize ny0 +
n∑

i=1
yi (dual MaxQP SDP) (26)

subject to y0I + diag(y) ≥ A, yi ≥ 0,

where diag(y) = diag(y1, . . . , yn) denotes the diagonal matrix with entries yi for 1 ≤ i ≤ n.
The additional dual variable y0 arises from also incorporating the redundant constraint
tr (X) ≤ n in the associated primal SDP (3). This choice is motivated by the observa-
tion that previous quantum SDP solvers [BKL+17, vAGGdW17, vAG19] actually output
approximately optimal solutions for the dual SDP with this redundant constraint.

Theorem B.1 implies that we can always find a trivial feasible point that is approximately
optimal and sparse for Eq. (26). Indeed, for any ε > 0, γ = (2 + ε)e0 will be feasible with
probability 1 in the limit n→∞. We conclude that for ε > 0 fixed and in the regime λ < 1,
solving the dual problem is trivial. So, existing solvers that output a feasible, approximately
optimal solution [BKL+17, vAGGdW17, vAG19] are of little practical interest for the problem
at hand. In stark contrast, feasible and approximately optimal solutions of the primal problem
are still relevant, because they can be used to perform the rounding.

It is also important to note that the proof of [MS16, Theorem 5] is constructive. Indeed,
let Pδ denote the the projector onto the range of the best rank-δn approximation of B(λ), that
is, the subspace spanned by the the eigenvectors corresponding to the largest δn eigenvalues
of B(λ). Moreover, let D with (D)ii = (Pδ)ii be the restriction of this projector to the main
diagonal. By construction, (D)ii = (Pδ)ii > 0 almost surely for all 1 ≤ i ≤ n. And, in turn,

X = D−
1
2PδD

− 1
2 must be a feasible point of the primal MaxQP SDP (2). Montanari and

Sen then show that tr (B(λ)X) ≥ 2 − ε for some ε = Ω(δ). This establishes the first part
of Thm. B.1. In summary, diagonalizing B(λ) and computing X is sufficient to obtain an
approximately feasible primal solution. Suppressing the error dependence on ε, diagonalizing
B(λ) takes O(nω) time, while our classical algorithm to solve MaxQP SDP takes the same
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up to polylogarithmic factors. The quantum runtime, however, is of order Õ(n2+o(1)) only.
Thus, we see that for ε = Θ(1) we obtain a quantum speedup as soon as the exponent of
matrix multiplication obeys ω > 2 (which is widely believed).

Let us now discuss the regime where λ > 1. To the best of our knowledge, the limit value
of MaxQP(B(λ))/n has not been identified yet. Ref. [MS16], however, shows that it must be
strictly larger than 2 by constructing a sequence of feasible points that continues to saturate
such a lower bound. However, in contrast to before (λ < 1), it is not clear that this sequence of
feasible points is approximately optimal. In fact, it is not even known if MaxQP(B(λ))/n <
λ+λ−1.’ But numerical evidence in favor of this behavior is provided in [JMRT16]. That is,
the optimal value of the SDP is strictly smaller than the trivial eigenvalue upper bound. Thus,
if it is indeed the case that MaxQP(B(λ))/n+µ < λ+λ−1 for some µ > 0 as n→∞, then the
dual SDP must be nontrivial to solve. Still, a direct solution of the primal problem is arguably
more relevant, because it can be used to perform randomized rounding. Nevertheless, we will
now argue that previous quantum solvers [BKL+17, vAGGdW17, vAG19] do not give rise to
a speedup for the dual problem assuming that MaxQP(B(λ))/n+ µ < λ+ λ−1.

Before we move on, we once more emphasize that our algorithm considers the primal
problem only. This is in stark contrast to existing quantum SDP solvers that address both
primal and dual problem. This fully primal approach has the advantage that the runtime
of the algorithm does not depend on problem-specific parameters like the ‖ · ‖`1 norm of
approximately optimal dual solutions, as mentioned in Sec. 2.5. We will now show that this
becomes a real advantage for solving the MaxQP SDP for B(λ) in the regime λ > 1.

Proposition B.1. Let y] be a δ-approximately optimal solution to dual MaxQP SDP (26)
for B(λ) with λ > 1. Assume, moreover, that there exists a µ > 0 such that that

MaxQP(B(λ))/n+ µ ≤ ‖B(λ)‖

with high probability. Then, with high probablity, every δ-optimal dual solution satisfies
∥∥∥y]
∥∥∥
`1

= Ω(n) as long as δ < µ. (27)

Proof. Let x∗ be the value achieved by y] and set η = µ− δ > 0. If we condition on the event
x∗ + η ≤ ‖B(λ)‖, the feasibility constraint in the dual SDP (26) enforces y0 + η ≤ ‖B(λ)‖.
To see this, note that the value of the dual SDP is clearly monotonically increasing on the
other entries, which are all positive. We will now show that in order for the matrix inequality

y0I + diag(y]) ≥ B(λ) (28)

to hold, then the vector y] ∈ Rn must have large `1 norm. In order to do this, we will resort
to an approximate leading eigenvector construction by [MS16]. This construction will have
the desirable property that it is not too “spiky”. In turn, this approximate leading eigenvector
will have a small overlap with each entry of the diagonal matrix diag(y).

We will make extensive use of the results of [MS16], so we will also follow their notation
and normalizations for this proof. Define u1 to be the eigenvector corresponding to the largest
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eigenvalue of B(λ)/n. Moreover, define the “capping” function R(x) as

R(x) =





−1, if x < −1
x, if − 1 ≤ x ≤ 1
1, if x > 1

For some ε > 0, Montanari and Sen then define the vector ϕ componentwise as ϕi =
R(ε
√
nu1,i). In [MS16, Lemma G.2], they then establish

∣∣∣∣
1
n

tr (|ϕ〉〈ϕ|B(λ))− ε2‖B(λ)‖
∣∣∣∣ = O(ε4) with high probability. (29)

On top of that, in Eq. (163) they show that:
1
n

∥∥ε
√
nu1 − ϕ

∥∥2
2 = O(ε6). (30)

We can now use the vector ϕ to probe positive semidefiniteness in Eq. (28):

tr (|ϕ〉〈ϕ|B(λ)) ≤ tr (|ϕ〉〈ϕ|(y0I + diag(y)) . (31)

Let us start by estimating the left hand side of this scalar inequality. Combining Eq. (30)
with a reverse triangle inequality yields

tr (|ϕ〉〈ϕ|y0I) ≤ y0n(ε2 + ε4).

Furthermore, by construction, the entries of ϕ squared to at most 1. Thus,

tr (|ϕ〉〈ϕ|diag(y)) =
n∑

i=1
|ϕ|2yi ≤

n∑

i=1
yi

and we can combine both arguments to obtain an upper bound on the r.h.s. of Eq. (31). We
can also lower-bound the l.h.s. Eq. (29) asserts

tr (|ϕ〉〈ϕ|B(λ)) ≥ (ε2 + Cε4)n,

for some constant universal C > 0. Putting these inequalities together we conclude

y0n(ε2 + ε4) +
n∑

i=1
yi ≥ ε2‖B(λ)‖n− Cε4n.

Dividing the inequality by ε2n and using the fact that our conditioning guarantees y0 + η ≤
‖B(λ)‖ we conclude

(‖B(λ)‖ − η)(1 + ε2) + (nε2)−1
n∑

i=1
yi ≥ ‖B(λ)‖ − Cε4.

Rearranging the terms produces

n−1
n∑

i=1
yi ≥ ε2(η − ε2‖B(λ)‖ − Cε4).

Thus, we can pick ε small and n large enough to require that the right-hand side of the
inequality above is of constant order (recall that ‖B(λ)‖ does not depend on n). In contrast,
the average n−1

n∑
i=1

yi is of constant order if and only if ‖y‖`1 = Ω(n).
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As the methods of [BKL+17, vAGGdW17, vAG19] have a superquadratic dependency on
‖y‖`1 for approximately optimal solutions, we conclude that their performance is worse than
our algorithm for instances of MaxQP SDP with B(λ) for λ > 1 with high probability. Of
course, this only holds provided that the typical value of the SDP is a constant fraction away
from the spectrum of B(λ), as indicated by numerical evidence.

C Comparison to previous work and techniques for further improvement

This section is devoted to giving a brief overview over some promising proposals for speeding
up SDP solvers for problems with a similar structure. The main message is that these
unfortunately do not immediately apply to the general MaxQP SDP setting, especially for
random signed matrices.

The main classical bottleneck behind Algorithm 1 is computing matrix exponentials.
Dimension reduction techniques, like Johnson-Lindenstrauss, can sometimes considerably
speed up this process, see e.g. [AK16]. There, Arora and Kale apply this idea to solve the
MaxCut SDP up to a multiplicative error of O(εnd) in time Õ(nd) for a d regular graph on
n vertices. Moreover, sparsification techniques [Ad20] can be used to bring this complexity
down to Õ(n) in the adjacency list model and Õ(min(nd, n1.5d−1)) in the adjacency matrix
input model. Note that the MaxCut SDP is just an instance of the MaxQP SDP, as both
have the same constraints. The only difference is that the MaxCut SDP has the additional
structure that the target matrix is the weighted adjacency matrix of a graph and, thus, has
positive entries. The extra assumption of non-negative entries is a key ingredient behind the
fastest approximate MaxCUT SDP solvers which would outperform the main results of this
work. It is therefore worthwhile to discuss why these ideas do not readily extend to more
general problem instances.

First, note that the fact that the entries of the target matrix has positive entries is crucial
for the soundness of the oracle presented in [AK16, Theorem 5.2]. This already rules out
the possibility of directly applying their methods to MAXQP if the matrix A has negative
entries. The second crucial observation of [AK16] is that it is possible to rewrite the MaxCut
SDP as:

minimize
∑

i,j

[A]ij ‖vi − vj‖2 (32)

subject to ‖vi‖2 = 1, vi ∈ Rn, i ∈ [n]

In this reformulation, the vectors vi correspond to columns of a Cholesky-decomposition
associated with feasible points: [X]ij = 〈vi|vj〉. Next, recall the following variation of the
polarization identity:

〈u|v〉 = 1
2
(
‖u‖2 + ‖v‖2 − ‖u− v‖2

)
.

This allows us to rewrite the original objective function as

tr (AX) =
∑

i,j

[A]ij 〈vi|vj〉 = 1
2
∑

i,j

[A]ij
(
‖vi‖2 + ‖vj‖2 − ‖vi − vj‖2

)
.
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Feasibility of X then demands 1 = 〈i|X|i〉 = 〈vi|vi〉 = ‖vi‖2 and we, thus, only need to
optimize over ‖vi − vj‖2. Subsequently, Arora and Kale apply dimensionality reduction
techniques to compute approximate vectors v′i, v

′
j that satisfy:

∣∣∣‖vi − vj‖2 − ‖v′i − v′j‖2
∣∣∣ ≤ ε‖vi − vj‖2. (33)

in time O(ns). A priori, similar techniques can be applied to the more general MaxQP SDP
(3). However, sign problems can substantially affect the approximation error. Pointwise esti-
mates like the one in (33) only suffice to estimate tr (XA) up to an error of order O(ε‖A‖`1).
This is fine for matrices with non-negative entries, where this error scaling is comparable to
the size of the optimal SDP solution. Matrix entries with different signs, however, may lead
to cancellations that result in a much smaller size of the optimal SDP solution. In summary:
adapting the ideas of Arora and Kale [AK16] is advisable in situations where the problem ma-
trix obeys ‖A‖`1 = Θ(n‖A‖). This ensures a correct error behavior and dimension reduction
allows for reducing the classical runtime to Õ(ns).

Another important technique for complexity reduction in SDPs is sparsification. Once
again, one seminal example is MaxCut, where spectral sparsification methods can be used to
reduce the complexity [ST11, KLP+16]. Here, the idea is to find a (usually random) sparser
matrix B that has approximately the same cut value as A and then run the algorithm on B
instead. Unfortunately, once again signed matrix entries render this approach problematic.
Up to our knowledge, the best current sparsification results available for the ∞ → 1 norm
are those of [Git13, Chapter 3]. There, the author shows in Corollary 3.9 that if we let B be
a random matrix with independent random entries s.t. E(Bij) = Aij , then

E [‖A−B‖∞→1] ≤ 2
∑

i

√∑

j

Var[Bij ].

A necessary pre-requisite for accurate sparsification using the aforementioned result is there-
fore

2
∑

i

√∑

j

Var[Bij ] = O(εn‖A‖)

It seems unlikely that it is possible to obtain good and general sparsification bounds from
this result in our setting. To see why this is the case, note that in order for B to be sparse
in expectation, we require that P(Bij = 0) = pij for suitably large pij . This will result
in a matrix that has, in expectation,

∑
ij(1 − pi,j) nonzero entries. To make sure that the

number of nonzero entries is not O(n2), we need to set many 1− pij = o(1). Now note that
P[Bij = 0] = pij and E[Bij ] = Aij necessarily enforce E[(B2

ij)] ≥
pij

1−pijA
2
ij . Thus, we see

that we expect this technique to only work in the regime where A has many columns with
entries that are o(1) and can be neglected with high probability. Roughly speaking, this
corresponds to the regime in which ‖A‖col � n‖A‖. It is then easy to see tha the random
matrices considered before do not satisfy this and, thus, we do not expect that those instances
can be sparsified.

Last, but not least, we emphasize that it easy to construct examples where the error
term ‖A‖`1 conveys the right scaling, not n‖A‖. A concrete example are extremely sparse
matrices, where all but s� n of the entries are zero.
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Don’t mind your make-up, you’d better make your mind up.

Frank Zappa
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