Accurate Cost Estimation of Memory Systems

Utilizing Machine Learning and Solutions from Computer Vision for Design Automation

Lorenzo Servadei, Edoardo Mosca, Elena Zennaro, Keerthikumara Devarajegowda, Michael Werner,
Wolfgang Ecker, Member, IEEE, and Robert Wille, Senior Member, IEEE

Abstract—Hardware/software co-designs are usually defined
at high levels of abstractions at the beginning of the design
process in order to provide a variety of options of how to realize
a system. This allows for design exploration which relies on
knowing the costs of different design configurations (with respect
to hardware usage and firmware metrics). To this end, methods
for cost estimation are frequently applied in industrial practice.
However, currently used methods oversimplify the problem and
ignore important features, leading to estimates which are far
off from real values. In this work, we address this problem for
memory systems. To this end, we borrow and re-adapt solutions
based on Machine Learning (ML) which have been found suitable
for problems from the domain of Computer Vision (CV). Based
on that, an approach is proposed which outperforms existing
methods for cost estimation. Experimental evaluations within an
industrial context show that, while the accuracy of the state-
of-the-art approach is frequently off by more than 20% for
area estimation and more than 15% for firmware estimation,
the method proposed in this work comes rather close to the
actual values (just 5-7% off for both area and firmware).
Furthermore, our approach outperforms existing methods for
scalability, generalization and decrease in manual effort.

I. INTRODUCTION

Increasing the productivity in industrial hardware/software
co-designs is a central issue, as it allows for an efficient
development flow as well as a reduction of the design costs.

Automating design tasks early in the development process
enable designers to efficiently construct the complex modern
chips. Hardware (HW) and Firmware (FW) are 2 major
constituents of any modern System-on-Chip (SoC) and, several
techniques have been proposed for automating hardware and
firmware components [27], [9], [12]. These techniques adapt
model-driven approaches in order to specify the system at an
higher abstraction level. This in turn allows systems to be
represented in abstract structures with required attributes and
excluding implementation details. The designer then has the
flexibility to create multiple design configurations and realize
the system with the desired configuration.

In order to automate the hardware components, a gen-
eration flow that focuses on the design-centric models is
developed [11]. Here the generation is conceptually divided
into multiple layers, which includes model-to-model trans-
formations. The most abstract models are close to the spec-
ifications of the system and the least abstract models are
close to the system realization in a specific platform (ex:
RTL in VHDL/Verilog/SystemVerilog). In order to enhance
the configuration capability, the system can be built in a
top-down fashion using the generation flow. For the same,
a system can be considered as a component tree with the
top level component instantiating its child components (with

additional program logic) and so on. Individual components
are automated considering all required/specified configurations
and hence, the system is an assembly of components and sub-
components with high degree of configuration capability.

This enables design exploration at early stages of the design
process, since plenty of options of how to realize a system
can be evaluated prior to its actual implementation. By this,
the designer can make sure that a system is realized in the
needed customized fashion, and also satisfies certain cost
constraints (e.g. with respect to area, number of firmware
instructions, etc.). In order to evaluate the different possible
design configurations, methods for cost estimation are essen-
tial. They take properties from the design configuration and
try to extrapolate the cost of each implementation based on
the configuration. This information is then utilized by the
designer to eventually decide which configuration shall be
realized. Within this process, the quality of the cost estimation
obviously is a crucial criteria — misleading cost estimates will
eventually lead to the implementation of design configurations
which likely is not satisfactory. In this work, we consider this
issue for the design of memory systems.

However, the cost estimation methods that are currently
used in industrial practice [23], [29], [35] often oversimplify
the problem and neglect important features that strongly
influence costs. Consequently, they frequently lead to cost
estimates that are far off from the real values (this is discussed
in more detail later in Section II). At the same time, we
observe that explicitly recognizing those features and “hard-
code” an algorithm, considering all features in order to derive
a more accurate estimation, is a cumbersome task. Hence,
we investigated an alternative solution which borrows and
re-adapts concepts based on Machine Learning (ML, [15])
which have been found suitable for problems in the domain
of Computer Vision (CV, [3]).

In this work,! we report on these investigations as well
as propose the correspondingly resulting methodology. More
precisely, we observe that, for typical CV problems such as
the determination of the age of a person depicted in an image,
ML indeed properly recognizes the respective features and is
capable of determining rather accurate estimates. Further, we
show that age determination in CV and cost estimation of a
memory system share some similarities and can actually be
addressed by the same scheme. Based on that, we propose
an alternative solution for cost estimation which adapts the
concepts from the CV domain.

A preliminary work-in-progress report has been published before in [21].

Experimental evaluations conducted within an industrial
environment show that the resulting approach clearly outper-
forms the state-of-the-art used thus far. While a state-of-the-art
approach used until now frequently is off by more than
20% for area estimation and more than 15% for firmware
estimation, the method proposed in this work comes rather
close to the actual values (just 5-7% off for both area and
firmware). Moreover, the proposed method offers higher scal-
ability and flexibility since further features can be directly and
automatically learned through the ML training process, and do
not need a further hand-tailored pre-processing.

In the following, the proposed approach is described as
follows: Section II, briefly reviews cost estimation for memory
systems as conducted thus far — including a discussion of the
shortcomings of today’s state-of-the-art methods. Motivated
by this, we outline and describe the proposed idea in Sec-
tion III followed by a description of the implementation of
the methods for accurate cost estimation in Section IV. Finally,
Section V summarizes the results of the conducted evaluation
before the paper is concluded in Section VI.

II. COST ESTIMATION FOR MEMORY SYSTEMS

In this section, we illustrate the problems and challenges
of cost estimation for memory systems in early stages of the
design flow. To this end, we first briefly introduce the hardware
generation method used in our industrial environment flow as
described in [30]. Afterwards, we present the specification of
Register Interface (RI) components inspired from [10] which
serve as running example in the remainder of this work. We opt
for the implementation of this component because of its major
importance in the industrial design case. In fact, RIs are almost
ubiquitous in SoCs and essential for HW/FW configurability,
as described in [10]. Using this example, today’s shortcomings
of cost estimation are illustrated — providing the motivation of
this work.

In the hardware generation flow of our industrial environ-
ment illustrated in Fig. 1, we aim to instantiate hardware
designs complying to given specifications. Hence, through a
model-based generation approach (thoroughly described in [7],
[30]), the designer instantiates a particular configuration of the
component through an instance of the meta-model following
the design requirements. This configuration would then trigger
the generation of RTL as well as firmware code. Finally, the
cost with respect to hardware and firmware metrics is obtained
from the synthesis/compilation of the previously generated
code. The obtained cost would then guide the designer towards
a suitable implementation of hardware together with firmware
on an FPGA board. This same procedure applies to a set of
hardware components, including Rls.

RIs are common components in an SoC and provide the
control and status mechanism between the core and peripheral
devices. Accordingly, RI components may be required in
different configurations (e.g. depending on the respectively
applied peripherals) which is why the initial specification is
usually provided generically in terms of a meta-model such as
follows:

Model Based
Generation

v v
v

[Synthesis Tool][Compiler]

. . v v v
| LUTs L]J[SRs U-][FS UJ[@
=

FPGA FCs

Figure 1: Model based hardware generation flow

Example 1. Fig. 2 shows the meta-model of the considered RI
component. > Here, we describe sub-components that describe
the HW and FW structure of the RI. The sub-component
Interface specifies the general features of the RI such as
the DataWidth or the AddressWidth. The single registers are
defined using instances of the sub-component Unit, which has
a Name, a Size, and an Address. The accessibility to each
bitwise position in the registers/Units is defined by dedicated
bitfields, which is why each Unit has one or more instances
of a corresponding sub-component Contained (specifying the
start Position of a bitfield) and the sub-component Bitfield
(specifying e.g. the Size and the allowed access; e.g. HWRd
and SwWr regulating the property being read or written
respectively by HW and FW). 3 Additionally, the corresponding
FW (which eventually has to obey these accessibility settings)
is described using the additional sub-components Configura-
tion, which enlist the bitfields involved in the reading/writing
operations, and Setting, which specify the default/reset value
for the bitfields. Last, the DontCareList sub-component con-
tains a reference to the bitfields not considered in the FW
writing operation, and Parameter which is specified depending
on the desired instances of the Bitfields.

Using this meta-model, the designer can now instantiate
various configurations of an RI component. In the following,
we call these instances design configurations. Appropriate con-
figurations have to be chosen such that the intended behavior
is realized (e.g. enabling proper access to peripheral devices),
while satisfying specified cost constraints. For the latter, it is
important to have an accurate estimation of the costs for a
correspondingly considered configuration. In the following, as
shown in Fig. 1, we thereby consider:

o the area, i.e.

the number of Configurable Logic

2Note that, for sake of clarity, we focus only on the sub-components which
are relevant for the remaining discussions. A complete description of this
meta-model is available in an online appendix [11].

3Note that the structure shown in Fig. 2 allows for different Units to employ
the same Bitfield.

Interface MetaCSC Configuration
Name : string [1] * Name : string [1] .f*_4> .

. . : : 1
IAddressWidth : int [1] =32 H roofNode Name : string [1]
IBfAccess : bool [1] = False —e
UnitAddressWidth : int [0..1] I *

[Encoding : string [*] *
DataWidth : int [1] =32 Bitfield
* N : string [1
s L Setting Parameter

Unit Size : int [1]

Name : string [1]

Size: int[1]

Address: int[1]
I*

Contained

HwRd : bool [1]
HwWr : bool [1]
SwRd : bool [1]
SwWr : bool [1]
Virtual : bool [1]
DC Bit : bool [1]

Position: int[1]

DefaultValue : int [1]

DontChangeVal : int [0..1]

Value : int [1] Name : string [1]

Value : int[1]

DontCareList

Figure 2: Meta-model of the Register Interface (RI)

Blocks (CLBs) in terms of Logic Units (LUTs) and
Slice Registers (SRs) which are needed to realize the
configuration on an FPGA board,

o the size of the generated binary FW code (FS) as well
as the number of cycles of a pipelined CPU which are
needed to execute the FW program (FCs).

However, in early stages of the design flow, the designer
has no fully-fledged implementation of the respective design
configurations at hand (they are still to be implemented).
Accordingly, the resulting costs need to be estimated in order
to evaluate different design choices and, eventually, decide
which indeed shall be realized. High-Level Synthesis Tools
can be utilized for this purpose [26], and have as well been
employed for HW/SW co-design of SoC FPGAs [32]. In our
industrial context, with the purpose of learning a fast and
accurate estimation for a whole set of designs, we utilize ML
approaches. To this end, several methods using ML algorithms
for cost estimation have been proposed in the past. They use
e.g. coarse-grained inputs (e.g. means and aggregate values) as
proposed in [23], [29], [31], [35] or high level and application
specific ones, as seen in [18]. More precisely, in [35], the fea-
tures used for CLBs estimation are aggregated for each design
generation, resulting in a coarse grained feature space used for
the prediction of the SoC area objective. The work [29] instead
evaluates the power consumption of different algorithms using
high-level features taken from single algorithmic blocks, such
as average working set size and total operations. These are
used for predicting power and performance of an FPGA-based
soft processor. In [23], different features (here presented as
tunable knobs) are evaluated as input for the multi-objective
estimation problem, e.g. the Num. Work Items per group, the
Num. Work Items per group and Num. Private Variables. Last,
in [18], the estimation of the SoC area reduction is computed
processing high level configuration data in an application
specific manner, thus lacking in flexibility, generalization and
not considering multiple objectives (e.g. both software and

hardware related).

In fact, spatial information such as the spatial position
of the bitfields and units inside the memory system have a
significant impact on the eventual costs of the estimation. Each
bitfield property is set in a configuration context — representing
features as a total or mean of values. If provided on a too high
(imprecise) level, this may lead to a diminishing of specific
information that affect the real cost. At the same time, the
complexity of considering those spatial information increases
with the size of the considered systems — yielding either
a significantly increasing manual effort for the retrieval of
feature values or even making it even impossible at all.

Example 2. Consider the instances of the RI meta-model from
Fig. 2 as shown in Fig. 3. Here, Fig. 3a shows three different
instances which, at a first glance, look identical (e.g. in all
three cases the bitfields are the same, and are instantiated
in an identical fashion). In fact, the only difference is that the
units have different Addresses. At a first glance, this should not
cause significant differences in the costs. Accordingly, existing
methods for cost estimation methods yield an estimation of 110
LUTs, 36 SRs, a FS of 2.6 Kb, andc564 FCs for all cases.
However, if we evaluate the HW Area and retrieve the FW
metrics from the actual implementation of those instances,*
we obtain different values for each case. In fact, as discussed
above, the spatial information of each unit indeed has an
impact which is why e.g. the realization of Case (a) from
Fig. 3a eventually costs 83 LUTs, 42 SRs, a FS of 2.2 Kb, and
524 FCs. The realization of Case (b) from Fig. 3a eventually
costs 117 LUTs, 42 SRs, a FS of 2.2 Kb, and 524 FCs. Finally,
in Case (c) of Fig. 3a, the costs are 156 LUTs, 42 SRs, a FS
of 2.2 Kb, and 524 FCs.

These differences between estimations and real costs be-
come even more substantial if variations on the spatial position
of bitfields inside the registers occur as illustrated e.g. by

“In the (industrial) setting considered here, we used the commercial Vivado
Design Suite by Xilinx to explicitly implement the given instances.

Case (A)
oxo0 RN RENEN 8.3 8.2 5.1
ol | [[1 [[[T TTTTTTTTTTTTTTTT [|
ox02 MMM EEEEEW et T "efe [efz [sis]
oxo: ANNEEEEEEEEEEEEEEEEN 0] 81,10]
Case (B)
ox00 NN EENNN 5.3 8.2 |
o0l HNNEEEEEEEEEEEEEEEEEEEEEEEN |

oxoz EEEEEEEEN Bf.5 Bf.6 8f.7 8f.8
oxo4 ANEEEEEEEEEEEEEEEEE o | 8. 10]

Case (C)
oxo0 NNNmmEmL_ ees T etz [e]
ol [[[[[[[T T I [T

ey | [[[[[[][] Bf.5 [Bf.7 | 81,8]

oxos HNNEEEEEEEEEEEREEEEEE s | 8. 10]
(a) Different addresses

Case (A)
0x00 WM ers [ar.7 [86 [8rs | Bf.4 3] Bf.2 I Bf.1
ox01 I Bf. 15 Bf. 14 Bf. 13 Bf. 12 Bf. 11 Bf. 10 B%.9
002 1 5 .38 81,17 B 16
oxo: ANNEEEEEENEENEEEEEEEE N s

Case (B)
0015 55 5 o o o o s [o3 8.2 R
ox01 N ere] Brao [eraz [eras] Bf.4 |
ox02 mEmEmm DD IES B12 | B9 | Bfia | Bf. 11

HEEEEEE |
ox03 NN [ey |
(b) Different bitfields mapping

[618 | sr1s | erao

Figure 3: Design configurations from the RI meta-model

the different cases shown in Fig. 3b. Here, exactly the same
bitfields are applied in both cases — only their distribution
amongst the units/registers, i.e. their spatial distribution, is
different. Accordingly, state-of-the-art cost estimation methods
extrapolate the same costs for both cases, namely 89 LUTs,
97 SRs, a FS of 2.0 Kb, and 476 FCs. However, as discussed
above, also here the spatial position of the bitfields has an
impact on costs, for this reason, the actual costs for Case (a)
are 97 LUTs, 89 SRs, FS of 2.2 Kb, and 576 FCs, while for
Case (b), they are 79 LUTs, 89 SRs, FS of 1.4 Kb, and 388
FCs.

These examples illustrate that both, with respect to actual
but also relative values between the cases, previously proposed
cost estimations are far off and actually lead to rather mislead-
ing results — a serious problem when it comes to finally decide
which design configuration shall be realized. At the same time,
this motivates the development of more precise cost estimation
methods which additionally consider the further characteristics
discussed above. However, considering all possible features
relevant for cost estimation is a cumbersome task which
cannot easily be incorporated e.g. by simply adding additional
features. Because of that, we are proposing a complementary
approach which is described in the next section.

III. PROPOSED SOLUTION

In this work, we address the problem of cost estimation
sketched above. To this end, we borrow concepts from the
recently developed fields of Machine Learning (ML) as well
as Computer Vision (CV). We show that existing methods,
e.g. to process images and videos based on ML, can actually
easily be adapted for the purpose of cost estimation. In the
following, we describe the proposed methodology as follows:

We first review data preparation and basic approaches of ML
methods used today for CV tasks. Afterwards, we describe
how the features which affect the costs of a memory system
can be represented in a similar fashion to pictures for CV
algorithms. Eventually, the resulting representation is applied
to (existing) ML approaches — providing accurate estimates.

A. Machine Learning for Computer Vision

Computer Vision (CV, [3]) is an interdisciplinary area which
is mainly concerned with the computational analysis and un-
derstanding of single images or sequence of them (i.e. videos).
Typically CV requires a particular processing of the image
signal, so that specific tasks can be performed (e.g. object
detection, classification, age estimation, etc.). Originally, the
state-of-the-art methods to accomplish such tasks heavily
relied on manual labor, i.e. features were often extracted manu-
ally from image pixels before they were processed further [28].
Nowadays, through the availability of more sophisticated ML
algorithms, pixel-based representations are often chosen as a
direct input to the ML algorithms [5], [15]. In fact, through an
extended use of Neural Networks (NN, [5], [15]) (a set of ML
algorithms which is loosely inspired by biological neurons),
high accuracy in CV tasks can be reached by taking raw
images as input and compute features automatically within the
learning phase of the ML process [5], [15].° For this reason,
the representation of images becomes of central importance in
CV.

In the following, we utilize the common representation of
images in terms of a function f(h,w,c), where h, w, ¢ are
coordinates of a 3D matrix Z#*W*C Here, H is the height
of the image, W the width of the image, and C' the number
of so-called channels of this image. All entries of the 3D
matrix (and, hence, all functional values of f(h,w,c)) define
the intensity value v for the respective position and channel.
In other words, for a gray scale image, the matrix has C' =1
channel where each matrix entry represents the respective gray
scale at the corresponding position. Similarly, for an RGB
image, the 3D matrix has C' = 3 channels (one for each
of the colors red, green, and blue) where each 3D matrix
entries represents the respective portion of these three colors
at the corresponding position. For RGB images, the value v is
usually within v € [0, 255] for each one of the three channels.

Example 3. Consider the image shown on the left-hand side
of Fig. 4a. Following a typical RGB structure, this image can
be defined as the combination of the corresponding red, green,
and blue portions as sketched in the center of Fig. 4a. This
in turn can be represented in terms of a function f(h,w,c)
with a total of C' = 3 channels, i.e. as a 3D matrix ZH>*W <3,
where H is the pixel-wise height of the RGB image and W
is the pixel-wise width. Each one of the channels is therefore
structured as a OT*W 2D matrix with one pixel value v at
each coordinate.

Using this representation, CV tasks such as object detection,
classification, segmentation can now be conducted using ML

5Note that ML and NNs have also succesfully been implemented in domains
such as classification [19], text understanding [36], and human activity
recognition [8].

algorithms [5], [15]. For example, let’s take a CV task where,
given a RGB image of a person, we want to estimate his/her
age. To this end, several parts of the human body shown in
the image may provide important information about the age,
e.g. wrinkles in the skin, color of the hair, etc. However,
it obviously is rather difficult to explicitly “hard-code” a
computer program which reliably reveals these useful features
(e.g. because of the variety in the images set: some images
might be zoomed, some badly/differently illuminated, some
might be occluded, etc.). Here, ML can provide valuable
support.

More precisely, the task is handled as a regression problem
(which is suitable, since the desired output should be a number
indicating the person’s age) where first a training set of images
is provided for which the respective age of the person is
known. Using this training set the ML algorithm can “learn”,
by minimizing a function that describes the difference between
the age that our method predicts and the real age that is
included as a label in the training data, all the features
mentioned above not in an explicit (i.e. “hard-coded”) fashion.
In other words, the ML algorithm learns through associations
with the image and the respectively given age (to this end,
meaningful patterns in the image, the distribution of pixels,
and the linked labels guide the ML algorithm to outpoint
the estimated age of the person). The pixels of the image
are thereby algorithmically processed in order to establish a
consistent association of the given image and the given age,
as shown in [34].

B. Corresponding Representation for a Memory System

Now, recall that, as discussed and illustrated in Section II,
current methods for cost estimation suffer from the fact that
they do not properly consider all features that might affect the
costs. At the same time, “hard-coding” a computer program
which reliably reveals these useful features is hard as well
(because of the same reasons why it is hard in CV to determine
the age of a person). However, the same method applied for
age determination in the domain of CV can also be applied
in the domain of cost estimation for memory systems. To this
end, we just need corresponding representations for the domain
considered here. This is introduced in this section.

More precisely, rather than a RGB image (e.g. providing the
pixel intensity v for each coordinate and channel), a similar
data-structure for the considered memory system (e.g. pro-
viding bitfield positions, bitfield properties, etc.) is required.
With such a representation, the same solutions can be used
as already successfully utilized in the CV domain. In the
following, we describe the proposed data-structures — one for
the hardware and one for the firmware.

The hardware data-structure (called HW image in the fol-
lowing) represents the respective properties of the memory
system in terms of a function j(q,l,b) where ¢, I, b are
coordinates of a 3D matrix AQ*LXB_ In contrast to CV,
@ now defines the number of units/registers in the memory
system, while L defines the respective bit-width and B defines
the number of bitfield properties considered. Instead of three
channels as in the CV domain (for red, green, and blue), we

now use a total of seven channels to represent the HW features.
The channels indicate whether the corresponding position in
the memory system contains a bitfield (Bfs), and if the bitfield
allows for a hardware write (HwWr), hardware read (HwRd),
software write (SwWr), software read (SwRd), a don’t change
bit (DC_Bit), or a virtual bit (Virtual). Since these properties
either hold for a position in a bitfield or not, they can easily
be structured in a binary representation, i.e. each entry of
the 2D representation matrix is now a binary value where 1
denotes that the position of the bitfield has the considered
property, whereas the value O is inserted elsewhere. This
results in a feature representation, which preserves the spatial
structure of the RI for a specific bitfield property and, at the
same time, allows a simple addition or removal of features
to the hardware data-structure. Furthermore, the data-structure
captures aggregate values and statistics among features, which
do not need to be explicitly specified. All the above-mentioned
traits address the desired characteristics for the cost estimation
of memory systems.

Example 4. Consider again the instance of a memory system
as shown in the top of Fig. 3a and discussed in Example 2.
Those properties are usually represented in terms of a .uml file
as sketched in left-hand side of Fig. 4b. Overall, this yields
properties with respect to hardware write, hardware read,
software write, etc. as sketched in the center of Fig. 4b. Those
are eventually represented in terms of matrices as sketched in
the right-hand side of Fig. 4b.

Using this data-structure, the HW costs of a memory
system can be determined similarly to the age determination
in the CV-domain discussed before. That is, first a training
set of memory system instances is provided for which the
respective real area costs are available. This is used to “learn”
the respective features relations and an accurate information
processing. Afterwards, proper estimations for the instances
for which we actually want to determine the costs can be
obtained.

Next, in order to obtain the cost for firmware operations, the
corresponding data-structure becomes a bit more challenging.
Here, the sequence of reading/writing operations specifies
which bitfield/s should be read or written, from/in which
register, at each point of the sequence. This is particularly
interesting for a FW cost estimation of the RI, as the type
of writing operation performed (i.e. the no. of instructions
needed) depends on the affected register configuration. Fur-
thermore, distinct types of writing operations have a different
impact on the FW size and firmware cycles for a particular
design.

In order to outline a corresponding data-structure for the
firmware, we get inspiration once again from the CV domain.
The evaluation of the firmware cost can be thought of in
fact as the same estimation of the age of a person through a
multi-channel video. This actually gives a further dimension,
so that we can observe different angles on the wrinkles or
a person‘s walking posture over time. In order to adapt this
approach for firmware cost estimation, we transform once
again the writing and reading operations, together with other
RI properties, into binary representations. These correspond

Width

97 |12314 |109 78| 51| 71| 31 |123
18|48 |41 30| 51|31 |87 o159 32| 3
= Blue
16|98] 10| 97)139124112151) 67 [L59) Green
13[15]12 | 35)18 | 19|32 124179 9 Red

136] 23| 79 [114] 98 45|41 | 67|32 |97

3 Channels

Height

89| 1 [17|93]45| 17129 34| 23| 33

78|19]239 71| 351561 15| 81{109| 21 Blue

15|14]54| 23|70 |93 | 13| 31|167| Green

(a) Images RGB

. I 8 7 6 5 4 3 2 i 0
;J a 7 & 5 4 3 2
BCE | CE
s
Cos Ju_wolum

[orss (W oc |0 |m
SR EET

Red
Unit Size
tf1]efo]a]1f1]1]o S sl
1]ajafofa]af1f1f0]0] Sw_write @
1 [)
1[1]ofo] 1] 1f o] 1]e]o Virtual c
7 Total Contained Size S
P 1)1fofo]tf1]]1]0 DC_bit &
5 1|1|1]o]| 1| 1]1]e|o|o Hw_Read ~
2 1]1]1)o] 1| 1| 1f o] o]0 Hw_Write
v 1] ofo| i of 1] 1] of[a] PCB
Bit 1 1] ol ol of of 1] 1] o] Hw_Read
Hw_Write

(b) Hardware Images

Figure 4: Representation for CV and cost estimation tasks

to the features representations at each point of the sequence
(i.e. frames).

This results in a firmware data-structure (called FW se-
quence in the following) covering the properties of the memory
system in terms of a function z2(q, l, d, p), where ¢, [, d,p are
coordinates of a 4D matrix FQ*XLxDxP, Again, @) defines
the number of units/registers in the memory system, while
L defines the respective bit-width and D defines the number
of considered bitfield properties. That is, in the case of the
firmware structure, we have six different channels where each
channel is denoted by F, with d € [1,6]. Besides that, P
now additionally defines the number of frames and, by this,
incorporates the time aspect (p € [1, P]). Following this, each
binary feature representation F} contains the value 1 in the
bitwise position of registers containing bitfields to be written;
the same approach is applied to the reading operation (F5).
Both of these pieces of information are contained in the prop-
erty Configuration of the RI meta-model. A further represen-
tation is added for the property DontCareList (FY). Once the
writing and reading operations, as well as the DontCareList,
are structured in the corresponding binary representations, they
are stacked at the same sequence frame FP. This composes the
dynamic part of the data-structure for the firmware estimation.
Successively, three further representations are added to the
same frame, corresponding to a static representation of the
HwRd-feature (F7}) and the DC_Bit-feature (FY) as well as a
representation of the total bitfields (F) of the design. These
values do not change from frame to frame and, hence, are
implemented as repeated static representations at each point
JFP of the sequence.

Using this representation, an ML algorithm is equipped with
all the information related to firmware and can conduct the

cost estimation in a similar fashion as sketched above for the
hardware image.

IV. IMPLEMENTATION

In this section, we provide the technical details about a pos-
sible implementation of the concepts introduced above. To this
end, we first present how ML algorithms for CV are utilized to
the proposed data-structure so that they can be utilized for the
considered cost estimation problem. Afterwards, we provide
details on how we optimize the non-trainable parameters of
the utilized networks to further improve the obtained accuracy.

A. Implementation of the Machine Learning Algorithms

In order to describe the implementation of the methods
proposed above, we distinguish between the estimation of the
HW costs (LUTs and SRs) and the estimation of the FW
costs (FCs and FS). For this reason, we consider two multiple
outputs regressions as supervised learning problems, i.e. where
the ML algorithm is guided through the learning phase by the
real values of the HW Area and of the FW Metrics. The task
of the regressions is then to predict the outputs, indicated as
Yi,--.,y4, from the inputs, which correspond to the values
contained in the proposed data-structures. Accordingly, LUTSs
(represented by y1) and Slice Registers (represented by ys) of
the RI are the outputs which indicate the HW Area. We call
the prediction towards these outputs Area Regression (AR).
The FW Cycles (represented by y3) and FW Size (represented
by y4) instead are the selected FW Metrics. We call the
corresponding forecast as FW Metrics Regression (FMR). AR
and FMR are obtained, as mentioned before, through distinct
ML models.

Inputs
(32x32x7)

Feature Maps
(30x30x48)

HwWr
HwRd

Feature Maps Flatten Outputs
(15x15x48)

(10800) (2)

SwWr L | | : .
by o N
DC_Bit "7 o
Bl L §7 0 . Batch

Virtual Norm
Convolution ~ Max Pooling
3x3 kernel 2x2 kernel

(a) Area Network (2D CNN)
Inputs Feature Maps Feature Maps Flatten Outputs
(32x32x6x53) (27x27x20x48) (13x13x20x24) (81120) 2)
Wr.Op N
Rd.OpN o
DontCareList N o
DC Bit
T Bfs L___.:
m]
Wr. Op N o
Rd.Op N
DontCareList N ‘ o o

pc it oo ok o

Bfs [! Batch
Convolution o, Max Pooling Dropout (0.75)
6x6x6 kernel 2x2x2 kernel
(b) Firmware Network (3D CNN)
Figure 5: Architectures of the used Convolutional Neural Networks (CNNs)
For both regressions, a set of training data are positioned. This is performed on each single frame FP

{(xXLYY, ..., (&N, YV)} with N being the size of
the training set is used.

In the case of the AR, the 3D matrix of feature measure-
ments is of size of A, that is X%, € NO*L*B whereas in
the FMR, the 4D matrix is of size of F, that is Xy €
NQXLXDXP.

In the following paragraphs we describe the structure of the
ML algorithms for AR (i.e. Area Network) and for the FMR
(i.e. Firmware Network).

1) The Area Network: For the AR, we consider as an
input the HW Images, and a 2D CNN (Convolutional Neural
Network) [15]. We select a 2D CNN because of its capability
to capture spatially related information. In our case, the HW
images are processed along the) and L dimensions of each
feature representation. This allows us to accurately and easily
elaborate spatial relations and, hence, to overcome the issues
discussed in Section II — yielding the desired accuracy for a
cost estimation of memory systems. The architecture of the
used 2D CNN is sketched in Fig. Sa.

2) The Firmware Network: With regards to the FMR, we
consider the FW sequence as input, and a 3D CNN [33] for
the estimation. This type of NN can take into account a further
dimension of the inputs with respect to the 2D CNN. The FW
sequence is processed through local regions of the dimensions
@, L as well as D, where the different feature representations

of FW sequence. Selecting this architecture, we can explore
the spatial as well as the sequential information over the
FW operations, for obtaining the FW cost estimation. Fig. 5b
shows a sketch of the implemented 3D CNN’s structure.

B. Optimization of the Utilized Networks

Once the ML algorithms and inputs are selected for the
AR and FMR, further optimization potential exists in properly
setting the non-trainable parameters of the network, i.e. the
network hyper-parameters. This optimization step aims to
select the best configuration possible for minimizing the Net-
work estimation error and improve the accuracy for both the
Area and the Firmware Network [6]. For doing so, the hyper-
parameters optimization algorithm selects the best possible
configuration out of the hyper-parameters space. We introduce
an hyper-parameters space for the considered neural networks,
where we define an interval from where the algorithm can
select a value for any specific hyper-parameter (i.e. for the
Firmware Network, we tried range of different Filter sizes
eg. 2x2x2,3x3x3,etc., No. of Layers e.g. 1, 2, 3, etc.
and other hyper-parameters). If none of the hyper-parameters
optimized value tends to the extreme of interval, we hold the
predifined interval, else we shift it.

As an hyper-parameters optimization algorithm, we adopt
the Tree-structured Parzen Estimator (TPE) approach [4]. The

TPE is a Bayesian model-based optimization that explores the
hyper-parameters space in a non-trivial manner by running
several possible configurations of the network and selecting
the best performing hyper-parameters for our data. Moreover,
through the TPE algorithm, we are able to integrate an ablation
study in the network optimization algorithm. The ablation
study process, also used in ML approaches such as [13] and
[14], consists of removing parts from the network (e.g. a
specific layer/group of layers) and evaluating the change in
performance of the algorithm. Thanks to this procedure, we
could reach at the same time high accuracy and a reduction of
both networks to their essential components. This leads to an
accurate estimation of HW Area/FW Metrics and yet reduces
the complexity of the networks.

As a final result of the TPE approach, we can define an
optimized architecture for the estimation of the area as well
as for the firmware cost. A description of the hyper-parameters
and technical details of the 2D/3D CNNs can be found in [15],
[33]. The optimal hyper-parameters that we have found thanks
to this process are shown in Table I, as well as in Fig. 5a and
in Fig. 5b.

In the following paragraphs, we analyze the structure of the
optimized Area and Firmware Networks obtained using the
TPE approach.

1) Optimized Area Network: As previously mentioned, for
the AR we use a 2D CNN architecture, sketched in Fig. 5a.
Here, each one of the seven channels of the HW Images is
locally processed (convolution operation) by 48 different 3 x 3
kernels, which stride on the HW image and elaborate the
spatial positions of properties in the registers. This operation
takes place in the 2D Convolutional Layer of the CNN.
Out of this operation, 48 Feature Maps of dimensionality
30 x 30 are generated. These represent the results of the
convolution between the HW image and the above mentioned
kernels. Successively, a Max Pooling Layer performs pooling
operations on the Feature Maps, selecting the maximum values
out of local regions in the maps. This operation halves the
width and height of the Feature Maps. Next, the maps are
concatenated in a one dimensional vector (Flatten Layer) that
is fully connected towards the two final outputs of the network.
Before the final output, a Batch Normalization operation is
performed. The dimensions of the layers and components of
the network are sketched in Fig. 5a.

2) Optimized Firmware Network: The architecture of the
3D CNN used for the FMR is sketched in Fig. 5b. Here, the
selected kernels have dimension 6 x 6 x 6, and are able to
process through a convolution operation all the six channels
of the FW sequence at each frame JF7? (this takes place in
the 3D Convolutional Layer). Elaborating the six channels of
the FW sequence at each frame through the selected kernels
allows to process the spatial configuration of the bitfield
properties through time. This operation generates 20 Feature
Maps of dimension 27 x 27 x 48. The maps are successively
taken as input to the Max Pooling Layer, which performs
a cubic pooling operation, taking maximum values out of
2x2x2 local regions. Similarly to the Area Network, a Flatten
Layer concatenates the maps into a one dimensional vector. A
Dropout Layer randomly masks out some of the neurons of

Table I: Optimal Network’s Hyper-parameters

Networks Optimization

Hyper-parameters Area FW Metrics

MLP 2D CNN MLP 3D CNN
Initial LR / 0.001 / 0.001
LR Scheduling / Exp D / Exp D
Dropout Rate / / / 0.75
Batch Size 716 64 716 64
Optimizer L-BFGS Adam L-BFGS Adam
Activations Relu
No. of Filters / 48 / 20
Filter size / 3x3 / 6x6x6
No. of Layers 2 3 3 3

LR: Learning Rate, Const: Constant Learning Rate, Exp D: Exponential
Decay of the Learning Rate

the vector, with a certain dropout probability. The values out
of the active neurons of the network will be propagated into a
Batch Norm Layer, where a batch-dependent normalization is
performed. Finally, the two outputs of the Firmware network
are fully connected through a Fully Connected Layer. The
Firmware Network dimensions are sketched in Fig. 5b. As
pointed out in Table I, we use Adam [20] as an optimizer and
ReLU [25] activation functions for both 2D and 3D CNN.

Besides the issues discussed above, the choice of the kernel
size plays a key role in the hyper-parameter optimization for
both the 2D CNN for the AR and 3D CNN for the FWR. In
fact this component is the core of the convolution operation,
establishing how the spatial information in the data is taken
into account and how to process the bitfield properties in the
underlying data-structure (i.e. HW Images or FW Sequence).
The size of the kernels is therefore a key hyper-parameter in
the realization of both proposed networks. Typically, kernels
used in computer vision have equal dimensions along the
height and the width of the image (e.g. 3 X 3 squared kernel,
6 x 6 x 6 cubic kernel) [15]. These proportions are intended
for the kernel to respond equally on variations along different
dimensions of the input signal (e.g. image). For the FMR
nevertheless, this property is not strictly needed. In fact, in
the structure of the firmware program, the writing and reading
operations on bitfields take into account a single register at a
time. This means, configurations of other registers apart from
the accessed one (e.g. for writing/reading a bitfield), do not
influence the single access operation, and thus the firmware
metrics. Therefore, by using a non-cubic 1 X 6 x 6 kernel,
we take into account only the bitfield properties of one single
register at a time. As shown in the Table II, an optimized
network provided with the selected non-cubic kernels and 5
Feature Maps avails itself of a reduced number (decrease by
factor 4x) of parameters w.r.t. to the best performing network
architecture. Nonetheless, its results are only slightly lower
in terms of accuracy. An important remark on that is that
a decrement in the number of parameters can be related to
lower power consumption, higher speed and efficiency for the
training and inference phase of the network [16], [22].

V. EVALUATION

The proposed data-structures representing hardware and
firmware features (i.e. the HW image and FW sequence) have

Table II: Kernel Performance Comparison

Opt FW NNs K Dim No. Par | Avg RMSE | Avg R™2 Sc
1. 6x6x6 | 188222 88.1 0.942
2. 1x6x6 45,037 90.9 0.937

Opt FW NNs: Optimized Firmware Networks, K Dim: Kernel Dimension, No.
Par: Amount of trainable parameters in the Network, Avg RMSE: provides
the average of the Root of Mean Squared Error as loss for the Firmware
Network, Avg R"2 Sc: provides the average of the explained variance (R™2
Score).

been realized and applied to the proposed implementations
of the ML algorithms as described above. Afterwards, we
evaluated the corresponding results, i.e. the obtained numbers
using the ML approach inspired by CV has been compared
to the results obtained by the state-of-the-art cost estimation.
This latter method is currently used within our industrial
environment at Infineon Technologies AG [35]. In this section,
we summarize the results as well as the drawn conclusions.
To this end, we first provide some more details about the
correspondingly used environment as well as the considered
metrics (which follow basic evaluation schemes from the ML
domain). Afterwards, the obtained results are presented and
conclusions are drawn.

A. Used Learning Environment

Our evaluations have been performed with the following
system configurations: as software development environment,
we chose Python v3.6, Tensorflow-GPU v1.0.1, and Hyperopt.
For optimizing the algorithm on the Nvidia GPU, we used
the CUDA Toolkit 9.0 and cuDNN v7.0. With respect to
hardware, we considered a Nvidia Tesla P100 for training the
ML algorithms, an Intel Core i7-8700K CPU, and DIMM 16
GB DDR4-3000 module of RAM. For evaluating LUTs and
SRs, we retrieved reports from the Vivado Synthesis on an
Arty-7 FPGA board from Xilinx,® while for measurement of
the FCs we used a RISC-V CPU implementing 32 bit Base
Integer Instruction Set architecture [1].

For the purpose of evaluating the proposed approach, we
considered a large dataset of valid design configurations for
memory systems, as described in details in [21]. We first
uniformly sample the amount of considered bitfields in each
design configuration within a range, such the No. of Bitfields €
[25, 50]. This constitutes a predefined design space taken from
design experience. Then, we uniformly sample the attributes of
each bitfield including Size and properties (i.e. HwWr, HwRd,
etc.). Last, we dispose the bitfields in a random order and we
insert them in a fitting No. of Units. With this procedure we are
able to sample out of different Bitfields Configurations. The
dataset contains variations over spatial distribution of bitfields
— similar to the ones shown in Fig. 3. In total, the complete
dataset is composed of 1024 generated design configurations.
We chose this amount after observing that the generation of
further samples would not improve the accuracy of the tested
ML algorithms.

After generating the design configurations, we retrieved the
objectives measurements for each one of the design instances.

SDocumentation to be found on the website:

https://www.xilinx.com/products/boards-and-kits/arty.html

We first synthesized the instances for obtaining the number
of LUTs and SRs of each design. After that, we ran on
each one of the memory system a firmware program, where
the operations of the program are specified in the design
configuration. From this, we eventually retrieved the Firmware
Size and Firmware Cycles.

After obtaining the dataset, we divided this into a training
set (70% of the considered design configurations) used for the
training phase of the ML algorithms and a test set (20% of the
considered design configurations) with which we evaluated the
trained algorithms. Besides that, also a validation set (10% of
the considered design configurations) has been used for fine-
tuning the hyper-parameters of the ML algorithms. Using most
of the data for training (e.g. 60 — 80%) is a common practice
in CV. We did not consider different data split proportions
after reporting an accuracy difference < 1% between training
and test data. We can therefore conclude that the proposed
method does not overfit training data and is able to generalize
to configurations that it has not seen yet. In fact, we report high
performance also on the validation and the test set, consistently
with the guidelines pointed out in [15].

Following the representations introduced in Section III,
the proposed approach utilizes X%, € N32X32X7 feature
values to represent HW Images for Area Regression (AR)
and X}, p € N32X32X6x53 feature values to represent FW
sequences for FW Metrics Regression (FMR). In contrast, the
state-of-the-art approach used thus far only aggregates feature
values in form of vectors of dimensions 1 x 9 as an input for
the AR and 1 x 6 as an input for the FMR. We implement
the state-of-the-art approach as a Multi Layer Perceptron
(MLP, cf. [15]), which is a fully connected network, i.e. non-
convolutional, for processing aggregated values. We optimize
this architecture through the TPE algorithm. In the case of the
AR, the MLP is composed by 1% Layer (11 Neurons) - 2™%
Layer (4 Neurons) while for the FMR, it is composed by 1%¢
Layer (15 Neurons) - ond Layer (6 Neurons). For both MLPs,
we use an L-BGFS optimizer, with RELU activation functions
and L2 Weight Regularizations [15]. Hyper-parameters choices
for the MLPs used are enlisted in Table I.

B. Obtained Results

Table III summarizes the respectively obtained results. Here,
the top of the table provides the mean values and the range
of the design configurations within the considered dataset
with respect to LUTs (represented by y;1), SRs (represented
by y2), Firmware Cycles (represented by ys3), and Firmware
Size (represented by y4). Additionally, we provide a brief
summary of Inputs and Outputs of our method, together with
their dimensionality. Afterwards, the corresponding results
are provided for area and firmware when the currently used
state-of-the-art method is applied (denoted by S-o-f-a) and
when the proposed method is applied (denoted by Proposed).
As results, we provide the error of the respectively esti-
mated values compared to the real values. More precisely,
the row RMSE indicates the Root of Mean Squared Error
(RMSE, [15]) on the estimates to the real values (in the form
of Ey,). Besides that, the R? Score provides the explained

Table III: Dataset and Results

Table IV: Performance Comparison

R™2 Score Tr. Time Tr. Params
2D CNN (Proposed AR) 0.9407 129.25 s 24,640
3D CNN (Proposed FMR) 0.942 747.65 s 188,222
LSTM (FMR) 0.8654 587.02 s 1,629,106
LSTM + Attention (FMR) 0.8306 1023.28 s 847,888

Py, = 456 My = 1238
Dataset Mean Ly =272 Ly, = 3516 b
y1 € [228,726 y3 € [724,1656]
Dataset Range | = 106 408] | ys € [828,5758] b
Inputs HW Images (1024x32x32x7)
P FW Sequences | (1024x32x32x6x53)
HW Images {y1,y2}
Outputs FW Sequences {y3,ya}
Area Firmware Metrics
S-o-t-a Proposed | S-o-t-a [Proposed
128 Ey, 32 By, 272 Ey, 80 Fy,
RMSE 67 Ey, | 14E,, |261bEy, | 9%b Ey,
072 RZ | 0.93 R2 0.83 R2 0.95 R2
R"2 Score b yi y3 y3
0.76 RS, | 095 Ry, 081 R, 093 R,

RMSE provides the Root of Mean Squared Error (denoted as Ey,)
and the R"2 Score provides the explained variance (denoted as R?,k)
with respect to the number of LUTSs (y1), SRs (y2), FCs (y3), and FS
(y4). Here, y4 is indicated in terms of bits (b).

variance [15] of the estimations and is accordingly indicated
as Rik. Recall, both errors are provided for LUTs (y1), SRs
(y2), FCs (y3), and FS (y4).

For example, Table III shows that the currently used
state-of-the-art method yields LUTs estimates with a mean
error of By, = 128 compared to the real LUTs values.
Additionally taking the variance in the LUTs values of the
considered dataset into account, we get Rf,l = 0.72, i.e. the
accuracy of this method is off by 28% on average.

v
L]
500 ot
. o I
-
L}
= 400 4 ® agct
2 P -
= . .
= -
S 300 ”
..
E [} L] .
[G]
200 H .
100
T T T T T
100 200 300 400 500
Prediction

Figure 6: LUTs (y;) prediction vs. ground truth

The results clearly show the significantly improved accuracy
of the proposed method compared to the state-of-the-art used
so far. The mean errors are significantly reduced. The factor
of reduction of the mean error varies from a maximum of
approx. 5 for the Ey, to a minimum of approx. 2.5 for the Ey,.
Much more important, however, is how close the considered
approaches estimate the actual values: While the accuracy of
the state-of-the-art approach frequently is off by more than
20% for area estimation and more than 15% for firmware
estimation, the elaborated consideration of spatial information
of the proposed method comes rather close to the actual values
(just 5-7% off for both area and firmware). A visualization of
the error distribution is presented in Fig. 6. Here, we show
the predictions of our method on unseen (i.e. test) data vs. the

Tr. Time provides the training time of the benchmarked neural networks,
while Tr. Params provides the No. of Trainable Parameters of the considered
neural networks models.

ground truth cost retrieved with Xilinx Vivado synthesis. These
results refer to the objective y1, on which our model performs
at its worst among the 4 objectives (error standard deviation
of 20.4, pointed out by the red lines), as shown in Table III.
One can see how every data-point is close to the diagonal, i.e.
very accurately predicted. The confidence interval between the
two lines created with the standard deviation of the errors is
very narrow with just a few points outside of it. This shows
the robustness of the proposed method everywhere and so, not
overfitting a particular subset of configurations. Furthermore,
the method proposed in this work offers higher flexibility
(e.g. could easily support additional features such as further
types of writing operations, conditional logic, etc.) since they
are directly and automatically learned in the training process
from easy-to-implement feature representations. At the same
time, our method is more scalable when compared to the
state-of-the-art since in CNNs the parameters depend less
on the input size than in fully connected networks such as
MLP, as shown in [15]. Therefore processing bigger inputs,
i.e. RI with more units/bitfields, will lead to a much minor
increase in the computational effort. The state-of-the-art is
inferior when it comes to automatic learning since it requires
still manual effort in the pre-process of data aggregation and
feature representation. Our model also provides a solution to
this last point.

In order to compare our proposed 3D CNN for FMR to
other popular neural networks architectures for sequential
information processing, we benchmarked it against an LSTM
model, first proposed in [17], and against an LSTM model
with attention, initially proposed in [2]. Table IV shows the
performance comparison of different types of models for R"2
Score, Training Time, and number of Trainable Parameters,
which relates to (but do not exclusively define) the complexity
of the model. We first report, for the sake of completeness, the
2D version of the CNN (i.e. Proposed Method for AR). To
benchmark our 3D CNN model for FMR, we build an LSTM
Network with two LSTM layers and two Fully Connected
layers. Additionally, we implemented an LSTM with Attention
with only one LSTM layer, one Attention layer, and two
Fully Connected layers. The 3D CNN has a minor number
of parameters to the LSTM model and LSTM with Attention
model but has a better accuracy than both.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a cost estimation method for
memory systems that explicitly takes spatial information into
account in order to derive much more accurate values. To
this end, we observed that problems from the domain of

Input Values
Specification
h 4 A 4
HW Image
HDL SW Sequence
\ 4
. 2D CNN
Synthesis tool 3D CNN
Real Estimated

Design Cost

Design Cost

Figure 7: Flow of the proposed method (right branch) com-
pared to the current industrial flow (left branch)

Computer Vision — in particular age determination of persons
depicted in images — are rather similar to cost estimation of
memory systems. Accordingly, we re-adapted corresponding
solutions based on Machine Learning which have been found
suitable for computer vision problems for the purpose of
cost estimation. The overall flow of the proposed method is
sketched in Fig. 7 together with the one currently used in
our industrial environment. Experimental evaluations within
an industrial context showed that, while the accuracy of the
state-of-the-art approach is far off from the actual values, the
method proposed in this work comes rather close to them. We
believe that learning the parameters directly on the data is the
key to make our method suitable for similar estimation tasks.
Moreover, we used well establish tools to conduct an extensive
study on how to choose the optimal hyper-parameters and
we finally chose the configuration that achieved the highest
performance. Nevertheless, we have shown that using a non-
cubic kernel 1 x 6 x 6 for the FMR reported quasi-optimal
performance while reducing considerably the computational
effort needed. Furthermore, the proposed approach can easily
be extended by further features. Future work will focus on
exploring this flexibility as well as the the resulting complexity
— approaching a hardware/software trade-off analysis. At the
same time, in order to develop a ML model that is measuring
uncertainty in the design cost prediction, we are exploring
Bayesian Machine Learning [24]. In this way, important infor-
mation about the confidence of the model on the prediction can
be shared with the designer, increasing his/her understanding
of the model cost estimation.

ACKNOWLEDGEMENT

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

Krste Asanovi and David A. Patterson. Instruction sets should be free:
The case for risc-v. Technical Report UCB/EECS-2014-146, EECS
Department, University of California, Berkeley, Aug 2014.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
machine translation by jointly learning to align and translate.
preprint arXiv:1409.0473, 2014.

Dana Harry Ballard and Christopher M. Brown. Computer Vision.
Prentice Hall Professional Technical Reference, 1st edition, 1982.
Bergstra, James and Bardenet, Rémi and Bengio, Yoshua and Kégl,
Baldzs. Algorithms for hyper-parameter optimization. In Proceedings
of the 24th International Conference on Neural Information Processing
Systems, NIPS’11, pages 2546-2554, USA, 2011. Curran Associates Inc.
Roberto Cipolla, Sebastiano Battiato, Giovanni Maria Farinella, et al.
Machine Learning for Computer Vision, volume 5. Springer, 2013.
Marc Claesen and Bart De Moor. Hyperparameter search in machine
learning. arXiv preprint arXiv:1502.02127, 2015.

Keerthikumara Devarajegowda, Johannes Schreiner, Rainer Findenig,
and Wolfgang Ecker. Python based framework for hdsls with an under-
lying formal semantics: (invited paper). 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1019-1025,
2017.

Tushar Dobhal, Vivswan Shitole, Gabriel Thomas, and Girisha Navada.
Human Activity Recognition using Binary Motion Image and Deep
Learning. Procedia Computer Science, 58:178 — 185, 2015. Second
International Symposium on Computer Vision and the Internet (Vision-
Netl5).

S. H. M. Durand and V. Bonato. A tool to support Bluespec System Ver-
ilog coding based on UML diagrams. In IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, pages 4670-4675,
Oct 2012.

Wolfgang Ecker, Wolfgang Mueller, and Rainer Doemer. Hardware-
dependent Software: Principles and Practice. Springer Publishing
Company, Incorporated, 1st edition, 2009.

Wolfgang Ecker and J Schreiner. Metamodeling and code generation
in the hardware/software interface domain. In Handbook of Hard-
ware/Software Codesign, pages 1051-1091, 11 2017.

T. Farkas, C. Neumann, and A. Hinnerichs. An Integrative Approach
for Embedded Software Design with UML and Simulink. In 2009
33rd Annual IEEE International Computer Software and Applications
Conference, volume 2, pages 516-521, July 2009.

Chris Fawcett and Holger H Hoos. Analysing differences between algo-
rithm configurations through ablation. Journal of Heuristics, 22(4):431—
458, 2016.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580-587, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135-1143, 2015.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735-1780, November 1997.

Hsuan Hsiao and Jason H Anderson. Sensei: An area-reduction advisor
for fpga high-level synthesis. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 25-30. IEEE, 2018.
Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush.
Character-Aware Neural Language Models. In AAAI, pages 2741-2749,
2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

K. Devarajegowda M. Manzinger W. Ecker L. Servadei, E. Zennaro
and R. Wille. Accurate cost estimation of memory systems inspired by
machine learning for computer vision. In 2019 Design, Automation and
Test in Europe(DATE). IEEE, 2018.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua
Bengio. Neural networks with few multiplications. arXiv preprint
arXiv:1510.03009, 2015.

Pingfan Meng, Alric Althoff, Quentin Gautier, and Ryan Kastner. Adap-
tive threshold non-pareto elimination: Re-thinking machine learning for
system level design space exploration on FPGAs. In Proceedings of
the 2016 Conference on Design, Automation & Test in Europe, pages
918-923. EDA Consortium, 2016.

Neural
arXiv

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807-814, 2010.

R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A
Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(10):1591-1604, Oct 2016.

Gabriela Nicolescu and Pieter J Mosterman. Model-based design for
embedded systems. Crc Press, 2009.

Mark Nixon and Alberto S. Aguado. Feature Extraction & Image
Processing for Computer Vision, Third Edition. Academic Press, Inc.,
Orlando, FL, USA, 3rd edition, 2012.

Adam Powell, Christos Savvas-Bouganis, and Peter Y. K. Cheung. High-
level Power and Performance Estimation of FPGA-based Soft Processors
and Its Application to Design Space Exploration. J. Syst. Archit.,
59(10):1144-1156, November 2013.

Johannes Schreiner and Wolfgang Ecker. Digital hardware design based
on metamodels and model transformations. In VLSI-SoC: System-on-
Chip in the Nanoscale Era - Design, Verification and Reliability -
24th IFIP WG 10.5/IEEE International Conference on Very Large Scale
Integration, VLSI-SoC 2016, Tallinn, Estonia, September 26-28, 2016,
Revised Selected Papers, pages 83-107, 2016.

Lorenzo Servadei, Elena Zennaro, Tobias Fritz, Keerthikumara Devara-
jegowda, Wolfgang Ecker, and Robert Wille. Using machine learning for
predicting area and firmware metrics of hardware designs from abstract
specifications. Microprocessors and Microsystems, 2019.

Streit, Franz-Josef and Letras, Martin and Schid, Matthias and Falk,
Joachim and Wildermann, Stefan and Teich, Jiirgen. High-level synthesis
for hardware/software co-design of distributed smart camera systems. In
Proceedings of the 11th International Conference on Distributed Smart
Cameras, ICDSC 2017, pages 174-179, New York, NY, USA, 2017.
ACM.

Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. C3D: Generic Features for Video Analysis. CoRR,
abs/1412.0767, 2014.

Dong Yi, Zhen Lei, and Stan Z Li. Age estimation by multi-scale
convolutional network. In Asian conference on computer vision, pages
144-158. Springer, 2014.

Elena Zennaro, Lorenzo Servadei, Keerthikumara Devarajegowda, and
Wolfgang Ecker. A Machine Learning Approach for Area Prediction of
Hardware Designs from Abstract Specifications. In Proceedings of the
21st Euromicro Conference on Digital System Design, 2018.

Xiang Zhang and Yann LeCun. Text Understanding from Scratch. CoRR,
abs/1502.01710, 2015.

Lorenzo Servadei is pursuing his Ph.D’s
degree at Infineon Technologies AG, in col-
laboration with the Johannes Kepler Univer-
sity Linz. His research focus is Hardware
Optimization with Machine Learning. He is
currently lecturing on Machine Learning at the
Technical University of Munich.

Edoardo Mosca currently pursues a mas-
ter’s degree in Mathematics in Data Science at
the Technical University of Munich, Germany.
He works at Infineon Technologies AG in
" Munich as Machine Learning researcher and
~ teaches Machine Learning at the Technical
University of Munich.

Elena Zennaro received the bachelor’s de-
gree in Information Engineering and the mas-
ter’s in Automation Engineering from Univer-
sity of Padova (Italy), respectively in 2015

and 2017. She is currently working at Infi-
neon Technologies AG in Munich, as Machine
Learning engineer in the Design Department.

Keerthikumara Dewarajegowda received
his master’s degree from University of Kaiser-
slautern in the year 2016. He is currently
pursuing his PhD at the University of Kaiser-
slautern. The research focus includes Formal
Verification methods for modern digital de-
signs and Design Automation methods.

Michael Werner received his M. Sc. in
Electrical Engineering and Information Tech-
nology in 2017 from the Technical University
of Munich, Germany. He is currently pursuing
as a (Ph.D) research scholar at Infineon Tech-
nologies AG in cooperation with the Technical
University of Munich with a focus on model-
driven Firmware Development.

Wolfgang Ecker is Senior Principal En-
T gineer at Infineon and Professor at Techni-
cal University of Munich. Wolfgang Ecker is
(co-)author of over 200 papers on Modelling
and Design Automation, received 5 best paper
awards, was granted with the German EDA
achievement award. He is member of Acatech,
the German Academy of Science and Engineering. Wolfgang
Ecker leads the Infineon Deep Learning internal think tank.
In addition, he is member of the Al commission of inquiry of
the German Government.

|

Robert Wille is Full Professor at the Jo-
hannes Kepler University Linz. His research
interests are in the Design Automation for
conventional and emerging technologies. In
this field, he co-authored over 300 papers, got
frequently awarded, and served the community
various capacities.

