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Abstract—For centuries, block signaling has been the funda-
mental principle of today’s railway systems to prevent trains from
running into each other. But the corresponding infrastructure
of physical blocks each requiring train detection methods is
costly. Therefore, initiatives such as the European Train Control
System (ETCS) and, here, particularly Level 3 of ETCS aim for
the utilization of virtual sections which allow for a much higher
degree of freedom and provide significant potential for increasing
the efficiency in today’s train schedules. However, exploiting this
potential is a highly non-trivial task which, thus far, mainly relied
on manual labor. In this work, we provide an initial automatic
methodology which aids designers of corresponding railway
networks and train schedules. The methodology utilizes design
automation expertise (here, in terms of satisfiability solvers) to
unveil the potential of ETCS Level 3. Case studies (including a
real-life example inspired by the Norwegian Railways) confirm
the applicability and suitability of the proposed methodology.

I. INTRODUCTION
Since the opening of the first public railway line in 1825,

railways have quickly developed into a vital component of
the public traffic system. Even with the appearance of cars
they stay fundamental for both human as well as freight
transport and, furthermore, they will continue to become
even more important as the world strives towards a carbon
neutral future [1]. Since the beginning around 200 years ago,
signaling systems are a crucial part for an efficient but also
safe operation of railways [2].

In the earliest days of railways – long before radio or other
means of remote communication were available – trains were
protected from running into each other by separating them
through time. After a train left a station, there was a defined
time to wait until the next train could leave. Obviously, this led
to problems if anything went wrong, e. g., the train had to stop
for any reason. Therefore, in the late 1800s, the fundamental
principle on which almost every railway in the world still
relies on was introduced: block signaling. Here, the whole
railway network is divided into sections (so-called blocks), and
at most one train is allowed to occupy a given block at any
given time. Based on this principle, interlockings use Trackside
Train Detection (TTD) systems that collect information on the
occupation of blocks and, with that, control the trains.

In the past, each country implemented their own signaling
principles – leading to the establishment of different signaling
characteristics as well as different realizations of trackside or
trainside solutions for train control [3], [4]. This obviously
leads to problems as soon as border-crossing traffic is consid-
ered. For example, in the 27 countries of the European Union,
more than 15 different signaling systems are used that are
incompatible with each other. In order for a train to travel
through these countries, it would need to be equipped with all
those systems. This is not only expensive, but also challenging
as the space under a locomotive is limited. In order to remedy
this unsatisfying situation, the European Union started the
European Railway Traffic Management System (ERTMS) [5]
initiative to develop the means for interoperable railway traffic
all through Europe. An essential part of this is the European
Train Control System (ETCS) [6], [7] which strives to harmo-
nize and improve train control systems throughout Europe.

Originally, ETCS mainly aimed for harmonizing those sys-
tems – with ETCS Level 1 unifying the way trains locally
communicate with the trackside and ETCS Level 2 removing
the physical signals from the trackside and conducting sig-
naling purely via radio [8]. With ETCS Level 3, additionally
new concepts for improving existing systems are introduced.
In fact, for the first time since the 19th century, ETCS
Level 3 deviates from the principle of physical blocks each
equipped with TTD means and additionally allows for the
consideration of virtual sections within blocks. This allows for
a much higher degree of freedom in the utilization of existing
railway networks and, hence, provides significant potential for
increasing the efficiency in today’s train schedules.

However, the implementation and utilization of ETCS
Level 3 is just beginning. Several papers have recently been
published which considered the formalizing of the under-
lying concepts, e. g., in iUML-B [9], [10], Electrum [11],
SysML/KAOS [12], Event-B [13], [14], or SPIN [15]. Case
studies and demonstrations of the ETCS Level 3 can be found,
e. g., in [16] and [17]. Even first simulations based on ETCS
Level 3 have been conducted [18], [19]. However, all these
methods still heavily rely on manual labor and hardly aim at
the automation of the design tasks that need to be tackled to
fully exploit the potential of this new concept.

In this work, we propose an initial methodology which
aids designers in this domain by automatically designing and
verifying railway layouts and train schedules exploiting the
potential of ETCS Level 3. The proposed methodology allows
to tackle several design and verification tasks such as to
verify whether train schedules indeed work on new ETCS
Level 3 railway networks, to determine alternative layouts
if this is not the case, and/or to additionally optimize the
layout in order to improve a train schedule. To this end, we
formulate the corresponding task in terms of a satisfiability
instance and utilize corresponding solving engines to resolve
them. Case studies considering different railway networks and
train schedules (including a real-life example inspired by the
Norwegian Railways) confirm the applicability and suitability
of the proposed methodology.

The remainder of this paper is structured as follows: First,
Section II gives a more detailed review on the ETCS Level 3
and its potential as well as the resulting design tasks. After-
wards, we introduce the proposed design automation solution
in Section III. Section IV illustrates by means of several case
studies how the methodology can be used for certain design
tasks within the ETCS Level 3 domain. Finally, Section V
concludes the paper.

II. BACKGROUND & MOTIVATION

This section reviews and illustrates the new potential that
comes with the introduction of ETCS Level 3. Afterwards,
we discuss design and verification tasks which result from
this new standard and for which no automatic solutions are
available yet.



A. Potential of ETCS Level 3

In order to prevent trains from running into each other,
signaling systems are essential for any railway system. Cur-
rently, almost every railway system in the world relies on
block signaling, where the whole railway network is divided
into blocks which are equipped with means of train detection
in order to determine whether a given block is currently
occupied by a train or not. Those blocks are eventually
observed and controlled by interlockings which manage the
train movement [20], i. e., move the points for every train
in the appropriate direction as well as signals the drivers
whether and with what speed they can proceed or if they
have to stop. To this end, Trackside Train Detection (TTD)
systems are used that collect corresponding information on
the occupation of blocks. They utilize, e. g., axle counters
to gather the respectively required information. Accordingly,
corresponding blocks are frequently also called TTD sections.

Thus far, TTD sections often have been defined by geog-
raphy, economical considerations, or as a trade-off between
efforts of installing axle counters and possible benefits. Be-
cause of this, the length of the corresponding TTD sections
range from some meters (e. g., around points) or some hundred
of meters (e. g., at train stations) to several kilometers (e. g.,
in remote areas). Of course, this significantly affects the
efficiency of the underlying railway networks.

With the introduction of the ETCS Level 3, those principles
change for the first time since the 19th century. Rather than
relying on fix blocks (which require, e. g., axle counters
at the beginning and end of each TTD section), now also
virtual sections are possible. More precisely, the TTD sections
which already exist are divided into smaller Virtual Subsec-
tions (VSSs), which do not require physical axle counters
anymore and, hence, allow for a much higher degree of
freedom in the utilization of existing railway networks1. The
following example illustrates the new concept and its potential.

Example 1. Figure 1 shows a railway network which is used
as running example in the remainder of this paper. Originally,
this network was divided into 4 TTD sections (denoted by
TTD1–TTD4) – each with corresponding axle counters at their
beginning and end2. Using the ETCS Level 3, this layout can
additionally be enriched by VSSs (as shown in Fig. 1 through
the 7 sections VSS11–VSS42). This allows much more freedom
in the utilization of railway networks without the need of
adding more axle counters. For example, if a train occupies
the virtual subsection VSS42, just a portion of the network
is blocked (highlighted red), while, thus far, the entire TTD
section TTD4 would be blocked.

B. Resulting Design & Verification Tasks

Using ETCS Level 3 in general and VSS in particular
allows for a much more flexible use of train systems and
provides significant potential for increasing the efficiency in
today’s train schedules. At the same time, this poses significant
challenges for designers of corresponding railway networks
and/or schedules aiming to exploit this potential. For example,

1Note that VSSs have originally been introduced in the ECTS Hybrid
Level 3 but, according to Shift2Rail [21] (one of the biggest European projects
within the ETCS domain), got established in ECTS Level 3 as well.

2Note that, in reality, TTD borders at points are never equipped with just
one axle-counter but with one at each outgoing track (as depicted in the
right-hand side of Figure 1) to be able to determine the direction the train is
moving to. However, for sake of simplicity, we consider a single axle counter
at each point in the following.
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(a) Example railway network illustrating TTDs and VSSs

Train Start Goal Speed[km/h] Length[m] Departure Time Arrival Time
1 A B 180 400 0:00 0:04:30
2 B A 120 700 0:00 0:04:00
3 A C 120 100 0:01 0:03:00
4 B A 180 250 0:01 0:05:00

(b) Example schedule
Fig. 1: Example layout and schedule

the following design tasks emerge with the introduction of
ETCS Level 33:

1) Verification of Train Schedules on ETCS Level 3 Layouts,
in which it is verified whether a given train schedule
indeed can be executed on an also given TTD/VSS layout.

2) Generation of VSS Layouts, in which a given railway
network with existing TTD sections is extended by VSS
sections so that an also given train schedule can be
realized.

3) Schedule Optimization Using the Potential of VSS, in
which a given railway network with existing TTD sec-
tions is extended by VSS sections such that the best
possible train schedule is determined, i. e., a schedule
which minimizes the arrival times of all trains (given
corresponding departure times).

Example 2. Consider again the track layout as well as the
given TTD sections shown in Fig. 1a. Additionally considering
the train schedule as shown in Fig. 1b raises the question,
whether this schedule indeed can be conducted on this TTD
layout. In fact, in this particular case, this is not possible
because, after all four trains have departed, all four TTDs are
blocked and no train can move on. As this might not be obvious
at a first glance, automatic methods doing this verification
would be beneficial.4 At the same time, the schedule in Fig. 1b
is not completely impossible for the given railway network.
In fact, employing a VSS layout as shown in Fig. 1a, the
schedule indeed can be conducted. Because trains do not block
entire TTDs, Trains 1 and 3 can both move into “Station C”,
freeing the way for Trains 2 and 4. However, determining
such a layout might not be trivial for more complex networks
and, hence, designers would benefit from automatic methods
for that as well. Finally, the overall schedule can further be
improved by choosing a VSS layout as shown in Fig. 2a. With
this, we can execute the schedule shown in Fig. 2b which
allows Trains 1, 2, and 3 to arrive their final destination much
earlier. To detect further potential like that, automatic methods
would be helpful again.

3Note that also design tasks beyond that are emerging and the methodology
proposed in the next section is rather flexible in handling other design tasks
as well. However, to keep the following descriptions concise and, due to the
page limitation, we focus on the following design tasks as representatives.

4Note that, for sake a clarity, we chose a rather simple example here. In real
world applications, however, trains may be able to take different paths, employ
different speeds, different waiting times, etc., which substantially increases the
complexity – making it indeed a verification task (covering all possibilities)
rather than just a simulation task.
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(a) Optimal layout

Train Start Goal Speed[km/h] Length[m] Departure Time Arrival Time
1 A B 180 400 0:00 0:03:30
2 B A 120 700 0:00 0:02:30
3 A C 120 100 0:01 0:02:30
4 B A 180 250 0:01 0:03:30

(b) Improved schedule
Fig. 2: Improved VSS layout and schedule

Solving these design tasks is not trivial. In the worst case,
all possible combinations, e. g., of VSS sections, train routes,
schedules, etc. need to be considered – an infeasible task
when conducted manually and still challenging if done in an
automatic fashion. Motivated by that, it is of severe interest to
investigate how design automation can help here.

III. AUTOMATIC
DESIGN AND VERIFICATION OF ETCS LAYOUTS

In this section, we propose an initial methodology that
solves the design and verification tasks reviewed and illus-
trated above in an automatic fashion. To cope with the under-
lying complexity, we propose to utilize the deductive power
of satisfiability solvers. Their intelligent decision heuristics,
powerful learning schemes, and fast implication methods allow
for efficiently traversing large search spaces and have been
proven to be very effective for many practically relevant
problems such as model checking [22], stimuli generation [23],
test pattern generation [24], and more [25]. Also in the
train domain, satisfiability solvers already have been used for
certain tasks such as infrastructure verification [26] or railway
capacity analysis [27] (but outside of the ETCS domain).

However, in order to use satisfiability solvers, the problem
needs to be formulated in a discrete and symbolic fashion.
This section first introduces a corresponding formulation.
Afterwards, we describe how constraints need to be employed
to ensure that all solutions obtained from the formulation are
indeed valid. Finally, we show how the resulting formulation
eventually can be used to solve the considered design and
verification tasks.

A. Discretization and Symbolic Formulation
To comprehensibly describe the considered design and ver-

ification tasks, a discrete and symbolic formulation is required
which represents
• all existing tracks as well as all possible VSS sections,
• all trains as well as their possible positions in all possible

moments of time, and
• the input positions, output positions, as well as (if ap-

plicable) positions of intermediate stops for each train
together with their corresponding arrival/departure times.

For the tracks and possible VSS sections, we start with
a graph representation G = (V,E), where edges e ∈ E
represent different sections of the given railway network and
nodes v ∈ V represent their respective connection points.
Naturally, switches and/or axle counters serve as logical con-
nection points within a given layout. Additionally considering
VSS, all tracks can be further partitioned in an arbitrary
number of sections. Since this, in theory, allows for an
infinite number of VSS sections, we discretize the setting by
additionally introducing a spatial resolution rs which defines
the smallest section length that is assumed in all further
considerations. Each track in the railway network is then
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Fig. 3: Symbolic formulation

partitioned into segments of length rs, i. e., a track of length l
would yield l

rs
segments.

Example 3. Consider again the original railway network
shown in Fig. 1 and, additionally, assume that a spatial
resolution of rs = 0.5 km is employed. Then, the graph rep-
resentation shown in Fig. 3 serves as starting point for the
generation of the symbolic formulation.

By defining G this way, we can think of the vertices
v ∈ V as potential VSS borders. From this representation,
we can encode every possible VSS layout. To this end,
we introduce Boolean variables borderv for each v ∈ V
representing whether or not v separates two VSS sections.
That is, borderv = 0 states that the two edges connected to v
belong to the same VSS section, while borderv = 1 states
that v is the border between two VSS sections.

Example 4. Consider again the graph representation shown in
Fig. 3 as well as the corresponding borderv-variables (exem-
plarily annotated at the right-hand-side). Additionally assume
that borderv2 , borderv3 , borderv6 , borderv7 , borderv11 are
set to 1 and all other borderv-variables are set to 0. Then,
this assignment represents a VSS layout composed of 7 VSS
sections as already discussed before in Example 1 and shown
in Fig. 1. Assigning the borderv-variables with other values
allows to define all VSS layouts possible in this railway
network.

Having a symbolic formulation for all tracks and possible
VSS layouts, we can now provide a formalization for all
possible train positions within this discrete network for all
possible moments of time. To this end, let’s assume that the
set Trains denotes a set of trains to be considered. At any
given point in time, a train tr ∈ Train may occupy a segment
of the track layout or not. This is encoded by Boolean variables
occupiestitr,e, where occupiestitr,e = 1 (occupiestitr,e = 0)
states that, at a time step ti, a train tr ∈ Trains occupies
(does not occupy) the segment e ∈ E.

To properly formulate “time step” in this context, we
discretize the notion of time in a similar fashion as we
discretized track sections before, i. e., we introduce a temporal
resolution rt which defines the smallest amount of time that
is assumed in all further considerations. Based on that, all
further considerations are assumed to take place within an
interval of tmax time steps [t0, t1, . . . , ttmax−1], where tmax
is defined by the real time a scenario should be considered
divided by rt. Finally, we additionally consider that each
train tr ∈ Train comes with a certain length and certain
maximum speed provided through the variables ltr and str,
respectively. Those values are accordingly discretized with
respect to rs and rt, respectively.

Example 5. Consider again the running example from
above and, additionally, assume that a temporal resolution
of rs = 0.5min is employed. Since the entire scenario of



the schedule shown in Fig. 1 spans over 5min, a total of
tmax = 5

0.5 = 10 time steps is considered in all further con-
siderations (each of these time steps represent 30 sec in real
life). Together with the symbolic formulation of all sections,
this leads to the introduction of occupies-variables as sketched
in Fig. 3 (exemplarily annotated at the right-hand-side). Then,
setting occupies21,e5 , occupies21,e6 , and occupies21,e7 to 1
represents that, at time step 2 (i. e., 1min after the start of
the scenario), Train 1 occupies the sections represented by
edges e5, e6, e7.

The resulting formulation eventually represents all possible
VSS sections as well as all trains and their possible positions
in all time steps. Additionally, the input positions, output
positions, and positions of intermediate stops (together with
their corresponding arrival/departure times) can now easily be
defined by setting the corresponding occupies-variables for
the respective positions (i. e., sections/edges) and time steps
to 1 when working with a fixed schedule.

This way, all possible combinations (including possible so-
lutions for the respectively considered design and verification
tasks) are formalized in a symbolic fashion.

However, passing this symbolic formulation to a satisfia-
bility solver basically yields an arbitrary assignment to all
borderv- and occupies-variables – representing an arbitrary
(and most likely invalid) scenario. Hence, in order to make
sure that (1) valid solutions only and (2) solutions which
solve a certain design task (such as the ones discussed in Sec-
tion II-B) are obtained, we finally have to add constraints and
objectives which accordingly restrict the variable assignments.
This is covered next.

B. Enforcing Constraints
The most obvious constraint that needs to be enforced on

the symbolic formulation from above is that all considered
trains always occupy at most one place of the network (and
are, e. g., not at two different places at the same time).
This can properly be enforced by adding a constraint forcing
one occupies-variable of a train at a time step to be set
to 15, while all others are forced to be set to 0. More
precisely, for each train tr ∈ Trains and for each time step
ti ∈ {t0, · · · , ttmax−1}, we employ∨

c∈chains(l∗tr)

( ∧
e∈c

occupiestitr,e
∧

f∈E\c

¬occupiestitr,f
)
,

where chains(l) ⊂ P(E) denotes all chains of edges of
length l in the graph G and l∗tr is the discrete notation of
the length of the train tr defined by l∗tr = d ltrrs e.

In a similar fashion, we have to make sure that only those
movements of trains are allowed which are in accordance with
the track layout, the maximum speed of each train, as well as
the progress of time (i. e., that a train is not in one section
of the railway network in one time step and in a completely
different one at the other end of the network in the next one).
This can properly be enforced by adding a constraint which
ensures that, if a train occupies one segment of the network
in one time step (i. e., if one particular occupies-variable is
set to 1), it either has to occupy the same segment in the
next time step or any segment which can be reached with
the train’s speed in one time step (i. e., in the next time step,
either the same occupies-variable from before has to be set
to 1 or one of the “neighboring” ones). More precisely, for

5In case a train is so long that it may span over a chain of connected
sections, several occupies-variables might be set to 1.

each tr ∈ Trains, for each segment e ∈ E, and for each time
step ti ∈ {t0, · · · , ttmax−2}, we employ

occupiestitr,e =⇒
∨

f∈reachable(e,tr)

occupies
ti+1

tr,f ,

where reachable(e, tr) denotes all segments that the train tr
can reach when starting from e (including e itself).

Train movement is also constrained by the TTD/VSS layout.
Recall that a VSS section can only be occupied by at most
one train. Trains occupying different TTDs are automatically
separated because TTD borders are always also VSS borders.
Trains occupying the same TTD must be placed in separate
VSS. If two trains occupy the same TTD at the same time, we
can enforce this by setting the border-variable for one of the
nodes between the occupied segments to 1. More precisely,
for each pair of trains tr1, tr2 ∈ Trains with tr1 6= tr2, for
each segment e ∈ E, f ∈ TTD(e), and for each time step
ti ∈ {t0, · · · , ttmax−1}, we employ(
occupiestitr1,e ∧ occupiestitr2,f

)
=⇒

∨
v∈between(e,f)

borderv,

where TTD(e) is the set of all segments belonging to the
same TTD as e and between(e, f) denotes all v ∈ V that
belong to the chain connecting e and f . This constraint also
ensures that only valid VSS layouts are generated when the
VSS layout is not fix.

With the constraints from above, we almost ensured a
correct formulation of the train’s behavior. But up to now, it
is still technically possible that two trains moving in opposite
directions can “go through one another”. More precisely, if
a train is in segment e ∈ E in time step ti and in segment
f ∈ E in time step ti+1, the segments on the path from e
to f must not be occupied by any other train at time step ti or
ti+1. Since we cannot know how the train moved from e to f ,
we need to block all possible paths. To this end, we use the
notation paths(e, f, tr) which denotes all paths from e to f
that can be traversed by the train tr. Then, “collisions” like
that can be prevented by enforcing

occupies
ti
tr1,e∧occupies

ti+1
tr1,f =⇒

∧
g∈paths(e,f,tr1)

¬occupiestitr2,g∧¬occupies
ti+1
tr2,g

for trains tr1, tr2 ∈ Trains, tr1 6= tr2, segments e ∈ E, and
for each time step ti ∈ {t0, · · · , ttmax−2}.

C. Enforce the Objective and Solve the Design Task

All constraints outlined above ensure that the satisfiability
solver only determines variable assignments representing valid
scenarios. However, additionally it has to be ensured that the
actually considered design or verification task is solved as
well. Using the tasks discussed in Section II-B, this can be
accomplished by adding the following final constraints and/or
objective functions to the formulation:

Verification of Train Schedules: Schedules can be encoded
as a list of triples (tr, e, ti) defining for each train tr ∈ Trains
what segment e ∈ E it should occupy at a particular time
step ti ∈ {t0, · · · , ttmax−1}. This can easily be enforced by
setting the corresponding variable occupiestitr,e to 1. In order to
check, whether this schedule also works on a given TTD/VSS
layout, we simply have to enforce this layout by setting the
corresponding borderv-variables to 1 (to 0), if v ∈ V separates
(does not separate) two VSS sections. By this, the resulting
instance becomes satisfiable, if the schedule works with the
VSS layout and unsatisfiable if not.



Generation of VSS Layouts: Also here, a schedule is given
(which can be enforced as done above) but, in contrast to the
previous design task, the satisfiability solver is supposed to
generate a VSS layout with which the schedule can be exe-
cuted. A trivial way to approach this is by setting borderv = 1
for all v ∈ V . This would assign each segment e ∈ E to
a different VSS. This ensures that a train of length l only
occupies exactly l segments. This in turn guarantees that trains
are blocking each other as little as possible. However, there
might be other layouts that use less VSS and still allow the
given schedule to be executed. If designers want a layout that
uses as little VSS sections as possible, they can easily enforce
that by adding the objective function

min :
∑
v∈V

borderv.

Schedule Optimization Using the Potential of VSS: For this
design task, we only take the departure time and all the stops
of each train but do not specify when a train should arrive at
a given stop, i. e., we only enforce

tmax−1∨
i=0

occupiestitr,e

for each tr ∈ Trains and its corresponding stops at e ∈ E.
Then, we want the satisfiability solver to determine routes for
all these trains (and the corresponding arrival times) which are
as efficient as possible.

The term “efficient” can thereby be interpreted in different
fashions. One interpretation might be that the overall scenario
should be completed in at least as possible time steps. Another
might be that each single train tr ∈ T should take all
its stops and arrive its final stop as fast as possible. One
of the major benefits of the proposed methodology is that
all these objectives can easily be enforced by just adding
a corresponding constraint and/or objective function. In the
following, we illustrate that by means of the objective of
minimizing the number of time steps it takes until all trains
have reached their destination.

To this end, we introduce the Boolean variable donetitr where
donetitr = 1 (donetitr = 0) states that, at time step ti, a train
tr ∈ Trains has left the network (is still within the network).
Let lastStop(tr) ∈ E be the last stop of train tr ∈ Trains. Of
course, a train can only leave the network after it has arrived
at its final stop. This is encoded by the constraint:

donetitr =⇒
i∨

j=0

occupies
tj
tr,lastStop(tr)

Then, we can define the fact that all trains have reached
their goal at time ti by

doneti :=
∧

tr∈Trains

donetitr

The number of time steps in which not all trains have arrived
at their final stop should be minimized. This can be enforced
by adding the objective function

min :

tmax−1∑
i=0

¬doneti .

Combining all constraints and, if applicable, the respective
objective functions from above, a symbolic formulation de-
scribing the considered design or verification task is obtained.
Passing this formulation to a satisfiability solver (such as [28],
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Fig. 4: Considered railway networks

[29]) yields two possible outcomes:
• The satisfiability solver determines an assignment to all
border- and occupies-variables. Then, a VSS layout
as well as the positions of all trains at any moment
in time (and, by this, all routes of the trains) can be
derived from this assignment. This can show that a given
schedule indeed can be realized on a given VSS layout
(in case of the verification task) or deliver the desired
VSS layout and/or a schedule (in case of the generation
or optimization design task).

• Otherwise, the satisfiability solvers proves that no such
assignment exists for the given constraints/objectives.
Then, it has been proven that no routes of the trains
exists which can realize a given schedule (in case of the
verification task) or that no VSS layout/train routes exists
which can realize a given schedule on the original track
layout within the considered time interval.

In all these cases, the designers get their design or verification
task solved in a completely automatic fashion.

IV. APPLICATION AND CASE STUDIES
The methodology proposed above has been implemented

in C++/python and using Z3 [28] as a satisfiability solver.
Afterwards, we conducted several case studies to evaluate the
applicability of the resulting methodology. The implementa-
tion as well as the case studies have been made publicly
available at https://iic.jku.at/eda/research/ects. In this section,
we summarize a selection of those case studies in order to
demonstrate the benefits of the proposed methodology. To
this end, we considered the following railway networks and
corresponding train schedules:
• Running example, i. e., the network from Fig. 1 which

has been used as running example in this paper.
• Simple Layout, i. e., the network and from Fig. 4a which

is used as a representative of a layout composed of 3
stations (at the top, middle, and bottom of Fig. 4a).

• Complex Layout, i. e., the network from Fig. 4b which
represents a somewhat more complex layout composed
of a total of 6 stations which are connected differently.

• Nordlandsbanen, i. e., a real-life example inspired by the
Norwegian Railways network that connects Trondheim
and Bodø. The network considered here is composed of
58 train stations and several connections ranging over a
total of 822km tracks.

For each of those networks and their corresponding train
schedules, we used the methodology proposed above to con-
duct the design tasks reviewed in Section II-B, i. e., to verify
whether the train schedules indeed work on the given (pure)
TTD layout, to determine alternative layouts if this is not
the case, and/or to additionally optimize the layout in order
to improve the train schedule. All case studies have been



TABLE I: Obtained results
Task Var. Sat. TTD/VSS Time Steps Runtime [s]

Running Example (rt = 0.5min, rs = 0.5 km)
Verification 654 No 4 – 0.10
Generation 654 Yes 5 10 0.14

Optimization 654 Yes 7 7 0.25

Simple Layout (rt = 1min, rs = 0.5 km)
Verification 3910 No 10 – 3.26
Generation 3910 Yes 14 19 7.21

Optimization 3910 Yes 14 15 28.40

Complex Layout (rt = 3min, rs = 1 km)
Verification 14025 No 22 – 63.33
Generation 14025 Yes 23 17 151.80

Optimization 14025 Yes 25 14 210.70

Nordlandsbanen (rt = 5min, rs = 5 km)
Verification 21156 No 51 – 62.39
Generation 21156 Yes 53 48 82.65

Optimization 21156 Yes 57 44 79.60

conducted on an Intel Core i7-8550U machine using an
1.80 GHz processor with 16 GB of main memory running
Ubuntu 18.04.5.

The results are summarized in Table I. Here, the first two
columns refer to the respective design or verification task as
well as the respectively required number of Boolean variables
which were needed to symbolically formulate it. Afterwards,
we list whether the resulting satisfiability instance was shown
satisfiable by the solver, how many (TTD and VSS) sections
were considered/have been generated, and how many time
steps it took to complete the schedule. Finally, the total runtime
of the methodology (in CPU seconds) has been listed.

The results clearly confirm the applicability and suitability
of the proposed methodology. All verification and design
tasks can be solved in an automatic fashion in rather feasible
runtime. By this, designers could easily prove that, in all
cases, the pure TTD layout was not sufficient to implement the
desired schedules (the satisfiability solver did not determined
a satisfying assignment for the verification task). Furthermore,
the proposed methodology readily provides a solution for this
situation: Considering the objective for the second design task,
designers can automatically generate a VSS layout which can
realize the schedule (as can be seen in the fourth column
of Table I, often just a few additional virtual sections where
needed to make the schedule work).

Finally, even the schedules themselves could be improved
by employing the objective for the third design task. Here, the
results nicely show that, by adding some further VSS sections,
substantial reductions in the total number of time steps can be
achieved. By this, the proposed methodology really unveils the
full potential of ETCS Level 3. Recalling that all these tasks
have been conducted manually thus far (and, hence, many of
these tasks could not be addressed at all due to the underlying
complexity), this demonstrates the impact of the contribution.

V. CONCLUSIONS

In this work, we proposed an initial methodology which
addresses design and verification tasks in context of the ETCS
Level 3 in an automatic fashion. To this end, design automation
expertise (in terms of satisfiability solvers) has been utilized
for the first time. Case studies showed that the resulting
methodology allows to address relevant design tasks which,
thus far, only have been conducted manually or, due to the
underlying complexity, could not been addressed at all. The
proposed methodology in terms of a symbolic formulation
additionally allows to easily extend the approach, e. g., so that
even further design tasks and/or objectives can be considered.
By this, the methodology proposed in this work also provides
a basis for a further exploitation of design automation in the
domain of the design and verification of ETCS.
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