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ABSTRACT
With quantum computers on the brink of practical applicability,

there is a lively community that develops toolkits for the design

of corresponding quantum circuits. Many of the problems to be

tackled here are similar to design problems from the classical realm

for which sophisticated design automation tools have been devel-

oped in the previous decades. In this paper, we present JKQ—a set
of tools for quantum computing developed at the Johannes Kepler
University (JKU) Linz which utilizes this design automation exper-

tise. By this, we offer complementary approaches for many design

problems in quantum computing such as simulation, compilation,

or verification. In the following, we provide an introduction of the

tools for potential users who would like to work with them as well

as potential developers aiming to extend them.

1 INTRODUCTION
Quantum computing is gaining momentum and the development of

physical realizations has shown significant progress in the recent

past—indicating that quantum computing approaches the barrier

of being an established technology rather than an emerging one.

Accordingly, there is a lively community of researchers and indus-

trial stakeholders currently developing toolkits that allow to work

with these machines (such as IBM’s Qiskit [1], Google’s Cirq [7], or

Rigetti’s Forest [9]). However, developing efficient design methods

is an immensely complex task due to the combinatorial and expo-

nential nature of many design problems considered for quantum

computing—some have even been proven to be NP-complete [2],

coNP-hard [16], or QMA-complete [13].

In the classical realm of electronic circuits and systems, similar

design tasks are well-defined and have been studied by researchers

and engineers for decades—resulting in sophisticated design tools

for software as well as hardware that are taken for granted today

and can handle complexity of impressive scales. The availability

of those methods and tools is a main reason for the utilization and

penetration of (classical) electronic devices into almost all parts of

our daily life.

In this work, we present tools for quantum computing that utilize

this design automation expertise. More precisely, we introduce

JKQ—a set of corresponding tools developed at the Johannes Kepler
University (JKU) Linz. While certainly each tool (including ours) has

its strengths and weaknesses, we offer complementary approaches

for many of the problems that need to be tackled when designing

quantum circuits—including simulation, compilation, or verification

of quantum circuits. By making JKQ tools publicly available as

open source, we also provide other researchers with the option to

incorporate the underlying methods into their existing tools. This

already motivated, e.g., IBM and Atos to include our simulation

approach based on decision diagrams as well as one of our mapping

techniques based on informed search algorithms into their tools.

In the following, we provide an introduction of the tools for

potential users which would like to work with them as well as

potential developers aiming to extend them. Therefore, Sec. 2 re-

views the necessary background on quantum computing. Then,

Sec. 3 briefly details three fundamental design tasks in quantum

computing and how to approach them with JKQ tools from a user

perspective. Afterwards, Sec. 4 gives insight on how the JKQ tool

set is organized and where interested developers can start to extend

the available tools with their own methods. Finally, Sec. 5 concludes

the paper.

2 BACKGROUND
In the realm of quantum computing, the basic unit of information

is the quantum bit or qubit, which—in contrast to classical bits—

can not only be in one of its two orthogonal basis states (denoted

|0⟩ and |1⟩ using Dirac notation), but also in an (almost) arbitrary

superposition of both. This is expressed by complex amplitudes in
front of the basis states, i.e., α0 |0⟩ + α1 |1⟩, with the normalization

constraint |α0 |
2+ |α1 |

2 = 1. This allows an n-qubit quantum system

to represent 2
n
different complex values at once—exponentially

more than classical n-bit systems (which can only represent n dif-

ferent Boolean values at a time). The quantum states themselves

are commonly represented by column vectors. A second important

quantum mechanical phenomenon exploited for quantum comput-

ing is entanglement, i.e., operations on a single qubit may affect

other qubits as well.

Example 1. Consider a quantum system with two qubits in the
state

|ψ ⟩ = 1√
2

· |00⟩ + 0 · |01⟩ + 1√
2

· |10⟩ + 0 · |11⟩ = 1√
2

(|00⟩ + |10⟩) .

This is a valid quantum state since |1/
√
2|2 + |1/

√
2|2 = 1. The corre-

sponding vector representation is commonly denoted [ 1/√2 0 1/
√
2 0 ]T.
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q2 : |0⟩ X H

q1 : |0⟩ H H X H H X H

q0 : |0⟩ H H X X H

Figure 1: Quantum circuit diagram

Operations to be applied to n-qubit quantum states are defined

by 2
n×2n -dimensional unitary matrices

1
and, hence, are inherently

reversible.

Example 2. Frequently used quantum operations are the Hadamard
operation (H), the Pauli-X operation (X), and the controlled-NOT op-
eration (CNOT), which set a qubit into superposition (H), invert the
state of a qubit (X), or apply an X operation to a target qubit iff
the state of a designated control qubit is |1⟩ (CNOT), respectively. As
matrices, these are denoted as follows:

H =
1

√
2

[
1 1

1 −1

]
,X =

[
0 1

1 0

]
,CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Applying the CNOT operation to the quantum state |ψ ⟩ from Ex. 1

yields the following quantum state |ψ ′⟩:
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

︸             ︷︷             ︸
CNOT

×


1/
√
2

0

1/
√
2

0

︸︷︷︸
|ψ ⟩

=


1/
√
2

0

0

1/
√
2

︸︷︷︸
|ψ ′⟩

≡
1

√
2

(|00⟩ + |11⟩)

In a physical quantum computer, the only way to retrieve infor-

mation about a quantum state is measurement, which yields exactly

one basis state. After measuring, the quantum state collapses to

the measured quantum state, i.e., superposition and entanglement

are destroyed. Therefore, subsequent measurements on the same

qubits will yield the same results.

Example 3. Measuring the the quantum state |ψ ′⟩ from Ex. 2
would result in either |00⟩ or |11⟩—each with a probability of 50 %.
After this measurement, the quantum state vector would either be
[ 1 0 0 0 ]T or [ 0 0 0 1 ]T, depending on the measurement result.

Quantum algorithms are commonly described by circuit dia-

grams with horizontal lines representing the qubits and symbols

on these lines representing the quantum operations to be applied

from left to right.

Example 4. Fig. 1 shows a quantum circuit diagram describing
a prominent quantum algorithm, namely Grover’s algorithm [10].
Control qubits are denoted by “•” whereas the target of the CNOT is
denoted by “⊕”. The two-controlled NOT gate is also called Toffoli

gate.

3 JKQ TOOLS FOR USERS
JKQ tools offer an interface for users to leverage the power of de-

sign automation for quantum computing as a black box: The user

1
AmatrixU is unitary if and only ifU U † = U †U = I, whereU †

denotes the complex

conjugate ofU and I denotes the identity matrix.

provides the input and does not have to develop a deeper under-

standing of the methods. In the following, Sec. 3.1 shows how to

download and build the JKQ tools. Then, we discuss three funda-

mental design problems in quantum computing, namely simulation

(Sec. 3.2), compilation (Sec 3.3), and verification (Sec 3.4), and show

how the JKQ tools can be applied to address them.

3.1 Download and Installation
Using the tools under UNIX operating systems requires cloning the

GitHub repository https://github.com/iic-jku/jkq.git and building

the tools as follows
2
:

1 $ git clone https :// github.com/iic -jku/jkq.git
2 $ cd jkq/
3 $ ./jkq build
4 Building JKQ Tools
5 [...]
6 $ ./jkq help
7 [displays available commands]

3.2 Simulation
Simulating quantum circuits on a classical machine is essential

for the development of (prototypes of) quantum algorithms, for

considering the behavior of physical quantum computers, as well as

for studying error models. In fact, classical simulations of quantum

computations provide deeper insights, since it allows to observe the

individual amplitudes of a quantum state (which is impossible when

executing a quantum computation on a quantum device). Moreover,

costly executions on real quantum devices—whose availability is

still rather limited—can be avoided when using simulators.

The simulation of quantum circuits is commonly conducted by

matrix-vector multiplication as described in Sec. 2. This approach

quickly becomes intractable due to the exponential growth of the

quantum state with respect to the number of qubits—quickly ren-

dering such simulations infeasible even on supercomputer clusters.

Simulation methodologies based on decision diagrams [17, 23] are

a promising complementary approach as decision diagrams often

allow to reduce the required memory by exploiting redundancies

in the simulated quantum state.

JKQ offers a decision diagram-based quantum circuit simula-

tor (DDSIM) which allows to simulate quantum circuits defined

in the REAL [18] or OpenQASM [8] format alongside parameter-

ized Grover’s algorithm [10], Shor’s algorithm [15], and Quantum

Fourier Transformation [14].

Example 5. Simulating Grover’s algorithmwith 2 qubits (see Fig. 1)
with the JKQ simulator can be conducted as follows:

1 $ ./jkq simulate --simulate_grover 2 \
2 --shots 1000 --ps
3 {
4 "measurements": {
5 "000": 503,
6 "100": 497
7 },
8 "state_vector": [...],
9 "non_zero_entries": 2,
10 "statistics": {
11 "simulation_time": 0.125837 ,
12 "measurement_time": 0.000180 ,

2
The building process requires a C++14-compatible compiler, CMake version ≥ 3.10,
and the boost (program_options) library.

https://github.com/iic-jku/jkq.git
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Figure 2: Mapping a circuit to a target architecture

13 "benchmark": "grover_2",
14 "shots": 1000,
15 "n_qubits": 3,
16 "applied_gates": 16,
17 "max_nodes": 8,
18 "seed": 0
19 }
20 }

Here, the parameters define the number of measurements to be per-
formed on the final quantum state (--shots 1000) and cause the simula-
tor to output the quantum state vector (--display_vector) as well as to
print statistics (--ps). The output is formatted according to the JSON
standard and, hence, easily machine readable.

Simulations of a given REAL or OpenQASM file with the simula-

tor can be startedwith the parameter --simulate_file <filename>.<extension>

(the respective format is derived from the extension). The full set

of parameters can be listed via ./jkq help simulate. This includes ad-

vanced techniques such as emulation [26], which enable significant

speedups for certain quantum algorithms, and weak simulation [12],

which more faithfully mimics a physical quantum computer. In the

near future, also further improvements, e.g., based on approxima-

tion [20] as well as further features such as the consideration of

decoherence errors [11] will be supported.

3.3 Compilation
Since superconducting quantum computers in the NISQ era are

bound by connectivity constraints, only support a limited set of

elementary gates, and are heavily affected by noise, high-level

descriptions of quantum algorithms have to be compiled through

different layers of abstraction before being executable on the actual

quantum computer. A major part of this compilation flow consists

of mapping, i.e., making an already decomposed circuit conform to

the device’s connectivity constraints (which are usually provided

as a coupling map).

A circuit is typically mapped to the actual device by inserting

SWAP operations into the circuit—dynamically permuting the loca-

tion of the logical qubits on the device’s physical qubits such that

each operation conforms to the coupling map. Due to the inherent

influence of noise and short coherence times of today’s quantum

computers, it is of utmost importance to keep the overhead induced

by the mapping procedure as low as possible. As this problem has

been shown to be NP-complete [2], there is a high demand for

automated and efficient solutions.

JKQ offers quantum mapping (QMAP) tools which satisfy all

constraints given by the targeted architecture and, at the same time,

aim to keep the overhead in terms of additionally required quantum

gates minimal. More precisely, three different approaches based on

design automation techniques are provided, which are both generic

and can be easily configured for future architectures: The first one

is a general solution for arbitrary circuits based on informed-search

algorithms [22]. The second one is optimized for a certain set of

so-called SU(4) quantum circuits which have been introduced to

benchmark compilers [25]. The third one is a solution for obtaining

mappings ensuring minimal overhead with respect to SWAP gate

insertions [19]
3
.

Example 6. Assume we want to perform the computation simu-
lated in Ex. 5 on the “ibmq_london” quantum computer (see Fig. 2b
for its coupling map) and assume the Toffoli gate has already been
decomposed as shown in Fig. 2a. For the mapping task itself only
two-qubit gates matter, as shown in Fig. 2c. While naively executing
the task (see Fig. 2d) is not feasible in general, the JKQ tool produces
results with far less overhead (see Fig. 2e). The mapping task can be
conducted as follows:

1 $ ./jkq map --in grover_2.qasm --out grover_2m.qasm \
2 --arch ibmq_london.cm --method heuristic --ps
3 {
4 "circuit": {
5 "name": "grover_2",
6 "n_qubits": 3,
7 "n_gates": 30,
8 },
9 "mapped_circuit": {
10 "name": "grover_2m",
11 "n_qubits": 5,
12 "n_gates": 33,
13 },
14 "statistics": {
15 "mapping_time": 0.001638 ,
16 "additional_gates": 3,
17 "method": "heuristic",
18 "arch": "ibmq_london.cm"
19 }
20 }

Here, the parameters define the input file (--in), an output file (--out),
an architecture to map to (--arch), as well as the method to use (--method).
Several pre-defined architectures for current IBM devices are already
available. A complete list as well as detailed information on all avail-
able options is available via ./jkq help map.

3.4 Verification
Compiling quantum algorithms results in different representations

of the considered functionality, which significantly differ in their ba-

sis operations and structure but are still supposed to be functionally

equivalent. Consequently, checkingwhether the originally intended

functionality is indeed maintained throughout all these different

abstractions becomes increasingly relevant in order to guarantee an

efficient, yet correct design flow. Existing solutions for equivalence

checking of quantum circuits suffer from significant shortcomings

due to the immense complexity of the underlying problem—which

3
In order to use this method the Z3 theorem prover library (https://github.com/

Z3Prover/z3) needs to be installed.

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
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has been proven to be QMA-complete [13]. However, certain quan-

tum mechanical characteristics provide impressive potential for

efficient equivalence checking of quantum circuits.

JKQ offers a quantum circuit equivalence checking (QCEC) tool

which explicitly exploits these characteristics based on the ideas

outlined in [4–6] and offers a strategy especially suited for verifying

compilation results [3].

Example 7. Verifying the compilation results from Ex. 6 can be
conducted as follows:

1 $ ./jkq verify grover_2.qasm grover_2m.qasm \
2 --method compilationflow --ps
3 {
4 "circuit1": {
5 "name": "grover_2",
6 "n_qubits": 3,
7 "n_gates": 30
8 },
9 "circuit2": {
10 "name": "grover_2m",
11 "n_qubits": 5,
12 "n_gates": 33
13 },
14 "equivalence": "EQ",
15 "statistics": {
16 "verification_time": 0.000122 ,
17 "max_nodes": 17,
18 "method": "Compilation Flow"
19 }
20 }

Assuming that an error in the design flow led to a wrong realization
grover_2_error.qasm of the desired Grover circuit. Then, JKQ also offers a
dedicated method for quickly discovering such non-equivalences. This
method can be used as follows:

1 $ ./jkq verify grover_2.qasm grover_2_error.qasm \
2 --method simulation --ps
3 {
4 "circuit1": {
5 "name": "grover_2",
6 "n_qubits": 3,
7 "n_gates": 30
8 },
9 "circuit2": {
10 "name": "grover_2_error",
11 "n_qubits": 5,
12 "n_gates": 35
13 },
14 "equivalence": "NEQ",
15 "statistics": {
16 "verification_time": 0.008476 ,
17 "max_nodes": 11,
18 "method": "Simulation",
19 "nsims": 1
20 }
21 }

A complete list of the available methods as well as additional

configuration options can be listed via ./jkq help verify.

4 DEVELOPER’S PERSPECTIVE
The tools described above are quite powerful by themselves; nonethe-

less, there is always room for improvement and further features.

Because of this, all JKQ tools are open source and developers are

kindly invited to extend or modify the methods at their own dis-

cretion. This section gives a brief overview of how the tools work

internally and serves as a starting point for the interested developer

wanting to take a deeper dive.

DD package

QFR

DDSIM QMAP QCEC

JKQ

Figure 3: Structure of the JKQ tools

Structurally, the JKQ tools are separate applications with a shell

script named jkq calling the correct application based on the param-

eters and providing help on the usage. Their dependency relations

are illustrated in Fig. 3 and the source code of the individual appli-

cation can be found on GitHub via https://github.com/iic-jku.

Each application depends on a library referred to as Quantum

Functionality Representation (QFR), which handles the input and

output of files describing quantum functionalities. Additionally

selected quantum algorithms like Grover’s search and Shor’s algo-

rithm are directly integrated as classes—allowing to programatically

construct the respective quantum circuits for simulation, compila-

tion, or verification with parameters controlling, e.g., the number

qubits. The QFR itself depends on a package providing the func-

tionality for representing and manipulating quantum states and

operations via decision diagrams [21, 24].

Example 8. Fig. 4 shows the decision diagram of the quantum state
|ψ ′⟩ = [ 1/

√
2 0 0 1/

√
2 ]T from Ex. 2. Following the bold path on the right

and multiplying the edge-weights on the way (1 weights are omit-
ted), reconstructs the amplitude of the |11⟩ state: 1 · 1/

√
2 · 1 = 1/

√
2.

Decision diagrams can also represent matrices, and natively support
operations such as addition, multiplication, transposition, tensor prod-
uct, trace, and fidelity computation.

The DD package has options that are set during compilation and

influence the later execution in simulation and verification. These

fall in one of the following categories:

• Cache sizes: The underlying routines storing and operating

on decision diagrams use different caches for nodes and

edges. There is a trade-off between larger cache sizes and

better data locality. Developers can adjust these values ac-

cording to their needs.

• Floating point representation: Across all individual projects,
the generally used floating point datatype by default is double

(i.e., 64 bit on most platforms), as defined through the fp

alias. Depending on the required precision, the developer

may change this to float (less precision with faster execution)

or long double (higher precision but slower execution). If the

precision is changed, this should be reflected in the TOLERANCE

(both are defined in DDcomplex.h) which mitigates effects caused

by the fundamentally limited precision in the representation

of complex numbers [21].

Support for additional “hardcoded” algorithms or file formats

should be integrated into the QFR, so the tools for simulation,

mapping, and verification can access these new features.

The simulator can be used as follows:

https://github.com/iic-jku
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Figure 4: Decision diagram

1 QuantumComputation qc1("shor_115_2.qasm");
2 QFRSimulator sim(qc1);
3 sim.Simulate ();
4 auto samples = sim.MeasureAllNonCollapsing (1000);

This reads a file shor_115_2.qasm into the QFR and uses the result-

ing QuantumComputation object to construct the simulator instance. The

actual simulation process is handled in the Simulate method, where

developers can start optimizing for their specific problem by creat-

ing their own simulator. For the simulation of files each instruction

in the input file is translated into the corresponding decision di-

agram (for unitary operations) and applied to the quantum state.

Non-unitary operations such as measurements require separate

handling in the program. Other paradigms such as weak simula-
tion [12] are also supported and easy to extend.

The mapping tool uses configuration files for specifying the

coupling maps of different architectures. The file ibmq_london.cm for

the architecture from Fig. 2b for example looks as follows:

1 0 1 b // connectivity: control target (bidirectional)
2 1 2 b
3 1 3 b
4 3 4 b

Developers wanting to use our tool for their applications just need

to provide a similar file for the desired architecture.

The equivalence checking methodology described in [3–6] is

readily extendable and offers lots of freedom for adapting to specific

scenarios. Developers wanting to implement their own equivalence

checking strategies can get started at ImprovedDDEquivalenceChecker.hpp.

There, the Proportional strategy for example is realized in the follow-

ing way:

1 int ratio1 = std::max(1,qc1.getNops ()/qc2.getNops ());
2 int ratio2 = std::max(1,qc2.getNops ()/qc1.getNops ());
3 while (it1 != end1 && it2 != end2) {
4 for (int i=0; i<ratio1 && it1!=end1; ++i, ++it1)
5 applyGate (*it1 , results.result , perm1 , LEFT);
6 for (int i=0; i<ratio2 && it2!=end2; ++i, ++it2)
7 applyGate (*it2 , results.result , perm2 , RIGHT);
8 }

In CompilationFlowEquivalenceChecker.hpp, the dedicated compilation flow

verification strategy can easily be extended to anticipate further

optimizations, or adapt to compilation flows different than IBM

Qiskit [1].

For more details on the respective implementations, we refer to

the documentations in the respective repositories at https://github.

com/iic-jku.

5 CONCLUSIONS
This paper provided a brief overview of the JKQ design automa-

tion tools for quantum computing. We covered the tools from two

perspectives: First, for users, who want to solve their problems, but

not necessarily develop a deeper understanding of the tools and

how they work. Second, for developers, who want to enhance or

integrate the tools to tackle their specific problems in quantum

computing. We hope that, with these tools, we provide a useful

contribution to the growing quantum computing community.
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