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Abstract—Despite the recent progress in the physical im-
plementation of quantum computers, a significant amount of
research still depends on the use of quantum circuit simula-
tors running on classical hardware. While there are several
techniques for quantum circuit simulation, many state-of-the-art
simulators rely on an array-based simulation approach. However,
this array-based approach has exponential memory complexity
with respect to the number of simulated qubits. To address
this drawback, complementary approaches based on decision
diagrams have been proposed. While these approaches allow
simulating circuits that could not be simulated before, they
come with their own drawbacks. Unfortunately, no detailed
case study has been conducted to date, which compares those
complementary approaches and their respective strengths and
weaknesses. In this work, we are addressing this by providing a
survey on both approaches as well as a detailed case study on
their respective performances.

I. INTRODUCTION

Quantum computers can solve specific problems signifi-
cantly faster than classical computers by utilizing quantum
mechanical effects. First examples of quantum algorithms
are Shor’s factorization algorithm [1] and Grover’s search
algorithm [2]. Recently, other relevant applications for quan-
tum algorithms have been found in the areas of chemistry,
finance, machine learning and mathematics [3]–[7]. In addition
to the theoretical work, there have also been impressive
accomplishments towards the physical realization of quantum
computers. Most notable is Google’s recent claim of having
achieved quantum supremacy by calculating a task within two
minutes on their quantum computer for which they estimate
a state-of-the-art super-computer would require approximately
ten thousand years [8]. Also other big players such as Intel,
Rigetti, Microsoft or Alibaba are all heavily investing in this
emerging technology.

Nevertheless, the development of quantum computers still
is in its research phase and available realizations still suffer
from a limited number of qubits, a relatively high error rate
and a short coherence time. Therefore, a significant amount of
research still depends on the use of quantum circuit simulators
running on classical hardware.

From a mathematical point of view, simulating a quantum
circuit boils down to matrix-vector multiplication. Accord-
ingly, many state-of-the-art quantum circuit simulators use ar-
rays to represent vectors and matrices and conduct simulation
by matrix-vector multiplication on these arrays (e.g. [9]–[15]).
However, array-based simulators are severely limited by the
inherent exponential size of the involved vectors and matrices
with respect to the number of simulated qubits.

To overcome the restrictions of array-based quantum circuit
simulators, several other simulation approaches have been
developed, e.g. based on the stabilizer formalism [16], matrix
product states [17], tensor network contractions [18] and de-
cision diagrams [19]–[23]. These simulation styles have their
own limitations, e.g. restrictions on the employable quantum
operations, exponential growth with respect to the degree of
entanglement or feasibility only for low-depth circuits.

In the following, we focus on array- and decision
diagram-based quantum circuit simulation, because both are
common-purpose simulators (i.e. they have no restrictions in
their supported quantum operations or the circuits’ depth)
and conduct simulation by matrix-vector multiplication. While
array-based simulation is widely adopted and well understood,
decision diagram-based simulation offers potential for further
improvement. However, no detailed case study has been con-
ducted to date, which compares the strengths and weaknesses
of these two complementary approaches.

In this work, we address the lack of evaluation considering
these different simulation approaches. To this end, we first
provide a survey on array- and decision diagram-based quan-
tum circuit simulation including a discussion of their presumed
strengths and weaknesses. Afterwards, we show the results of
a detailed case study evaluating the respective performances.
For this case study, we used our access to state-of-the-art
implementations and hardware infrastructure, namely the com-
mercial Atos Quantum Learning Machine (QLM) [15] coming
with 96 cores. To the best of our knowledge, this is the first
comparison of both considered approaches on such a high-end
computer. From the results obtained by this case study, we
are able to confirm previously made discussions and provide
new insights into the strengths and weaknesses of array- and
decision diagram-based quantum circuit simulation.

The remainder of this paper is structured as follows: In
Section II, we review the basics of quantum computing.
Section III introduces how array- and decision diagram-based
quantum simulation is conducted from a conceptional point
of view. In Section IV, we present the setup of the conducted
case study, followed by the presentation and discussion of the
results. Finally, Section V concludes the paper.

II. BACKGROUND

In order to keep this work self-contained, this section briefly
reviews the concepts of quantum computing. We refer the
interested reader to [24] for a thorough introduction.
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A. Quantum States
While in classical computing the state of a system can

be described using bits which are either 0 or 1, in quantum
computation the state is described by so-called quantum bits
(qubits). Those qubits can be in the states 0 or 1, which are
called basis states and – using Dirac notation – are written as
|0〉 and |1〉. However, they can also be in an (almost) arbitrary
superposition of these two basis states. More precisely, the
state |ψ〉 of a qubit is described by |ψ〉 = α0 ·|0〉+α1 ·|1〉. The
two complex-valued factors α0 and α1 are called amplitudes
and denote how much the qubit is related to each of the two
basis states. The amplitudes must satisfy the normalization
constraint |α0|2 + |α1|2 = 1.

While measuring a classical bit returns its exact state, the
measurement of a qubit results in its collapse to one of
the basis states |0〉 or |1〉, with probability |α0|2 and |α1|2,
respectively. Thus, the exact state of a quantum system cannot
be directly observed.

These concepts can be generalized to describe states com-
posed of multiple qubits—also called quantum registers. Since
every qubit has exactly two basis states, a quantum register
composed of n qubits has 2n basis states. Each basis state
of the quantum register is represented by an |x〉, where
x ∈ {1, 0}n. This generalization leads to the following def-
inition of a quantum state:

Definition 1. All possible states of a quantum system com-
posed of n qubits are defined by

|ψ〉 =
∑

x∈{0,1}n
αx · |x〉 , where

∑
x∈{0,1}n

|αx|2 = 1, αx ∈ C.

The state |ψ〉 of a quantum register of size n can also be
written as a complex column vector of size 2n, whose entries
correspond to the amplitudes αx for x ∈ {0, 1}n.

Example 1. Consider a two qubit register in the state

|ψ〉 = 1√
2
· |00〉+ 0 · |01〉+ 0 · |10〉+ 1√

2
· |11〉 ,

which is represented as 1/
√
2 · [1 0 0 1]

>. This constitutes a
valid state since |1/√2|2 + 02 + 02 + |1/√2|2 = 1. Measuring
the system yields either |00〉 or |11〉 – both with probability
|1/√2|2 = 1/2. Note that the measurement outcome of one qubit
affects the other one as well – an essential concept in quantum
computing referred to as entanglement.

B. Quantum Operations
The state of a quantum system can be manipulated using

quantum operations. With the exception of measurements,
all quantum operations are inherently reversible and repre-
sented by unitary matrices, i.e. complex-valued square ma-
trices whose inverse is given by their conjugate transpose.
The size of the matrix depends on the number of qubits
the operation is applied to. Examples for important single
qubit operations include the NOT =

[
0 1
1 0

]
operation, which

negates the state of a qubit, and the Hadamard operation
H = 1/

√
2
[
1 1
1 −1

]
, which transform a qubit from a basis state

into a superposition. Additionally, there are also multi-qubit
operations. A prominent two-qubit operation is the controlled-
NOT operation (CNOT), which negates the state of its target

qubit if the designated control qubit is in state |1〉. The
functionality of a CNOT operation with control on the first
and target on the second qubit is represented by the matrix

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Quantum operations applied to quantum states are evaluated

by employing matrix-vector multiplication. More precisely:

Definition 2. Applying a quantum operation U ≡ [ui,j ]
(with 0 ≤ i, j < 2n), to a quantum state |ψ〉 ≡ [αx] (with
0 ≤ x < 2n), yields an output state |ψ′〉 ≡ [α′i] defined by
|ψ′〉 = U · |ψ〉, i.e.

|α′i〉 =
∑

x∈{0,1}n
ui,x · |αx〉 , for 0 ≤ i < 2n.

Example 2. Consider a quantum register |ψ〉 composed of
two qubits q0 and q1 in the state1 1/

√
2 · [1 0 1 0]

>. Applying a
CNOT operation to the state yields1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

· 1√
2

101
0


︸ ︷︷ ︸
|ψ〉

=
1√
2

100
1


︸ ︷︷ ︸
|ψ′〉

.

Measuring the final state |ψ′〉 leaves the system in state |00〉
or |11〉, each with probability |1/√2|2 = 1/2.

III. QUANTUM CIRCUIT SIMULATION

This section reviews the main concepts of array- and deci-
sion diagram-based quantum circuit simulation and discusses
their respective strengths and weaknesses. Based on that, a
case study on their performance has been conducted whose
results are summarized in the next section.

A. Array-based Simulation
The array-based simulation approach realizes the concepts

reviewed in Section II in a straightforward fashion: Vec-
tors and matrices are described in terms of 1-dimensional
and 2-dimensional arrays, respectively. Then, simulation is
conducted by matrix-vector multiplication as illustrated in
Example 2, which can easily be implemented on top of those
arrays.

One obvious drawback is that this representation incurs
a huge memory footprint, since all arrays representing the
vectors and matrices are exponentially large. As a conse-
quence, each additional qubit effectively doubles or quadruples
the required memory to represent the states and operations,
respectively. These memory requirements limit array-based
simulation methods to rather small/moderate quantum com-
putations (today’s practical limit is less than 50 qubits [8],
[25]).

In contrast, the underlying direct realization of matrix-vector
multiplication allows for huge potential with respect to con-
current executions. In fact, the multiplication of a matrix

1This state can be constructed by applying a Hadamard operation to q0
when the state is initialized to |00〉.



|00〉

|01〉
|10〉

|11〉

q0

q1

q1

1√
2

0

0

1√
2




(a) Vector representation

q0

q1 q1

1

1/
√
2

0 0

(b) DD representation

Fig. 1. Decision diagram-based state vector representation

with a vector can easily be decomposed into a series of
multiplications and additions of (smaller) sub-matrices and
sub-vectors, i.e.[

M00 M01

M10 M11

]
·
[
V0
V1

]
=

[
M00 · V0 +M01 · V1
M10 · V0 +M11 · V1

]
.

These can further be decomposed in a recursive fashion—
eventually leading to a large set of intermediate steps which
can be executed concurrently with little synchronization over-
head. State-of-the-art methods (such as [9]–[15]) make heavy
use of that and do not only use all the cores available
in modern desktop computers, but employ super-computers
which allow huge degrees of concurrency and implement
sophisticated parallelization schemes.

B. Decision Diagram-based Simulation
In order to tackle the exponential memory complexity of

array-based simulation approaches, decision diagrams (also
called DDs) have been proposed as one possibility for com-
pactly representing quantum states and operations [19]–[23].
Using decision diagrams allows for a much more compact
representation of the exponentially large matrices and vectors
and already led to substantial improvements e.g. for synthe-
sis [26]–[28] or verification [29], [30]. In the remainder of this
subsection, we provide a survey as to how decision diagram-
based simulation works and how it differs from array-based
simulation.

1) Representation of Quantum States: The general idea of
DD-based quantum simulation is that quantum states and oper-
ations are not represented in the form of vectors and matrices,
but rather as decision diagrams. More precisely, consider a
quantum register composed of n qubits q0, q1, . . . , qn−1, where
q0 represents the most significant qubit. The first 2n−1 entries
of the corresponding state vector represent entries in which
q0 is |0〉 and the other half of the state vector represents
entries in which q0 is |1〉. This corresponds to a decision
diagram node labeled q0 connected to two successor nodes
labeled q1, representing the zero- and one-successor, respec-
tively. This splitting process is conducted recursively until the
nodes representing qn−1 are eventually connected to terminal
nodes which contain the individual amplitudes. During the
decomposition, equivalent sub-vectors can be represented by
the same node, reducing the size of the generated decision
diagram. Additionally, instead of having terminal nodes for
all distinct amplitudes, edge weights are utilized to extract
common factors of sub-parts and, thus, allow for even more
compaction. The amplitude corresponding to a specific state
can then be obtained by multiplying the edge weights along
the desired path in the decision diagram. In order to improve
the readability of decision diagrams, edge weights of 1 are

q0

1
0 0

(a) NOT

q0

1

−1

1/
√
2

(b) H

q0

q1 q1

1

0 0

00 0 0
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Fig. 2. Decision diagram-based operation representation (cf. Sec. II-B)

typically omitted from the visualization and nodes with an
incoming edge weight of zero are shown as 0-stubs to indicate
that the whole sub-part is zero.

Example 3. Fig. 1 shows a quantum state in both the vector as
well as the decision diagram representation. The annotations
of the state vector in Fig. 1a indicate how the corresponding
decision diagram is constructed. In order to reconstruct the
amplitude for a specific state from the decision diagram, the
edge weights of the corresponding path need to be multiplied.
For example, reconstructing the amplitude of the state |11〉
(bold lines in the figure), requires multiplying the edge weight
of the root edge (1/√2) with the right edge of q0 (1) as well
as q1 (1), i.e. 1/

√
2 · 1 · 1 = 1/

√
2.

2) Representation of Quantum Operations: Quantum op-
erations are represented in a similar way to state vectors.
However, due to their square structure, matrices are split into
four equally sized sub-parts as opposed to two in the case of
vectors. Specifically, consider a quantum register composed of
n qubits q0, q1, . . . , qn−1 and a quantum operation represented
by the unitary matrix U of size 2n×2n. Then, the matrix U is
split into four sub-matrices, each of size 2n−1 × 2n−1. These
represent the transformation of q0 by the quantum operation.
Accordingly, a node labeled q0 is drawn in the decision
diagram and four sub-nodes are attached to it, representing the
four sub-matrices, i.e. the sub-matrix of the upper left corner
is represented by the first node, the upper right corner by the
second node, the lower left sub-matrix by the third node and
the lower right sub-matrix by the fourth node. As in the case of
vectors, this process is repeated recursively until sub-matrices
only consisting of single matrix entries remain. During the
decomposition equivalent sub-matrices are again represented
by the same node and edge weights are utilized to allow the
extraction of common factors.

Example 4. The decision diagram representations for the
quantum operations from Section II-B are shown in Fig. 2.

3) Decision-Diagram-based Simulation: Decision diagram-
based quantum circuit simulation is conducted in a similar
fashion as array-based simulation. A quantum operation U
is applied to a state |ψ〉 by multiplication as defined in
Definition 2. The multiplication needs to be decomposed with
respect to the most significant qubit, leading to

|ψ′i〉 =
2n−1∑
x=0

ui,x · |ψx〉

=

2n−1−1∑
x=0

ui,x · |ψx〉+
2n−1∑
x=2n−1

ui,x · |ψx〉 ,



or, using matrix notation,

U · |ψ〉 =
[
U00 U01

U10 U11

]
·
[
ψ0

ψ1

]
=

[
U00 · ψ0 + U01 · ψ1

U10 · ψ0 + U11 · ψ1

]
.

Thus, the resulting decision diagram consists of a top node
with the zero-successor representing U00 ·ψ0+U01 ·ψ1 and the
one-successor representing U10 ·ψ0+U11 ·ψ1. These successors
are recursively decomposed in a similar fashion until only op-
erations on complex numbers remain. Afterwards, the obtained
sub-results are added together accordingly in order to obtain
the resulting state vector. Hence, decision diagram-based sim-
ulation mainly involves recursive traversals of the involved
decision diagrams. On top of that, further optimizations are
possible with respect to the precision of the simulation [31]
or the run-time performance [32].

IV. CASE STUDY

In our case study, we compare the runtime as well as
the required memory of state-of-the-art array- and DD-based
simulators. Based on that, we gain detailed insights into their
performance as well as the strengths and weaknesses of both
approaches. In this section, the obtained results and, more
importantly, the conclusions which can be drawn from them
are summarized. To this end, we first describe the setup of the
case study in detail; afterwards, the results and conclusions
are provided.

A. Setup of the Case Study
As a state-of-the-art representative of an array-based sim-

ulator, we used the Linalg simulator from the commercial
Atos Quantum Learning Machine (QLM) [15]. The QLM
is an environment for quantum computing, which has been
developed since 2016. Among other things, it comes with its
own quantum simulators, circuit optimizers, dedicated hard-
ware and a customized Linux kernel. In 2018, the QLM was
the first simulator which allowed to simulate quantum circuits
under consideration of noise effects [33]. The particular QLM
instance we are using utilizes 96 cores running at a clock
frequency of 2.2GHz and 1.5TB of RAM.

As a state-of-the-art representative of a DD-based simulator,
we used the implementation taken from [34] (based on the
principles of [21]). To allow for a fair comparison, we ported
the DD-based simulator onto the QLM using Docker [35].
We decided to use Docker since its virtualization overhead
is negligible [36]. Therefore, both simulators are running on
the same hardware and have the same resources available.
In practice however, this DD-based simulator currently does
not make use of parallel executions (using concurrency for
DD-based simulation is still an active field of research [37]),
while the array-based simulator uses the full potential of the
hardware resources (this way having 96 times more processor
power at its disposal).

Finally, in order to properly evaluate the performance
of both simulators, different types of benchmark circuits
have been considered. This includes benchmarks representing
certain quantum characteristics (namely the Entanglement-
benchmarks, which construct entangled states), benchmarks
realizing certain quantum algorithms (namely the quantum
Fourier transform, i.e. QFT [24], Grover’s algorithm for
database search [2] and Shor’s factorization algorithm [1]),

as well as certain random circuits, designed by Google in
their development towards quantum supremacy [38], which are
engineered to be exceptionally hard to simulate classically.2
All simulations were conducted using a variable number of
qubits, allowing for a detailed evaluation of the scalability of
both simulation approaches.

B. Obtained Results

All obtained results are summarized in Figs. 3–7. The
respective plots provide the runtime (left-hand side) as well
as the memory consumption (right-hand side) for both ap-
proaches and for each benchmark (scaling with respect to the
number of qubits). Simulations, which could not be conducted
within one hour are omitted (i.e. the respective curve stops at
the largest number of qubits that could be simulated within this
time). In the following, we first discuss the obtained results
for each benchmark separately. This provides the basis for our
conclusions which are summarized afterwards.

We have decided to present our data in the form of log-
arithmic plots, since they give a more immediate impression
of how the simulators behave for specific benchmarks. In the
remainder of this section we describe the behavior of both
simulators for each benchmark.

Considering the Entanglement-benchmarks (see Fig. 3) as
well as the QFT-benchmarks (see Fig. 4), almost identical
performance can be observed: The runtime and the memory
consumption of the array-based simulator grows exponentially
with respect to the number of simulated qubits. In contrast,
the DD-based simulator shows linear growth in runtime and
memory consumption. This limits the array-based approach to
a maximum of 36 qubits, while the DD-based approach can
actually be scaled to hundreds of qubits in these cases.

Considering Shor’s algorithm (see Fig. 5), we observed
fluctuations in the runtime of the DD-based simulator. On
the one hand, this is due to the fact that multiple instances
of Shor’s algorithm with the same number of qubits but
different integers to be factored were used during the eval-
uations. Naturally, the factorization of different integers leads
to different computations during the simulation, which in turn
result in decision diagrams of varying sizes. On the other
hand, the implementation used in our evaluations contains
intermediate measurements. While the array-based simulator
does not make use of these measurements (it still stores
the whole state vector), the decision diagram-based simulator
exploits the post-measurement collapse of the quantum state
to achieve compaction. Since the measurement process is
inherently probabilistic (see Section II), its execution during
the simulation depends on a given random seed—further
explaining the varying runtimes. To properly reflect that in our
results, we plot both, the best and worst, runs for the DD-based
simulator in Fig. 5. Independently of this, we observe an
exponential growth in all cases. The DD-simulator manages
to simulate circuits composed of 30 qubits in its worst runs,
which is also the limit of the array-based simulator. In the best
case, the DD-based simulator can simulate Shor’s algorithm
with up to 34 qubits, making the DD-based approach the better
choice for simulating this important algorithm.

2All benchmarks used in the simulation are provided at https://github.com/
iic-jku/quantum_circuits.

https://github.com/iic-jku/quantum_circuits
https://github.com/iic-jku/quantum_circuits
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Fig. 3. Entanglement circuit simulation
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Fig. 4. Quantum Fourier transform circuit simulation
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Fig. 5. Shor’s algorithm circuit simulation
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Fig. 6. Grover’s algorithm circuit simulation
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Fig. 7. Quantum supremacy circuit simulation

Considering Grover’s algorithm (see Fig. 6), both simulators
exhibit exponential growth as well. But here, the array-based
simulator manages to simulate more qubits than the decision
diagram-based simulator (namely up to 29 qubits in the case
of array-based simulation and up to 19 qubits in the case of
DD-based simulation).

Finally, considering Google’s quantum supremacy bench-
marks (see Fig. 7), the array-based simulator performs signifi-
cantly better than the DD-based simulator3. This is due to the
specific structure of these benchmarks. They are specifically
designed in a way so that almost no redundancies can be ex-
ploited. Thus, the overhead in DD-based simulation, incurred
by deriving more compact representations through extracting
common factors and sharing nodes, does not pay off in these
cases. Instead, the array-based approach keeps following its
straightforward scheme which allows for simulation up to a
limit similar to the other benchmarks.

C. Resulting Conclusions
Based on the results discussed above, we draw the following

conclusions:
1) Runtime Performance: The array-based simulator al-

ways exhibits an exponential runtime with respect to the num-
ber of simulated qubits, i.e. each additional qubit effectively
doubles the runtime for the simulation. Compared to this ef-
fect, the depth of the simulated circuit, as well as the quantum

3In the plots, results are only provided for 16, 20, 25, 30 and 36 qubits,
where the DD-based simulator was only able to simulate the first two
instances.

operations, only play a minor role. In contrast, the runtime
of the DD-based simulator strongly depends on whether it is
possible to obtain a compact representation. If this is possible
(such as in the Entanglement, QFT and the Shor benchmarks),
simulation can be conducted very efficiently. Otherwise (such
as in the Grover and the supremacy benchmarks), limits are
reached quickly (in fact, in these cases, limits are reached
faster than with the array-based approach).

2) Memory consumption: With respect to memory con-
sumption, a similar performance as for the runtime can be ob-
served: The array-based approach always exhibits an exponen-
tial memory consumption, whereas the memory consumption
of the DD-based approach strongly depends on the benchmark
and whether the quantum state can be compactly represented.

3) Dependency between Runtime and Memory: The
array-based simulator displayed a strong correlation between
the runtime and the memory consumption for all circuits
we simulated. In fact, the curve progression of the runtime
graph and the memory consumption graph is roughly the same
for all benchmarks. The runtime of the DD-based simulator
also corresponds with its memory, but not in such a direct
relation. The DD-based simulator reacts more sensitively when
the memory footprint (i.e. complexity of the quantum state)
increases. Especially if the complexity exceeds some critical
threshold, the runtime “skyrockets”.

4) Predictability of Runtime and Memory Consumption:
As we have discussed above, the memory consumption of
the array-based simulator can be predicted reliably by the
number of simulated qubits. Furthermore, the runtime of the
array-based simulator strongly correlates with the memory
consumption. Those two characteristics lead to the conclusion
that the required resources of the array-based simulator can be
predicted quite accurately prior to the simulation. However,
this does not hold for the DD-based simulator. As long as
the complexity of the simulated circuit does not cross some
critical line, the DD-based simulator is very fast. Being able
to forecast the complexity of DD-based simulation (e.g. the
amount of available redundancy) prior to the simulation is non-
trivial, but might allow for a good estimate of the DD-based



simulator’s performance.

V. CONCLUSION

In this paper, we conducted a case study comparing array-
and DD-based quantum circuit simulation. By this, we shed
light on the performance of these complementary simulation
schemes. We observed that the memory consumption of the
array-based simulator always growths exponentially with the
number of simulated qubits. Since the runtime strongly cor-
relates with the memory footprint, the resource consumption
of the array-based simulator can be predicted reliably prior
to the execution. However, this predictability paired with
the exponential growth, severely limits the number of qubits
array-based simulators can handle. By using a potentially
more compact representation of the quantum state, DD-based
simulation frequently allows to simulate more qubits using less
memory. In contrast to array-based simulation the performance
does not directly depend on the number of simulated qubits,
but rather on the structure of the simulated circuit. Specifically,
there is a direct correlation between the degree of compaction
achieved during the simulation and its resource consumption.
Gaining a better understanding on how this quantity may be
estimated prior to the simulation is crucial for the effective
utilization of this simulation approach in the future. Besides
that, also questions on whether hybrid approaches are possible
or whether concurrent approaches as well as approximation
schemes can be exploited remain open issues for future work.4
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