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Abstract—The rapid rate of progress in the physical realization
of quantum computers sparked the development of elaborate
design flows for quantum computations on such devices. Each
stage of these flows comes with its own representation of the
intended functionality. Ensuring that each design step preserves
this intended functionality is of utmost importance. However,
existing solutions for equivalence checking of quantum compu-
tations heavily struggle with the complexity of the underlying
problem and, thus, no conclusions on the equivalence may be
reached with reasonable efforts in many cases. In this work,
we uncover the power of simulation for equivalence checking
in quantum computing. We show that, in contrast to classical
computing, it is in general not necessary to compare the complete
representation of the respective computations. Even small errors
frequently affect the entire representation and, thus, can be
detected within a couple of simulations. The resulting equivalence
checking flow substantially improves upon the state of the art
by drastically accelerating the detection of errors or providing a
highly probable estimate of the operations’ equivalence.

Index Terms—equivalence checking, quantum computing, sim-
ulation, verification

I. INTRODUCTION

Quantum computers are at the brink of transcending from
academic research to becoming commercially available as
shown, e.g., by IBM unveiling their IBM Q System One
in 2019 [1]. However, given a conceptual quantum algorithm,
it is not a straightforward task to execute such a quantum
computation on an actual quantum computer. The restriction
to specific gate libraries and certain architectural constraints
necessitate methods for decomposing a high-level description
into low-level operations provided by the targeted architec-
ture [2]–[5], as well as for mapping a resulting circuit to a
description which complies to the target’s constraints [6]–[10].
In between these steps, several optimizations may be ap-
plied in order to improve the performance of the respec-
tive computation [11], [12]. Supported by toolkits such as
IBM’s Qiskit [13], Microsoft’s QDK [14], or Rigetti’s Forest
SDK [15], elaborate design flows emerged.

Each stage of these design flows creates a description of
the intended functionality. During this process, it is of utmost
importance that this functionality is preserved throughout
all levels of abstraction and/or optimizations. To this end,
equivalence checking aims to prove the functional equivalence
of two quantum computations or to show by a counterexample
that those computations are not equivalent. Several approaches
addressing this task have been proposed in the past, e.g., based
on re-writing [16], Boolean satisfiability [17], or decision

diagrams [18]–[22]. However, all current approaches construct
and compare the complete functionality of the considered
computations. Even for small cases, this quickly amounts to a
substantially complex task which often cannot be completed
with reasonable efforts.

In this work, we propose to tackle this task from a new
perspective by incorporating the power of simulation into cur-
rent equivalence checking flows. More precisely, we observe
that, due to the inherent reversibility of quantum operations,
even small errors in general affect most (if not all) the
functionality of a quantum system. This is in stark contrast
to classical circuits where errors are frequently masked due
to the inherent information loss introduced by many logic
gates. As a consequence, in order to check the equivalence
of two quantum computations it is in general not necessary
to consider their complete functionality. Motivated by this,
we propose to first compare the outcomes of a couple of
simulations of both computations with arbitrary computational
basis states – a task significantly less complex than covering
the complete functionality. If none of those simulations reveal
the non-equivalence of the circuits under consideration, any
current state-of-the-art equivalence checking routine can still
be utilized.

In the following, we show that this indeed leads to sub-
stantial improvements. In fact, simulation reliably allows for
the detection of errors drastically faster than ever before –
in most of the cases just a single run is sufficient. Ad-
ditionally, if no sign of non-equivalence can be detected
within a few simulations, this yields a highly-probable estimate
(although no guarantee) of the operations’ equivalence, while
state-of-the-art equivalence checking routines frequently time
out in these cases (which does not allow for any kind of
conclusions). Those findings are confirmed by both theoretical
as well as experimental evaluations.

The remainder of this paper is structured as follows: Sec-
tion II covers the required background on quantum computing.
Then, Section III discusses how equivalence checking is
currently conducted in quantum computing and illustrates the
power of simulation. Based on these observations, Section IV
provides a theoretical discussion on the matter and describes
the proposed equivalence checking flow. The substantial im-
provements achievable by the proposed flow are demonstrated
by the experimental evaluations in Section V. Section VI
concludes the paper.
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C-NOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

SWAP =

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
(a) Quantum operations

q2 • H •
q1 H • •
q0 H H
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(b) Quantum circuit G

1
2


1 0 1 0 0 1 0 −1
0 1 0 1 1 0 −1 0
1 0 −1 0 0 1 0 1
0 1 0 −1 1 0 1 0
1 0 1 0 0 −1 0 1
0 −1 0 −1 1 0 −1 0
1 0 −1 0 0 −1 0 −1
0 −1 0 1 1 0 1 0


(c) U describing G and G′

1
2


1 0 1 0 0 1 0 −1
1 0 −1 0 0 1 0 1
1 0 1 0 0 −1 0 1
1 0 −1 0 0 −1 0 −1
0 1 0 1 1 0 −1 0
0 1 0 −1 1 0 1 0
0 −1 0 −1 1 0 −1 0
0 −1 0 1 1 0 1 0


(d) Ũ ′ describing G̃′

Fig. 1. Concepts of quantum computing

II. BACKGROUND

To keep this paper self-contained, this section reviews
the basics of quantum computing and introduces the main
concepts used throughout this paper. The descriptions are kept
brief, but we refer the interested reader to [23] for a more
thorough introduction.

While classical computations only operate on bits, i.e., on
0 and 1, quantum computing works with so-called quantum
bits (qubits). A single qubit |ϕ〉 cannot only be in one of
the two computational basis states denoted by |0〉 and |1〉,
but also in an arbitrary superposition |ϕ〉 = α0|0〉 + α1|1〉
with α0, α1 ∈ C and |α0|2 + |α1|2 = 1. Moreover, while one
can determine with certainty if a classical bit is 0 or 1, one
cannot determine the precise state of a qubit, i.e., the values αi.
Instead, measurement of a qubit yields a basis state (|0〉 or |1〉),
with probability |α0|2 and |α1|2, respectively. Furthermore, a
measurement collapses the state of the qubit to the computa-
tional basis state corresponding to the measurement result.

Example 1. Consider |ϕ〉 = 1√
2
(|0〉 + |1〉). This is a valid

qubit state, since | 1√
2
|2 + | 1√

2
|2 = 1. After measurement,

the state of this qubit collapses to |0〉 or |1〉 with probability
| 1√

2
|2 = 0.5, respectively.

In an ensemble of n qubits, there exist 2n computational
basis states {|i〉}2

n−1
i=0 , where the individual qubit states cor-

respond to the binary representation of i ∈ {0, . . . , 2n − 1},
i.e., |i〉 = |(in−1 . . . i0)2〉 = |in−1〉 ⊗ · · · ⊗ |i0〉. The state
of such a system is again described by a superposition of
computational basis states, i.e., |ϕ〉 =

∑2n−1
i=0 αi|i〉 with

αi ∈ C and
∑2n−1

i=0 |αi|2 = 1. Thus, the state of an n-qubit
system may also be represented by a 2n-dimensional complex
unit vector, also called state vector, i.e., |ϕ〉 ≡ [αi]

2n−1
i=0 .

Example 2. Consider the so-called Bell state defined as
1√
2
(|002〉+ |112〉). The corresponding state vector representa-

tion is given by 1√
2
[1 0 0 1]>. Measuring the first qubit of this

state leads to a result of 0 or 1 – each with a probability of 0.5.
By this, the state of the second qubit is already determined.
The Bell state is an example of an entangled qubit state – a
concept unique to quantum computing.

In order to perform quantum computations, certain quan-
tum operations (also called quantum gates) are applied to
the qubits of a quantum system – transforming an arbitrary
qubit state |ϕ〉 into another state |ϕ′〉. Such manipulations of
quantum states are described as 2n × 2n complex matrices U
acting on the state vector of the qubits. Since the resulting

vector shall again describe a quantum state, the matrix U
must preserve the unit length of the ingoing state vector. Thus,
matrices U describing quantum operations must be unitary1.

Example 3. Prominent representatives of single-qubit opera-
tions include the X operation (which negates the value of a
qubit state) and the Hadamard operation H (which sets a qubit
into superposition), whose matrix representations are given
by
[
0 1
1 0

]
and 1√

2

[
1 1
1 −1

]
, respectively. Most multi-qubit opera-

tions are so-called controlled-U operations, where a certain
single-qubit operation U is applied to a specific target qubit
only when the state of certain designated control qubits is |1〉.
Here, the controlled-NOT (CX or C-NOT) 2-qubit operation is
widely used, since in combination with arbitrary single-qubit
operations it allows for universal quantum computing [23].
The functionality of the C-NOT operation is described by the
22 × 22 matrix shown in Fig. 1a.

Finally, a quantum computation then consists of a sequence
of quantum operations applied to an n-qubit system. This
is typically visualized in terms of a quantum circuit, where
the evaluation of qubit states is represented by individual
wires and quantum operations to be performed on these
qubits are represented by gates. More formally, a quantum
circuit G = g0g1 . . . gm−1 with gates {gi}m−1i=0 operating
on n qubits directly translates to a unitary system matrix
U via U = Um−1 · · ·U0 where Ui is the unitary matrix
corresponding to gate gi for i ∈ {0, . . . ,m− 1}. In order
to describe operations acting on a subset of the system’s
qubits, the matrix describing the quantum operation has to
be “extended” to a 2n × 2n representation by using tensor
products of smaller matrices.

Example 4. Fig. 1b shows an example of a quantum circuit
with m = 8 gates operating on n = 3 qubits containing only
Hadamard and C-NOT gates, where • indicates the control
and ⊕ the target of a C-NOT. To construct the system matrix U
of this circuit, the individual 2 × 2 or 22 × 22 gate matrices
(cf. Example 3) have to be “extended” to 23×23 matrices and
multiplied in reverse order. In case of the first Hadamard gate
(applied to the second qubit), the corresponding “extended”
matrix is given by I2⊗H⊗I2, where I2 denotes the 2×2 identity
matrix. The whole functionality of the quantum computation
described by G is represented by the matrix U shown in
Fig. 1c.

1A matrix U is unitary when UU† = I, where U† denotes the adjoint (or
conjugate transpose) of U and I denotes the identity matrix. Thus, it holds
for a unitary matrix U that U−1 = U†.



q2 • H × ×
q1 H • • × • ×
q0 H H

g′0 g′1 g′2 g′3 g′4 g′5 g′6 g′7 g′8 g′9

Fig. 2. Mapped quantum circuit G′

III. THE POWER OF SIMULATION
IN EQUIVALENCE CHECKING OF QUANTUM CIRCUITS

In quantum computing, a multitude of design tasks have
to be conducted in order to realize a conceptual quantum
algorithm on an actual quantum computer. Here, ensuring that
each design step preserves the intended functionality is of
utmost importance. Equivalence checking aims to prove the
functional equivalence of two quantum computations (usually
provided as quantum circuits G and G′) or to show by a
counterexample that those computations are not equivalent. In
this section, we discuss how equivalence checking is currently
conducted in quantum computing and, afterwards, illustrate the
power of simulation that addresses current limitations.

A. Motivation

Consider two quantum computations operating on n
qubits and provided as circuits G = g0 . . . gm−1 and
G′ = g′0 . . . g

′
m′−1. As reviewed in the previous section, the

functionality of both computations is uniquely described by the
respective matrices U = Um−1 · · ·U0 and U ′ = U ′m′−1 · · ·U ′0,
where the matrices U

(′)
i describe the functionality of the

respective circuit’s gates. Consequently, deciding the equiv-
alence of both computations reduces to comparing these
matrices. In order to perform this comparison, these system
matrices are constructed from the individual gate descriptions
by subsequent matrix-matrix multiplication.

Example 5. Consider again the circuit G from Fig. 1b. In
order to realize this circuit on an actual quantum computer,
restrictions in the interactions between qubits have to be
satisfied. This can be done by adding SWAP gates2 (cf. Fig. 1a
for the matrix representation) and may result in a circuit G′

as shown in Fig. 2 (qubits modified by SWAP gates are
indicated by ×). Constructing the respective system matrices
by multiplying the corresponding gate matrices Um−1 · · ·U0

and U ′m′−1 · · ·U ′0 yields the matrix U as shown in Fig. 1c in
both cases. Thus, both circuits G and G′ are equivalent.

However, since the involved matrices are exponential in size
with respect to the number of qubits, this quickly yields a sub-
stantially complex task (in fact, it has been proven that equiv-
alence checking of quantum circuits is QMA-complete [24]).
In order to tackle this complexity, several methods based
on re-writing [16], Boolean satisfiability [17], or decision
diagrams [18]–[22] have been proposed. However, while those
methods indeed allow to cope with the complexity at least for
small quantum circuits, the state of the art remains heavily re-
stricted by the QMA-completeness of the underlying problem.

2For details on this mapping process, we refer to corresponding design
works such as [6]–[10].

B. General Idea

In this work, we advocate to tackle equivalence checking
of quantum circuits from a new perspective which allows to
escape this complexity to some extent. The main idea rests on
the observation that even small errors do not only lead to small
changes in the overall behavior of a circuit, but frequently
affect the circuit’s system matrix in its entirety. Because of
that, checking the complete system matrix is in general not
necessary – in particular when two circuits are not equivalent.
Then, rather than constructing the overall matrices U and U ′

for both computations (requiring the expensive matrix-matrix
multiplications Um−1 · · ·U0 and U ′m′−1 · · ·U ′0), it is sufficient
to just compare single columns (which can be constructed by
less expensive matrix-vector multiplications). This is identical
to simulating both circuits with a computational basis state |i〉
as input, i.e., conducting Um−1 · · ·U0|i〉 and U ′m′−1 · · ·U ′0|i〉
yielding the ith column |ui〉 and |u′i〉, respectively. If those
columns differ, the non-equivalence of the two given circuits
has been shown.

Example 6. Consider again the circuits G and G′ from Fig. 1b
and Fig. 2, respectively, but assume that a bug in the mapping
tool led to a circuit G̃′ where the last SWAP gate (g′10) is
not correctly applied to the qubits q1 and q2, but rather to the
qubits q1 and q0. Then, circuit G̃′ does not realize the function
as described by the matrix U from Fig. 1c, but by the matrix Ũ ′

shown in Fig. 1d. Since U and Ũ ′ are obviously not identical
anymore, also the circuits G and G̃′ have been shown to be
non-equivalent. Moreover, since U and Ũ ′ differ in all their
columns, this non-equivalence can be detected by constructing
any two columns |ui〉 and |ũ′i〉, rather than constructing both
matrices U and Ũ ′.

Conducting equivalence checking in this fashion basically
amounts to simulating the given circuits with arbitrary com-
putational basis states |i〉 until a counterexample is obtained.
In the classical realm, this is an established technique for
preliminary testing (also called random-stimuli simulation),
but has not led to a viable technique for equivalence checking
in general. That is because, in classical circuits, masking
effects and the inevitable information loss introduced by many
logic gates greatly reduce the chance of detecting errors
within a few arbitrary simulations – leading to many false
positives after just conducting a couple of simulations. This
is significantly different in quantum computing. In fact, the
inherent reversibility of quantum operations drastically reduces
these effects and frequently yields situations where even small
errors remain unmasked and affect entire system matrices –
emphasising the viability of random simulations.

All this, of course, does not guarantee that an error is indeed
detected by just simulating a limited number of arbitrary stim-
uli |i〉. Moreover, in case two quantum circuits are equivalent,
all 2n possible computational basis states need to be checked,
thus, leading to the same complexity as constructing the whole
functionality. But motivated by these observations, a more
detailed consideration of this direction was triggered which
eventually leads to the proposal of an alternative equivalence
checking flow that clearly outperforms the state of the art.



IV. EXPLORING AND EXPLOITING THE POWER

The observations above showed that simulations of ar-
bitrary computational basis states |i〉 are indeed viable to
check the equivalence of two quantum computations without
constructing and comparing their complete functionality. This
section provides a theoretical discussion exploring the power
of simulation (i.e., just partially covering the respective func-
tionalities). Based on that, a correspondingly adjusted equiv-
alence checking flow is proposed, which takes these findings
into consideration and, by this, substantially improves the
available state-of-the-art methods. Experimental evaluations
(summarized later in Section V) confirm these improvements.

A. Theoretical Consideration

Consider two quantum computations (given as quantum
circuits G and G′) operating on n qubits, whose equivalence
shall be checked. To this end, as discussed in Section III-A,
the current state of the art covers the full functionality by
constructing and comparing the corresponding circuit matri-
ces U and U ′. Motivated by the observations discussed in
Section III-B, it is now of interest, how significantly the
resulting matrices U and U ′ differ from each other in case of
errors and whether this would make an incomplete coverage
of the functionality feasible.

To this end, we introduce the notion of the difference of two
unitary matrices. Given two unitary matrices U and U ′, their
difference D is defined as the unitary matrix D = U†U ′ and
it holds that U · D = U ′. In the case that both matrices are
identical (i.e., the circuits are equivalent), it directly follows
that D = I. One characteristic of the identity function I
resulting in this case is that all diagonal entries are equal to
one, i.e., 〈i|U†U ′|i〉 = 1 for i ∈ {0, . . . , 2n − 1}, where |i〉
denotes the ith computational basis state. This expression can
further be rewritten to

1 = 〈i|U†U ′|i〉 = (U |i〉)†(U ′|i〉) = |ui〉†|u′i〉 = 〈ui|u′i〉,

where |ui〉 and |u′i〉 denote the ith column of U and U ′, respec-
tively. Note that the inner product 〈ui|u′i〉 precisely describes
the process of simulating both G and G′ with initial state |i〉
and comparing the results. Hence, if only one simulation yields
〈ui|u′i〉 6= 1, then |i〉 proves the non-equivalence of G and G′.

Now, the question is how many computational basis
states |i〉 yield 〈ui|u′i〉 6= 1 for a given difference D, i.e.,
how likely it is for an arbitrary simulation to detect possible
errors. Since the difference D of both matrices is unitary itself,
it may as well be interpreted as a quantum circuit GD. For the
purpose of this theoretical consideration, we assume that each
gate of this difference-circuit either represents a single-qubit
or a controlled-U operation3.

3Note that this does not limit the applicability of the following findings,
since arbitrary single-qubit operations combined with C-NOT already form a
universal gate-set (cf. Section II).

Example 7. Assume that GD only consists of one (non-trivial)
single-qubit operation defined by the matrix Us applied to the
first of n qubits. Then, the system matrix D is given by

D = I2n−1 ⊗ Us =

[
Us

Us

]
.

The process of going from U to U ′, i.e., calculating U · D,
impacts all columns of U . Thus, an error may be detected by
100% of the simulations.

Among all quantum operations, single-qubit operations
posses a system matrix least similar to the identity matrix due
to their matrices’ tensor product structure.

Example 8. In contrast to Example 7, assume that GD

only consists of one operation targeted at the first qubit
and controlled by the remaining n − 1 qubits. Then, the
corresponding system matrix is given by

D =

I2

I2
Us

.
In this case, applying D to U only affects the last two columns
of U . As a consequence, a maximum of two columns may serve
as counterexamples—certainly a worst case scenario.

These basic examples cover the extreme cases when it
comes to the difference of two unitary matrices. In the
case that GD exhibits no such simple structure, the analysis
is more involved, e.g., generally quantum operations with
c ∈ {0, . . . , n − 1} controls will exhibit a difference in 2n−c

columns. Furthermore, given two operations showing a certain
number of differences, the matrix product of these operations
in most cases (except when cancellations occur) differs in as
many columns as the maximum of both operands.

The gate-set provided by (current) quantum computers typ-
ically includes only (certain) single-qubit gates and a specific
two qubit gate, such as the C-NOT gate. Thus, multi-controlled
quantum operations usually only arise at the most abstract
algorithmic description of a quantum circuit and are then
decomposed into elementary operations from the device’s
gate-set before the circuit is mapped to the target architecture.
As a consequence, errors occurring during the design flow
will typically consist of (1) single-qubit errors, e.g., offsets
in the rotation angle, or (2) errors related to the application
of C-NOT gates. In both cases, non-equivalence can be effi-
ciently concluded by a limited number of simulations with
arbitrary computational basis states. Of course, this cannot
be guaranteed – otherwise, the problem would hardly be
QMA-complete. However, following the above discussion and
considering that comparing single columns (i.e., a partial
consideration of the functionality) is substantially cheaper
than a full functional coverage, the simulation of arbitrary
computational basis states is a promising option. Moreover, if a
counterexample was not obtained after a few simulations, this
yields a highly probable estimate of the circuit’s equivalence
– in contrast to the classical realm, where this generally does
not allow for any conclusion.



Fig. 3. Proposed equivalence checking flow

B. Proposed Equivalence Checking Flow
The motivation and considerations from above eventually

led to an improved equivalence checking flow as shown
in Fig. 3. Here, instead of constructing and comparing the
complete matrix representations of both circuits, we propose
to first perform a limited number of r � 2n simulation runs
with randomly chosen computational basis states. If one of
those simulations yields different outputs, the non-equivalence
of the circuits under consideration has already been shown. If
this is not the case, still any current state-of-the-art equivalence
checking routine (such as proposed in [16]–[22]) can be
utilized to complete the task. Moreover, if no errors have been
found by simulation, the likelihood of an error indeed being
present is significantly reduced as shown in the discussions
from Section IV-A. Overall, this eventually leads to three
possible outcomes:
• Not equivalent, if different outputs are obtained by a sim-

ulation run.4 As confirmed by the evaluations summarized
later in Section V, this can be conducted very efficiently
in many cases, while state-of-the-art equivalence check-
ing routines require substantial runtime or even time out
frequently.

• Equivalent, if, after r simulation runs, the state-of-the-art
equivalence checking routine is employed and yields that
result. If this is the case, the simulation runs conducted
before (which did not lead to a conclusive result) only
constitute a negligible runtime overhead.

• Timeout, if the simulation runs did not lead to a coun-
terexample and the state-of-the-art equivalence checking
routine was not able to complete the task within a given
time limit. If this is the case, we at least get a strong
indication that both circuits are equivalent (since the
conducted simulations did not provide a counterexample
which, according to the discussions from Section IV-A,
is rather rare). Even if this does not provide a guarantee
of non-equivalence, this is a stronger result than provided
by the state of the art thus far, which does not allow for
any kind of conclusion in this case.

Overall, this flow significantly improves upon the state of the
art as also confirmed in evaluations which are summarized
next.

V. EXPERIMENTAL RESULTS

In order to evaluate the potential of the proposed approach
(and, by this, the power of simulation for equivalence checking

4In principle, this result is also possible if the state-of-the-art equivalence
checking routine is employed after the simulation runs and, hence, is accord-
ingly added in Fig. 3. However, in all our investigations, non-equivalence was
already detected by simulation.

in quantum computing), we implemented the flow introduced
in Fig. 3 in C++. For simulation we utilized the method pro-
posed in [25] (downloaded from http://iic.jku.at/eda/research/
quantum_simulation/) and as equivalence checking routine we
used the approach which inherently comes with [26] (down-
loaded from http://iic.jku.at/eda/research/quantum_dd/)5.

As benchmarks, we used quantum circuits realizing promi-
nent quantum algorithms including Grover’s algorithm, Quan-
tum Fourier Transform, Quantum Chemistry, and Quantum
Supremacy in combination with circuits from [27]. Each
benchmark consists of a circuit G representing the “original”
functionality and an alternative realization G′, e.g., generated
by decomposition [2]–[5], mapping to a dedicated architec-
ture [6]–[10], or through optimizations [11], [12]. Common er-
rors occurring during design flows involve altered single-qubit
gates as well as misplaced/removed C-NOT gates (see dis-
cussions in Section IV-A). Thus, such errors were randomly
inserted into each benchmark in order to evaluate the proposed
method on non-equivalent instances. All computations have
been performed on a 4.2GHz Intel i7 machine with 32GiB
main memory running Ubuntu 16.04 using a hard timeout of
one hour (3600 s) for each benchmark.

Table I provides a representative subset of the obtained
results.6 The first four columns provide the characteristics
of the benchmarks (i.e., their name, number of qubits, and
gate counts), while the remaining columns list the run-time
(in CPU seconds) of the sole application of the equivalence
checking routine (tec) as well as the run-time of the simulation
part (tsim). Additionally, the total number of simulation runs
needed until a counterexample has been determined is shown
for the non-equivalent cases. Table Ia provides the results for
the non-equivalent benchmarks while Table Ib provides the
results for the equivalent benchmarks.

The results clearly show the complexity of the problem.
Solely considering a state-of-the-art equivalence checking rou-
tine frequently yields timeouts for both, non-equivalent as well
as equivalent benchmarks. In these cases, no conclusions on
the equivalence can be drawn at all. In contrast, the power
of simulation becomes evident. In case of non-equivalent
benchmarks, simulation is able to determine a counterexample
in all cases – for most of them even within a single simu-
lation run. This also confirms the discussions conducted in
Section IV-A. Even if there is no guarantee, it is very unlikely
that two circuits are not equivalent if no counterexample can

5Note that this approach was merely chosen as a representative. The
improvements obtained in this work can be obtained for all currently existing
equivalence checking routines.

6Due to space limitations, we needed to focus on a subset only. However,
an implementation of the resulting design flow is publicly available at
http://iic.jku.at/eda/research/quantum_verification/ for further evaluations.

http://iic.jku.at/eda/research/quantum_simulation/
http://iic.jku.at/eda/research/quantum_simulation/
http://iic.jku.at/eda/research/quantum_dd/
http://iic.jku.at/eda/research/quantum_verification/


TABLE I
EXPERIMENTAL RESULTS

(a) Non-equivalent benchmarks

Benchmark n |G| |G′| tec [s] #sims tsim [s]

Quantum Chemistry 3x3 18 1 938 1 918 > 3600 1 1 369.85
urf4_187 11 32 004 470 414 > 3600 1 441.44
hwb9_119 9 1 544 745 685 > 3600 1 317.53
5xp1_194 17 85 47 487 > 3600 1 219.10
Supremacy 4 4 50 16 410 407 > 3600 1 137.36
Grover 9 15 6 453 6 421 > 3600 1 97.72
inc_237 16 93 40 194 > 3600 1 80.38
root_255 13 99 277 425 > 3600 1 52.70
cm85a_209 14 69 106 448 > 3600 1 29.02
dc2_222 15 75 63 932 > 3600 1 18.39
max46_240 10 107 366 115 > 3600 1 17.10
Supremacy 4 4 15 16 126 124 > 3600 1 14.29
rd84_253 12 111 119 165 > 3600 1 13.83
sqr6_259 18 81 13 802 > 3600 1 5.05
Grover 8 13 3 648 3 630 > 3600 1 3.52
Supremacy 4 4 05 16 95 92 > 3600 1 3.49
Grover 7 11 2 175 2 163 > 3600 1 1.38
pcler8_248 21 22 8 523 > 3600 1 1.32
sqn_258 10 76 36 315 > 3600 1 1.26
QFT 48 48 1 176 1 172 > 3600 2 0.22
QFT 64 64 2 080 2 070 > 3600 1 0.21
Grover 6 9 1 042 1 039 > 3600 1 0.03
Quantum Chemistry 2x2 8 368 364 5.13 1 0.02
Grover 5 9 830 827 0.17 1 0.02

(b) Equivalent benchmarks

Benchmark n |G| |G′| tec [s] tsim [s]

Supremacy 4 4 50 16 410 410 > 3600 1 339.13
Grover 9 15 6 453 6 453 > 3600 679.39
Quantum Chemistry 3x3 18 1 938 1 938 > 3600 159.63
Supremacy 4 4 15 16 126 126 > 3600 142.72
Grover 8 13 3 648 3 648 > 3600 54.08
Supremacy 4 4 05 16 95 95 > 3600 46.48
Grover 7 11 2 175 2 175 > 3600 12.27
QFT 64 64 2 080 2 080 > 3600 2.76
QFT 48 48 1 176 1 176 > 3600 1.26
Grover 6 9 1 042 1 042 > 3600 0.98
hwb9_119 9 1 544 760 994 577.19 39.12
max46_240 10 107 373 613 395.72 24.56
urf4_187 11 32 004 480 060 275.20 28.51
root_255 13 99 283 123 195.17 23.81
rd84_253 12 111 121 645 169.30 9.46
cm85a_209 14 69 108 651 121.26 9.21
5xp1_194 17 85 48 485 33.33 5.28
dc2_222 15 75 65 269 30.63 6.21
sqn_258 10 76 37 074 9.21 2.51
inc_237 16 93 41 033 7.41 4.10
pcler8_248 21 22 8 712 6.67 1.14
Quantum Chemistry 2x2 8 368 368 5.47 0.17
sqr6_259 18 81 14 111 4.94 1.60
Grover 5 9 830 830 0.07 0.18

n: Number of qubits |G|: Gate count of G |G′|: Gate count of G′ tec: Equivalence checking time #sims: Performed simulations tsim: Simulation time

be determined by a limited number of random simulations.
Thus, it may be concluded that choosing r � 2n, e.g., r = 10,
suffices to reason about the operations’ equivalence in practice,
i.e., conducting ten random simulations before opting for the
(standard) equivalence checking routine. Table Ib shows the
runtime comparison of the equivalence checking routine (tec)
itself and the simulation with r = 10 arbitrary computational
basis states (tsim). It can be seen, that these simulations only
result in a negligible runtime overhead, while still providing
a strong indication that the considered circuits are indeed
equivalent – even if the equivalence checking routine fails to
complete the check within reasonable time.

VI. CONCLUSIONS

In this paper, we uncovered the power of simulation for
equivalence checking in quantum computing. To this end,
we showed that, in contrast to classical computing, it is not
always necessary to consider the whole functionality of two
quantum computations in order to decide their equivalence.
By conducting a limited number of simulations with arbitrary
computational basis states, errors are consistently detected
several magnitudes faster than with the current state of the art.
The resulting equivalence checking flow drastically accelerates
the detection of errors or provides a highly probable estimate
of the considered operations’ equivalence for a much larger
class of problems. Thus, for the first time allowing to conduct
equivalence checking in many cases, where no conclusion
could be drawn to date.
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