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Abstract—Microfluidic devices, often in the form of
Lab-on-a-Chip (LoCs), are successfully utilized in many domains
such as medicine, chemistry, biology, etc. However, neither the
fabrication process nor the respectively used materials are perfect
and, thus, defects are frequently induced into the actual physical
realization of the device. This is especially critical for sensitive
devices such as droplet-based microfluidic networks that are
able to route droplets inside channels along different paths by
only exploiting passive hydrodynamic effects. However, these
passive hydrodynamic effects are very sensitive and already slight
changes of parameters (e.g., in the channel width) can alter the
behavior, even in such a way that the intended functionality of the
network breaks. Hence, it is important that microfluidic networks
become robust against such defects in order to prevent erroneous
behavior. But considering such defects during the design process
is a non-trivial task and, therefore, designers mostly neglected
such considerations thus far. To overcome this problem, we
propose a robustness improvement process that allows to optimize
an initial design in such a way that it becomes more robust
against defects (while still retaining the original behavior of the
initial design). To this end, we first utilize a metric to compare the
robustness of different designs and, afterwards, discuss methods
that aim to improve the robustness. The metric and methods are
demonstrated by an example and also tested on several networks
to show the validity of the robustness improvement process.

I. INTRODUCTION

Microfluidics has managed to minimize complex biochem-
ical operations usually realized with unwieldy and expensive
lab equipment to single chips at micro-scale level, commonly
known as Lab-on-a-Chip (LoC) [1], [2]. Such LoCs allow to
perform experiments in a parallel and automated fashion, while
benefiting from high throughputs, small reagent volumes, fast
reaction times and, in general, a high cost efficiency. As a
result, they have been successfully utilized in several fields
such as medicine, chemistry, biology, etc.

In general, microfluidic devices are rather sensitive systems,
in which already slight changes of a parameter (e.g., width of
a channel) may alter the behavior of the device and, hence,
break the intended functionality. An example of such sensitive
devices are droplet-based microfluidic networks [3], [4], [5],
[6], [7] (which are a special type of LoCs) that operate by
transporting small droplets through closed channels towards
particular modules. These droplets usually contain some kind
of biological or chemical reagents, which get processed inside
these modules (e.g., heated, mixed, incubated, etc.). Addi-
tionally, the paths of the droplets are solely controlled by
passive hydrodynamic effects, without using any active control
elements such as valves. This routing ability allows to transport
droplets to different destinations/modules and, by this, allows
to perform different experiments.

However, these passive hydrodynamic effects are rather
sensitive and, thus, slight changes of a parameter (e.g., channel
width) can break the intended functionality of the network –
rendering the device useless. This sensitivity is especially
critical when an actual physical realization of a microfluidic
network is produced. Usually, this can be achieved with
multiple base materials (e.g., Polydimethylsiloxane (PDMS),
Polymethylmethacrylate (PMMA), etc.) and through several
fabrication techniques such as 3D-printing, soft-lithography,

and milling processes. However, neither the fabrication pro-
cesses nor the used materials are perfect and, thus, a physical
realization of a microfluidic network will always suffer from
inevitable defects [8]. For example, such defects are:

• Fabrication tolerances: Fabrication processes always
induce fabrication tolerances which may lead to an un-
expected behavior of the network [9].

• Deformation and Swelling: Certain materials such as
PDMS may deform or swell under pressure-driven flows
or specific solvents, which may have a direct impact on
the behavior of such devices [10], [11].

Hence, it is important that such microfluidic networks are
designed in such a way that they become robust against defects
in order to prevent erroneous behavior. However, considering
such defects during the design process is a rather complex
and not straight-forward task, because designing a microfluidic
network with a desired behavior is already a non-trivial
problem on its own. As a result, designers commonly neglect
such considerations, which frequently leads to a trial-and-error
approach, i.e., the device gets fabricated and is then tested
if it fulfills the desired functionality. If this is not the case,
the design has to be revised and the whole process starts all
over again – resulting in time-consuming and costly debugging
loops.

In this work, we are proposing an approach which, for
the first time, aims to address this problem already at the
design phase, i.e., before a first device is even fabricated.
The goal is to evaluate a given design prior to fabrication and
to automatically conduct changes which eventually makes the
design more robust against defects such as mentioned above.
Since this is a highly non-trivial task, we propose an entire
robustness improvement process including a metric evaluating
the current robustness, an analysis of the most sensitive com-
ponents, and methods that actually modify the design to make
it more robust against defects. The entire process is solely
based on simulations and, thus, can be applied very early in
the design process, even before a physical realization of the
corresponding microfluidic device is fabricated – avoiding the
trial-and-error scheme and costly iteration loops for re-design
mentioned above. Moreover, all implementations are avail-
able at https://iic.jku.at/eda/research/microfluidics/robustness
and will, for the first time, allow to improve the robustness
of microfluidic networks.

The remainder of this work is structured as follows: First,
we take a closer look at microfluidic networks, motivate the ex-
ample used throughout the work, and cover the physical model
which is utilized for the robustness improvement process in
Sec. II. In Sec. III, we utilize a metric that is able to compare
different designs regarding their robustness. Afterwards, we
discuss methods and means that can be used to improve the
robustness of an initial design in Sec. IV. The results of these
methods for several networks are presented and discussed in
Sec. V, before the paper is finally concluded in Sec. VI.
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Fig. 1: Droplet-based microfluidic network.

II. BACKGROUND

In this section, we briefly discuss the basic concept of mi-
crofluidic networks and the 1D analysis model, which provides
the basis for the proposed robustness process. Additionally, we
introduce a running example, which is used throughout this
work to illustrate the proposed methods.

A. Microfluidic Networks
Droplet-based microfluidic networks [3], [4], [5], [6], [7]

allow to route droplets through various modules (e.g., mixing,
heating) in an arbitrary way and, thus, allow to conduct
different experiments on a single microfluidic chip. In order
to accomplish this task, such networks rely on basic concepts
that are illustrated in Fig. 1. At first, droplets are formed by
injecting the so-called dispersed phase through a T-junction
into the continuous phase that acts as a transport fluid for
the droplets. Here, two kinds of droplets are formed, namely
payload droplets (blue) that contain some kind of bio/chemical
samples, and header droplets (red) that do not contain any
samples and are only used to route payload droplets along
a desired path. The paths of the payload droplets can be
controlled by microfluidic switches (in form of bifurcations),
which solely rely on passive hydrodynamic effects as de-
scribed in the following.

The successor channels c1 and c2 of the bifurcation shown
in the top-right side of Fig. 1 have a certain hydrodynamic
resistance, which mainly depends on channel geometry as well
as the viscosity of the continuous phase. A droplet flowing
towards such a bifurcation will always take the path with the
lowest hydrodynamic resistance, which we assume to be the
channel c1 in this case (hence, this channel is also called the
default channel). Moreover, a droplet increases the resistance
of the channel it is currently in. Therefore, when a second
droplet reaches the bifurcation while the first droplet is still
inside channel c1, then the second droplet will be routed into
the non-default channel c2, if the combined resistance of c1
and the first droplet is greater than the sole resistance of
channel c2.

Overall, this means when a payload droplet should be routed
towards a non-default channel inside a microfluidic switch,
then it has to be ensured that a header droplet occupies the
default channel at the moment the payload droplet reaches
the bifurcation, which will eventually trigger the switching
mechanism. This concept allows to route payload droplets
along different paths inside the microfluidic network (realizing
different experiments) only by exploiting passive hydrody-
namic effects.

Moreover, it is usually not desired that header droplets
flow through certain modules, since they should not interact

with them. In order to prevent this, so-called droplet-by-size
sorters [12] are utilized in front of each module, which are
indicated by the diamond shaped symbols marked with an “S”
inside Fig. 1. These sorters are able to distinguish between
different volumes of droplets and, thus, allow to route the
smaller payload droplets (denoted in blue) along different
paths than header droplets with a bigger volume (denoted in
red).

Example 1. In the following, we will consider a microflu-
idic network composed of 8 modules and 34 channels as
running example. This network is conceptually equal to
Fig. 1, i.e., multiple modules are interconnected through
channels and microfluidic switches. Moreover, the network
is able to conduct three different experiments, i.e., a pay-
load droplet can be subject to one of three different se-
quences of microfluidic operations (realized by the 8 mod-
ules). While the exact design of the network is not rel-
evant to demonstrate the robustness improvement process,
we completely disclose it and its specification online at
https://iic.jku.at/eda/research/microfluidics/robustness.

B. 1D Analysis Model
In order to work with the concepts reviewed above, the

one-dimensional (1D) analysis model [13], [14] can be uti-
lized. The model itself can be applied when a fully developed
and laminar flow (usually at low Reynolds numbers) [9] oc-
curs, which is almost always the case in microfluidic devices.
Then the flow inside channels can be described by Hagen-
Poiseuille’s law [15], [13]

∆P = Q ·R, (1)

where Q is the volumetric flow rate, ∆P the pressure gradient,
and R the hydrodynamic resistance. This resistance depends
on the geometry of the channel (i.e., length l, width w, and
height h) as well as the dynamic viscosity of the continu-
ous phase µc For rectangular channels with a section ratio
h/w < 1, this resistance can be determined by [16]

R = 12

[
1− 192h

π5 w
tanh

(π w
2h

)]−1
µc l

w h3
. (2)

Additionally, droplets increase the resistance of the channel
they are currently in by an amount that is directly proportional
to the volume (or length ld) of the droplet

Rd = b 12

[
1− 192h

π5 w
tanh

(π w
2h

)]−1
µcld
w h3

. (3)

Here b is a factor that indicates how much more the droplet
increases the resistance of the channel segment it occupies and
is about 2− 5 times according to [17].

Moreover, Hagen-Poiseuille’s law in the microfluidic do-
main is equivalent to Ohm’s law in the electrical domain. This
means, a microfluidic network can be easily converted to an
equivalent electrical resistor network. Therefore, the pressure
drops and flow rates inside the channels can be calculated
by applying well-known methods for electrical circuits. This
eventually allows to efficiently simulate the behavior of mi-
crofluidic networks as proposed in [18], [19], [13], [20], [21].

III. ROBUSTNESS OF MICROFLUIDIC NETWORKS

In this section, we first motivate the necessity of improving
the robustness of microfluidic networks and the advantages
that come along with it. Afterwards, we discuss how the
robustness of a microfluidic network can be quantified and
demonstrate this on the running example. By this, we motivate
the robustness method proposed in the following section.
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A. Motivation
Controlling the fluid flow inside a microfluidic network

only by the hydraulic resistances of the channels and injec-
tion velocities is a delicate task. Already slight changes in
the channel’s resistances may impair the routing of single
droplets and, hence, break the correct behavior of the network.
This becomes even more severe considering that, additionally,
neither the fabrication process for microfluidic networks nor
the respectively used materials are perfect. As a result, all
sorts of defects can occur inside a microfluidic network, which
can alter the behavior, even in such a way, that the fabricated
device becomes useless. Considering such defects during the
design process is a rather complex and not straight-forward
task and, thus, designers mostly neglected such considerations
thus far – frequently leading to the production of erroneous
microfluidic networks.

In the remainder of this work, we aim at addressing this
problem, by proposing a robustness improvement process that
allows to optimize an initial design in such a way that it
becomes robust against such defects (while still retaining the
original behavior of the initial design). To accomplish this,
we first utilize a robustness metric that allows to measure the
impact of defects on the behavior of a device. This metric
can then be used to compare different designs regarding their
robustness and, by this, quantify which design is more reliable
when defects occur. Then, the improvement process itself can
be broken down into three steps (which are described in the
following section): (1) obtain the robustness metric value of
the initial design, (2) apply particular methods that are able to
improve the robustness of the initial design, (3) validate the
improvement by comparing the robustness metric of the initial
and the improved design.

B. Robustness Metric
In order to properly define the robustness of a microfluidic

network, a corresponding metric must be able to measure
the impact of defects on the (intended) behavior of the
device. Recently, a corresponding robustness metric has been
proposed in [22] which would serve this purpose and, hence,
is considered in the following1. Here, a Multi-Defect-Model is
proposed in which, as the name suggests, multiple defects are
randomly “injected” into the microfluidic network and, after-
wards, their effect on the behavior of the device is analyzed.
Based on that, the robustness of the device is quantified by a
single value.

To this end, however, we obviously need a precise definition
of what is meant by the “(intended) behavior of the device”.
This is done by specifying (measurable) objectives that allow
to check if the network works as intended or not. For example,
such objectives can be:

• The ratio between two flow rates must have a certain
value.

• A droplet has to follow a desired path inside a microflu-
idic network.

• A droplet has to stay inside a trap and must not be
squeezed through any gap.

• The time a droplet needs to pass a specific channel must
be beneath/above a given value.

If the objectives are satisfied, then the network behaves as
intended; otherwise, the designer knows that the injected
defects caused the network functionality to break. Of course,
the more objectives the more accurate the behavior can be
described and, thus, the better the optimization towards a
robust network works.

1However, please note that the methods proposed in this work are also
applicable for any other robustness metric.

TABLE I: Results of robustness metric

Network σ N Nsuccess psuccess

8 modules 34 channels 0.005 1200 665 55.42%

Having the objective, the question remains how to evaluate
whether those are satisfied or not, after injecting the defects.
Since doing that by actually fabricating a device is not feasible
(would be way too costly and time-consuming when this
has to be done multiple times), simulations are used instead
(e.g., utilizing the 1D analysis model described in Sec. II-B).
Overall, this yields the following process of determining the
robustness of a microfluidic network2:

1) Inject multiple random defects into the network, where
the magnitude of the defects depends on a normal
Gaussian distribution with a certain standard deviation.

2) Simulate the defective network and check if all objec-
tives are still satisfied. If so, mark the simulation as
success.

3) Repeat the first two steps N times, which also results
in a number Nsuccess that corresponds to the number of
simulations marked as success.

4) Then, the ratio psuccess = Nsuccess/N represents how
likely it is to get a correctly working network with the
corresponding standard deviation of the normal Gaussian
distribution. This ratio serves as value for the robustness
metric.

Example 2. Applying the robustness metric reviewed above
to the running example introduced in Ex. 1, we get the
results shown in Tab. I, where Fig. 2 illustrates the course of
psuccess with respect to the number of simulations. The second
column σ shows the standard deviation of the normal Gaussian
distribution for the defects that were randomly injected into
the network. N shows the total number of simulations that
were conducted, while Nsuccess represents the number of simu-
lations which still satisfied the objectives. More precisely, the
objectives were satisfied when each of the desired experiments
could be processed, i.e., when the payload droplets could be
routed into the correct modules. The actual value indicating
the robustness is represented by psuccess, which is the ratio
(given in percentage) between Nsuccess and N . This value now
indicates, that only about 55.42% of the manufactured devices
would work correctly when defects (e.g., from the fabrication
process) occur that have a standard deviation of σ = 0.005.

This robustness metric itself can already be a very helpful
value during the design process, because it allows to estimate
how likely it is that defects make a fabricated device use-
less and if modifications/optimizations of the design should
be conducted. However, we will use this value rather as a
reference, in order to compare the initial design with the
improved design obtained by the methods introduced in the
next section. Furthermore, note that psuccess heavily depends on
the used standard deviation of the normal Gaussian distribution
and, thus, we have to ensure that the robustness metrics are
computed with the same standard deviation when comparing
the initial with the improved design. Moreover, as shown
in Fig. 2 a high number of simulations is required to get
a ”correct” value of psuccess. As a result, the computation
of the robustness metric value is rather expensive, which is
especially critical for larger networks and has to be considered
in methods that are presented later.

2Note that this is similar to the robustness evaluation of conventional
circuits and systems as done, e.g., in [23], [24], [25].
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Fig. 2: psuccess depending on the number of simulations N .

IV. IMPROVING ROBUSTNESS

In the previous section, we discussed how to quantify the
robustness of a microfluidic network and utilized a metric that
allows to compare the robustness of different designs. In this
section, we now describe methods to improve the robustness
of a given design. Basically, this can be achieved by adjusting
several parameters in the “right way”. Hence, we first discuss
which parameters should be considered and, afterwards, we
describe the methods that change these parameters in such a
way that the robustness of a given design increases.

A. Considered Parameters
The aim of the methods described later in this section is

to optimize certain parameters in such a way that the impact
of defects is as small as possible, while all objectives of the
network are still satisfied (i.e., the initial behavior is retained).
While such parameters are often the ones where defects
are likely to occur (e.g., channel geometries), the following
methods are not only limited to those parameters. In fact,
nearly all parameters which are used in the simulation (e.g,
channel dimensions, fluid properties, etc.) can be considered
for improving the robustness, which gives a great flexibility
to the user.

Since parameter values usually have some kind of restriction
(e.g., a channel should not be too short/long), we define a
lower and upper boundary for each parameter (cf. blower and
bupper in Fig. 3) that can be specified by the user. These
boundaries define the search space for the optimization, but
also the degree of freedom that can be used to improve the
robustness.

Example 3. Let’s consider again the running example. Before
we apply any methods that improve the robustness, we have
to define which parameters can be considered for the opti-
mization. Let’s assume the lengths of the 16 channels which
connect the different modules with the corresponding switches
are the only parameters of the realization process that offer
the potential of improving the robustness3. This is because they
have a great impact on the behavior of the network and, by
this, can greatly improve the robustness of the network when
they are dimensioned correctly. Besides this, other parameters
such as channel widths and heights are often predefined values
by the designer that should not be changed at all, since they
usually work as some kind of boundary conditions for the
network design. Furthermore, we will choose the lower and
upper boundary for each channel length as 50% and 200% of
the initial length, respectively.

B. Sensitivity Analysis
The amount of considered parameters is crucial during

the robustness improvement process, since a high number of

3Note that not all channels connect modules and switches (some are part of
the switches themselves) and, thus, only 16 out of 34 channels of the running
example are considered.

Fig. 3: Variables of a single parameter.

parameters leads to a complex multi-dimensional optimization
problem that can quickly become infeasible to solve. To
overcome this problem, we introduce a so-called sensitivity
analysis to limit the focus on parameters that tend to increase
the robustness the most. This analysis sorts the parameters
by their sensitivity, i.e., the impact they have on the behavior
of the network when they get modified. A high sensitivity
indicates that a parameter has a strong impact on the network
and can easily break the intended behavior when the value
of the parameter gets slightly changed, for example, as a
result of a fabrication error. In contrast, a parameter with a
low sensitivity does not have a great effect on the network
itself and, thus, should also be robust against changes due to
defects. By focusing on the most sensitive parameters during
the robustness improvement, we ensure that the optimization
problem stays manageable, while still aiming for a more robust
design of the network.

The analysis itself can be conducted as follows, where Fig. 3
provides a corresponding illustration for all mentioned values:

1) For each considered parameter obtain the minimal and
maximal defect value (dmin and dmax), where the objec-
tives of the network are still satisfied, i.e., the network
behaves as expected (cf. green range in Fig. 3).

2) Compute the sensitivity S of each parameter according
to the following equation, where i is the initial value of
the parameter:

S =
i

i− dmin
+

i

dmax − i
(4)

3) Sort the parameters in a descending order with respect
to their sensitivity value.

The first step in this analysis is the computationally most
expensive task and requires to conduct multiple simulations
in order to determine the defect limits (usually done by a
binary search algorithm). Note that all other parameters are
set to their initial value, while the defect limits of a certain
parameter are obtained.

Furthermore, Eq. 4 ensures that S is normalized by the
initial value of the parameter and gets quickly larger, the
closer the minimal and maximal defect values are to the initial
value, which eventually allows to obtain the most sensitive
parameters.

Example 4. Applying the sensitivity analysis proposed above
to the 16 channels of the running example yields the sorted
parameters shown in Tab. II (for convenience only the 7 most
sensitive parameters are listed). The table clearly shows that
the parameter c7.l (i.e., length of channel c7) is the most
sensitive one and, thus, methods that want to increase the
robustness of the network should definitely have a focus on
this parameter.

Based on the results of the sensitivity analysis, now actually
improving the robustness can start. To this end, two methods
with different approaches are proposed in the following. The
Single-Parameter-Variation method tries to improve the robust-
ness metric value in an indirect way, hence, it does not have
to determine a computationally expensive robustness metric.
In contrast, the Downhill-Simplex method aims to improve
the robustness metric directly and, thus, usually has a higher
run-time.
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TABLE II: Results of sensitivity analysis

Parameters c7.l c23.l c12.l c21.l c1.l c10.l c19.l

Sensitivity 39.78 21.32 17.27 12.85 12.68 8.16 7.87

Fig. 4: Concept of Single-Parameter-Variation method.

C. Single-Parameter-Variation Method
The Single-Parameter-Variation method is a rather simple

method, but is also quite fast, since no actual value of the
robustness metric has to be calculated and, thus, the number
of conducted simulations is kept quite small. Basically this
method focuses only on a single parameter at a time in order to
improve the robustness of the overall network. The following
steps describe the working principles of the method in more
detail, while Fig. 4 provides a corresponding illustration:

1) Conduct a sensitivity analysis for all considered param-
eters.

2) Loop through the sorted parameter list and perform the
following tasks:

• Skip the parameter (and consider the next one)
if the initial value is within a tolerance range ε,
that lies around the midpoint of the minimal and
maximal defect values, i.e., if the following equation
is satisfied: ∣∣∣∣ i− dmin

dmax − dmin
− 0.5

∣∣∣∣ < ε (5)

• Otherwise, set the new initial value of the parameter
to the midpoint of the minimal and maximal defect
values, according to:

inew =
dmin + dmax

2
(6)

3) Continue with Step 1 if no termination criterion is
reached, such as:

• Maximal number of iterations was reached.
• The n most sensitive parameters were skipped,

where n can be defined by the user.
This method ensures that parameters, that do not already lie
close to the midpoint of their minimal and maximal defect
values, are set exactly to this midpoint (cf. Fig. 4). As a
result, the network becomes more robust, since the considered
parameters can now alter in a wider range before the desired
network functionality breaks. Moreover, it is often sufficient
when not all parameters are improved but rather only the n
most sensitive parameters (where n can be specified by the
user), because parameters that do not have a high sensitivity
usually contribute very little to the overall robustness of the
network.

D. Downhill-Simplex Method
This approach uses the Downhill-Simplex method [26]

(also called Nelder-Mead-Simplex) in order to improve the
robustness of a given design. This method is generally used to
optimize n-dimensional cost functions (f : Rn → R) where
no derivative is known. Basically it uses n + 1 test points in
form of a simplex, where the cost function values of these
test points are compared in order to approximate the tendency
of the values and the gradient towards the optimum. By
replacing ”bad” test points in a clever way with better ones the

Downhill-Simplex method progresses and the simplex moves
along the parameter space until it finds a proper optimum.

In our case, the cost function corresponds to the ro-
bustness metric and the multi-dimensional space is defined
by the parameters that are considered for the optimization.
Hence, compared to the Single-Parameter-Variation method
the Downhill-Simplex algorithm tries to improve the robust-
ness of the network (i.e., the cost function) in a direct way.
As a result, this method has to compute multiple values of
the robustness metric to find a proper maximum, which is
very expensive in terms of computational time (especially for
larger networks and many considered parameters).

To overcome this problem, we conduct a sensitivity anal-
ysis again, before we start the Downhill-Simplex method,
where only the most sensitive parameters are taken into
account for the optimization, so the problem stays man-
ageable. How many sensitive parameters are considered
can be specified by the user and usually depends on the
computational time of the robustness metric and, by this,
on the size of the network. The implementation of the
Downhill-Simplex algorithm is already available for Java
inside the Math component of the Apache Commons project
(http://commons.apache.org/proper/commons-math/). We ini-
tialized the algorithm with default values and build the start
simplex around the initial parameters. Moreover, we used
bounded functions to guarantee that the method searches inside
the lower and upper bound of the parameters.

V. APPLICATION & EXPERIMENTS

With the methods proposed above (i.e., a metric allowing
one to measure the robustness of the current network, a
sensitivity analysis allowing to evaluate which components
should be modified to improve robustness, as well as the
proposed methods to actually conduct changes for this pur-
pose), for the first time, a complete process for improving the
robustness of microfluidic networks during the design phase
is available. This section shows how to apply it and how
it improves robustness; using again the running example as
a use case as well as several other designs that differ in
the number of modules and channels. In addition to that, all
network designs as well as the implementations are available at
https://iic.jku.at/eda/research/microfluidics/robustness and can
be used to improve the robustness of other devices as well (or
to conduct further evaluations).

At first, we compute the initial value for the robustness
metric p(initial)

success for each network4. Afterwards, the two proposed
methods are applied, where only the channel lengths between
the switches and modules are considered as the parameters that
should be optimized. Finally, we compute the new value for
psuccess and compare the improvement with the initial design.
The results are summarized in Tab. III, where each column
represents a different network with the corresponding number
of modules and channels. The second row σ indicates the
standard deviations of the defects that were used to compute
the value of the initial and improved robustness metrics.

As described in Sec. IV-C, the variables for the
Single-Parameter-Variation method are the tolerance range
ε and the maximal number of sensitive parameters n, that
should be skipped for the termination criterion of the method.
Moreover, the number of conducted iterations I as well as
the overall computational time t are also shown. For the
Downhill-Simplex method, the number of cost function calls
I (i.e., the number of robustness metric computations) and
the number of the n most sensitive parameters that should be
considered are given for each network, while t indicates the
overall computational times again.

4Please note, that different values of σ are used for the networks in order
to get proper values for p(initial)

success.
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TABLE III: Benchmarks

Networks

Modules/Channels 8/34 10/67 15/101

σ 0.005 0.002 0.002
p(initial)

success 55.42% 40.91% 46.07%

Single-Parameter-Variation:
ε 0.05 0.05 0.05
n 16 (all) 8 8
I 24 30 10
t 31 s 21 min 26 min

psuccess 64.86% 74.81% 59.10%

Downhill-Simplex:
n 16 (all) 5 3
I 109 38 22
t 9 min 32 min 96 min

psuccess 63.86% 53.50% 62.20%

As shown in the table, both methods improve the ro-
bustness metric psuccess of all networks, which confirms the
validity of the proposed robustness improvement process.
While both methods provide nearly the same improvements
for the first (∼ 8 − 9%) and third (∼ 13 − 16%) network,
the Single-Parameter-Variation method is able to improve the
robustness of the second network drastically of about 34%
(here, the increase of the Downhill-Simplex-Method is also
very good with about 13%). As expected, the run-time of both
methods significantly increases with the size of the network
(and also with the number of considered parameters n). This
behavior is also known in the design of conventional cir-
cuits/systems, where long run-times of methods that increase
the robustness are not uncommon, even for moderate sized sys-
tems [23], [24], [25]. Especially the Downhill-Simplex method
has considerable performance issues when dealing with larger
networks, because it has to obtain the computational expensive
robustness metric multiple times. To this end, we limited
n for the larger two networks in order to get reasonable
computational times. As the results confirm, this is sufficient
to gain a considerably better robustness, since the sensitive
parameters are usually the ones which tend to increase the
robustness the most.

Overall, designing robust microfluidic networks remains a
hard task, since these systems are very sensitive and con-
trolling the droplet movement only by hydraulic resistances
and injection times remains tedious. However, as the results
confirm, the process proposed in this work provides a good
step forward to achieve this goal.

VI. CONCLUSION

In this work, we proposed a robustness improvement process
which allows to optimize an initial design of a microfluidic
network in such a way, that it becomes robust against defects.
This is important, because defects are likely to occur during
the fabrication process or due to swelling/deformation of the
used material under pressure-driven flows and can result in
erroneous behavior of the microfluidic networks. To this end,
we first utilized a metric that is able to compare the robustness
of two different designs. Afterwards, we discussed methods
and means which aim to improve the robustness of a given
design and tested them on several microfluidic networks.
The results showed, that the process effectively improves
the robustness of microfluidic networks and, by this, breaks
costly debugging loops for re-designs. This finally reduces
manufacturing costs and times, since it can be applied early
in the design process even before a first device is fabricated.
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