Test Your Test Programs Pre-Silicon:
A Virtual Test Methodology for Industrial Design Flows

Sebastian Pointner™ Oliver Frank®

Christoph Hazott! Robert Wille*

*Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
Infineon Technologies Austria, Linz, Austria

Email: {sebastian.pointner, robert.wille} @jku.at

Abstract—The ever increasing complexity of modern circuits
and systems remains a big challenge for the semiconductor
industry. Since the life cycle of new products is getting smaller
and smaller, companies have to speed-up their design flows to
stay competitive. This particularly holds for the efforts spent
to verify and test a chip. Here, the development of proper test
programs to be executed on the fabricated chip constitutes a
serious bottleneck. This is because the first application of the
test program on actual silicon frequently unveils errors that
need to be addressed — causing debugging loops and a threat
to time-to-market objectives. Consequently, it is tried to conduct
these tests earlier in the design flow, i.e. before first silicon is
available. In this work, we propose a corresponding virtual test
methodology which allows to test a test program on a virtual
representation of the chip (e.g. a SystemC description which
is available early in the design process anyway). In contrast to
previously proposed solutions, our methodology can be integrated
in a generic and black-box fashion into existing flows, i.e. the
user does not need to know whether the test program is executed
on actual silicon or its virtual description. A case study within
an industrial environment confirms the benefits of the proposed
methodology.

I. INTRODUCTION

The design and realization of electronic systems belongs
to one of the most complex tasks in FElectronic Design
Automation. To cope with the ever increasing complexity, an
elaborated design flow emerged in the past which heavily relies
on abstractions and is sketched on the left-hand side of Fig. 1:
Starting with the specification, first an initial algorithmic
implementation of the desired system is implemented at the
Electronic System Level (ESL) [1] (using languages such as
SystemC [2]). This allows to conduct simulations and, by
this, provides the basis e.g. for software/hardware partitioning.
After the respectively resulting software and hardware compo-
nents have been extracted, the implementation of the respec-
tively needed Application Specific Integrated Circuits (ASICs)
starts — first conducted at the Register Transfer Level (RTL;
using languages such as VHDL [3], Verilog [4], etc.) and,
afterwards, synthesized to a gate level netlist. The resulting
descriptions are eventually prepared for fabrication (e.g. in-
volving tasks such as place, route, technology mapping, etc.)
and send to a wafer fabrication which realizes the desired
chip (the so called tape-out).

Besides the actual design and fabrication process, checking
the correct and intended behavior of the desired system is
getting even more important. In fact, the efforts to be invested
in order to design and realize a system more and more
move from design to test and verification, i.e. more time is
spent on checking whether the developed ASIC is correct
or not. Accordingly, methods for validation and verification
are applied through all abstraction levels in the design phase

{oliver.frank, christoph.hazott} @infineon.com

(see e.g. [1], [5], [6]), while, after fabrication, methods for
Automatic Test Pattern Generation (ATPG, see e.g. [7], [8])
and test are common (see e.g. [9], [10]). In this work, we
focus on the development of corresponding tests after the chip
has been fabricated (i.e. post-silicon test).

Here, the fabricated chip (in the following denoted Device
Under Test; DUT) is employed within an Automatic Test En-
vironment (ATE) which allows to apply dedicated test stimuli
to the chip. The stimuli are thereby generated e.g. directly
from the user, but the ATE also allows to apply corresponding
stimuli obtained e.g. from other components, sensors, etc. Vice
versa, the ATE provides interfaces which map the output sig-
nals produced by the DUT to the corresponding user outputs,
actuators, etc. Moreover, the user’s view is limited to the ATE
for testing the DUT, as the ATE represents the entire system.
Overall, this allows to test the DUT using different scenarios
and considering internal as well as external inputs such as
sensor data, prepared data to emulate specific use cases (e.g.
corner cases), or random test data to observe the systems
behavior. To automate these tests, usually a fest program is
applied. A test program represents a collection of different test
methods — each of which used to test a different part, aspect,
or scenario of the DUT.

However, the development of proper test programs is
non-trivial. To some extent, a good test program requires a
re-consideration of all major aspects considered during the
actual design flow in order to make sure that all properties
and characteristics of the DUT are properly tested. Moreover,
the development of such a test program is special due to the
fact that it can usually not be checked before first silicon
is available, i.e. before the ASIC has been fabricated. This
is sketched on the bottom-left of Fig. 1. Although the test
program development can already start in parallel to the design
process (i.e. pre-silicon), it cannot be completed before it
has been checked on the actual silicon. Moreover, the first
application of the test program on actual silicon frequently
unveils further problems that need to be addressed and usually
require substantial changes in the test program. This causes
a bottleneck in the design flow and frequently leads to seri-
ous threats with respect to the satisfaction of time-to-market
objectives for industrial designs.

In this work, we propose a virtual test development
methodology for industrial designs which addresses this prob-
lem. The main idea is as follows: Instead of waiting for first
silicon in order to check the test program, we use a virtual
description of the DUT. Therefore, we are exploiting the fact
that several descriptions of the DUT are available as a result
of the design flow anyway. More precisely, as sketched on the
right-hand side of Fig. 1, we are using the ESL description of

Existing Design Flow Proposed Methodology

8
& Spec
ESL
(e.g. SystemC) —_— —
<
[<*)
v 2
o
c °
= RTL - S
g (e.g. VHDL) é &
7 g §
Gate = Virtual ATE b
Level IS <
& AN =
o Virtual
————————— o DUT
3
] - [
2 £
8 Chip s2
=] — DD
o — - o D
& a3
= o
(fa)
—— - — —— — — =
=
Q
= £
@ g2 I
z g8 <
& - g
ATE 3 0 X
[T o
] — <=
— — o
7 our [- _
< .
S o Time-to-Market
é 3 Speed-Up
- S~
Y First time, test &

program can be checked - - - -

Fig. 1: Today’s design flow (w/ proposed virtual test flow).

the design as a virtual representative of the DUT which is not
available yet. This representation is integrated into the ATE
and subjected to the test program. This allows to conduct tests
of the test program prior to first silicon and, by this, overcomes
the bottleneck in today’s industrial flows. Moreover, compared
to related work (covered in detail later in Section II-B), the
proposed methodology satisfies industrial requirements of a
generic solution which can easily be integrated into existing
flows and works in a “black box”-fashion (i.e. the user does
not need to know whether the test program is executed on
actual silicon or its virtual description).

Case studies within an industrial environment demonstrate
the benefits of the proposed methodology. Although executing
a test program on a virtual representative consumes more run-
time than on an actual DUT in silicon, the availability of a
virtual test environment allows to conduct these runs prior to
silicon and, by this, weeks or even months before fabrication.
Furthermore, due to the “black box”-integration, the user can
conduct these checks in the same fashion as he/she would do
it with an actual silicon implementation. As a result, we are
able to pass through the bottleneck discussed above — a major
step towards a more reliable satisfaction of time-to-market
objectives.

The remainder of this work is structured as follows: The
next section briefly reviews the development of test programs

and discusses related work. Afterwards, the main ideas pro-
posed in this paper are outlined and details on their imple-
mentation are provided in Section III. Section IV demonstrates
the application of the proposed virtual test development flow
by means of an industrial case study. Finally, the paper is
concluded in Section V.

II. BACKGROUND
In order to keep this work self-contained, this section
briefly reviews the development of test programs and the
resulting bottleneck. Afterwards, we discuss the works which
have been proposed thus far to address this problem.

A. Test Development

For the automation of the post-silicon test process, modern
ASICs are tested by applying so called fest programs. The
development of such test programs is dependent on the applied
technology in which the considered ASIC shall be realized
as well as on the requirements given by the respectively
used ATE supplier. Test programs, as they are widely used
within industry, are realized using frameworks based on pro-
gramming languages such as Visual Basic or C++. Such
frameworks extend the basic functionality of those languages
with advanced support which is needed for industrial semi-
conductor testing. Examples for extensions can be found in
class libraries (e.g. for the evaluation of tests) or additional
tools (e.g. visualizations of instruments). Based on those exten-
sions, a comprehensive framework for the entire test program
development cycle, as well as for the test process in the wafer
fabrication is supported by the ATE supplier.

The development of the test program can be conducted
in parallel to the actual design of the considered ASIC. The
goal is the realization of a program which (1) automatically
applies several tests on the eventually realized ASIC (after
a first silicon realization of it is available) and (2) checks
whether the intended outputs are obtained. Typical tests contain
e.g. checking the functionality of signal processing units, the
correct behavior of digital interfaces, or the internal memory
embedded into the ASIC.

However, whether or not a test program properly conducts
the intended tests is hard to check before the first silicon is
available. In fact, only “sanity checks” such as whether the cor-
rect syntax has been used can be conducted beforehand e.g. by
the correspondingly used compilers and/or interpreters. For all
other checks, a silicon implementation of the ASIC needs to
be available. This is crucial considering that test programs
are frequently implemented with unexpected behavior. Such
unexpected behavior can have a wide spectrum of reasons.
Those reasons can yield from wrong configurations of test
instruments or from assumptions made during the test program
(since e.g. an erroneous instrument configuration cannot be
detected without applying the instrument). Examples of typical
errors not detected prior silicon include:

e Wrong DUT configuration (e.g. wrong register
configuration)

e Wrong test implementation or test specification (e.g.
wrong test-instrument configuration)

e Discrepancy between the test specification and the
device specification

e Behavior of ASIC differs from the expected behavior
described in the datasheet

Once such errors have been detected, they of course need
to be debugged and fixed. Because of the ever-increasing
complexity of ASICs and, hence, also corresponding test
programs, this usually requires a significant amount of time
(frequently delaying the product release not only by some days,
but even weeks in many cases). This bears a significant risk to
time-to-market objectives and is particularly unfortunate, since
plenty of time to implement a correct test program is usually
available pre-silicon, i.e. when the actual ASIC is in its design
phase.

B. Related Work

The problem discussed above constitutes a serious
bottleneck that affects all major players in the semiconductor
industry, as e.g. shown by corresponding works e.g. from
Analog Devices [11], Teradyne [12], and Infineon Technolo-
gies [13], [14]. But, thus far, no satisfactory works exist which
tackles this problem in an industrial-strengthened fashion. Of
course, an obvious idea is to lift checking and debugging the
test program to an earlier, i.e. pre-silicon, stage — motivating
a so called virtual test.

To the best of our knowledge, the first approach in this
direction has been presented by Teradyne in [12]. Here, it has
been suggested to unify the verification of the design process of
the ASIC as well as the of the test program development. Later,
works such as [13] or [14] have been proposed, which refined
this idea. In all these cases, a pre-silicon representation of the
DUT has been considered in order to check the test program
(e.g. a prototypical FPGA implementation in case of [14] or
an RTL description in case of [13]). Both directions, however,
come with serious shortcomings. More precisely:

e Following approaches such as proposed in [14] re-
quires a DUT replacement e.g. in terms of an FPGA
implementation. Although easier to create than an
ASIC in silicon, this nevertheless requires an actual
realization which still is available rather late in the
design flow (usually, after an RTL description has been
completed). Moreover, the package of the resulting
FPGA often will not match with the package of the
DUT - causing complications with the respectively
applied ATE that have to be sorted out manually.
Finally, FPGAs are designed for digital designs only,
making the handling of analogue aspects of the DUT
tedious'.

e Following approaches such as proposed in [13] does
not need explicit hardware, but relies on a given
RTL model which can be simulated using tools such
as ModelSim [15]. However, this significantly differs
from the common application scenario a test program
developer is used to. In fact, instead of executing
his/her program within an ATE, a dedicated tool chain
needs to be created that allows for the simulation
of the RTL description while, at the same time,
inputs/outputs of the (in many cases non-trivial) test
programs are instrumented on it. As a result, the user
has to deal with several software tools, intermediate
formats, and a rather static communication between
the DUT (represented in RTL) and the test program,
while, at the same time, he/she is actually supposed
to check the test program.

ITII. PROPOSED METHODOLOGY

In this work, we propose a virtual test methodology which
addresses the shortcomings discussed above. Following the
virtual test approach, also our methodology replaces the actual
DUT (provided in silicon) by a virtual DUT which is available
earlier in the design flow. In our case, we use a SystemC
implementation as this provides an executable description of
the desired functionality which additionally is available early
in the design process (i.e. the test program can be checked with
it rather early)®. But in contrast to the approaches discussed
above, we afterwards do not rely on a prototype (to be
realized first) or a dedicated simulation tool-chain (in which the
virtual DUT additionally has to be instrumented). Instead, we
explicitly revisited all steps that are usually conducted within
an ATE when executing a test program on actual silicon and
developed corresponding virtual, i.e. software, solutions for
each of these steps. This allows for the realization of a generic
and black-box virtual test environment which can easily be
integrated into existing flows and for which the user does not
need to know whether the test program is executed on actual
silicon or its virtual description.

In this section, the details of the ATE realizing this virtual
test methodology are provided. First, the steps which are
usually conducted to execute a test program are reviewed.
Based on that, the corresponding virtual test realization is
described afterwards.

A. Execution of a Test Program

Recall that the main task of conducting a test is to
execute a test program (provided in software) on the actual
DUT (provided in silicon, i.e. hardware). In order to correlate
the software with the hardware, an ATE is employed which
is structured as shown in Fig. 2. Here, the test program is
embedded into a corresponding Test Software while the DUT is
embedded into a corresponding Test Hardware. The interface
between those is realized by an ATE Interface (provided in
software) which, in turn, is connected by a bus to the hardware.
More precisely, for the execution of any operation on the DUT,
the test program utilizes this interface which represents the
access point for all DUT operations.

The ATE interface acts thereby as an abstract representation
for all instruments offered by the ATE tester (e.g. powering
the DUT using a Power Supply, capturing an analog signal
using an Analog Capture unit, applying an analog stimulus
using an Analog Source unit, or applying a digital stimulus
by applying the Digital Source as indicated by the respective
boxes in the ATE interface depicted in Fig. 2). In this sense,
the tester software can be seen as a kind of IDE for the test
program which can execute the implemented program. Despite
of its execution capabilities, also additional features such as
advanced means for the evaluation of the failed tests (statistics)
are part of the tester software.

Next, the test program’s instructions have to be transported
to the DUT (through the tester hardware). To this end, a bus
connection as already mentioned before is used. This bus
connection is based on industrially standardized bus protocols
(e.g. General Purpose Interface Bus; GPIB [16]) and realized
stationary.

'In [14], the latter problem has been addressed by outsourcing the analogue
parts of an ASIC to a PCB; again requiring substantial manual adjustments.

2Note that the concepts of the proposed methodology can similarly be
applied e.g. to an RTL description as well.

(N
Test
Program
<4
<
£
(2]
g ATE Programming Interface
g
Power Analog Analog Digital
Supply Capture Source Source
NN
|
i
Bus Link ! Virtual Link
N HE -
!) SO
| Virtual Tester Lo
i
LN g
E | Virtual 15
£ ! DUT B
! P
\ [

Fig. 2: Structure of the ATE (w/ proposed virt. realization).

A stationary bus connection in this context means that both
the tester hardware and the workstation which executes the
tester software cannot be replaced easily. They are connected
e.g. by a physical wire connection which cannot be replaced
on the fly.

Finally, the test program’s instructions are executed on
the DUT by the tester hardware. To this end, the tester
hardware is composed of multiple components realizing the
test instruments mentioned above (i.e. the power supply, the
analog capture, the analog source, or the digital source) in
hardware. By this, all test instruments are connected to the
DUT and can be configured and applied according to the test
program. After the execution, the respectively obtained outputs
are transported back through the bus and its interface to the
test software, which evaluates the results and conducts the next
steps based on them. Overall, this provides an ATE structure
allowing the execution of complex tests on the DUT.

B. Realization of a Virtual ATE

The complexity of today’s test programs frequently re-
quires intensive checks and debugging steps which, following
the structure reviewed above, cannot be conducted before first
silicon is available. In the methodology proposed in this work
(as introduced above), this shortcoming is addressed by using
a virtual DUT (provided e.g. in SystemC) which, nevertheless,
shall be instrumented and tested in exactly the same fashion
as before (i.e. the user does not know whether he/she tests an
actual DUT or a virtual one). Since the hardware tester and all
its components cannot deal with a virtual DUT, this requires
the realization of an entire software-based virtual tester which
is sketched in the bottom-right of Fig. 2 and described in this
section.

In general, the virtual tester has been realized by imple-
menting all functionality provided by the bus as well as the
hardware tester in terms of software. This required significant
adjustments to the respective layers of the ATE, namely:

e As already mentioned, the DUT itself is replaced by

a virtual DUT.

e Since the virtual tester cannot be connected to the
workstation executing the tester software by means
of a firm bus connection, a corresponding virtual link
is needed.

e Since the interface suddenly has to support two targets,
an actual hardware tester and a virtual tester, the ATE
interface needs to be adjusted to allow for both settings
(leading to a dedicated fest target selector as well as
several changes to the tester software).

In the following, these issues are discussed in more detail
with respect to each layer.

Virtual DUT: The virtual DUT is designed as an ESL
model which is capable to replace the actual DUT. Since this
task is part of the design flow anyway (cf. again Fig. 1), we
can obtain the virtual DUT basically “for free”. Compared
to the silicon-based DUT, the virtual DUT is implemented in
software only. The only extensions which have to be added
are related to the communication between the test program
and the virtual DUT. This is covered by the next layer.

Virtual Tester: The virtual tester is responsible to make the
virtual DUT visible for any communication. More precisely,
it builds a wrapper around the virtual DUT to allow for the
communication between the test program and the virtual DUT.
To this end, a communication protocol is employed which has
been broken down to three basic operations:

1) Write Request:
Applies a certain value to a certain pin.

2) Read Request:
Reads the value of a certain pin and sends the answer
back to the test program.

3) Run Request:
Executes the virtual DUT for the requested time
(using the SystemC function call sc_start(time, unit)).

Virtual Link: The virtual link is used to connect the test
program to the virtual tester. In contrast to the firm bus link
from the hardware solution, this virtual link can be realized
in a rather flexible fashion. To this end, a realization based
on TCP/IP sockets is employed. This realization allows to
establish a socket communication between the tester software
(realized as desktop application), the virtual tester (realized
in C++), and the virtual DUT (realized in SystemC, a C++
library) which, due to available operating system libraries (i.e.
BSD or Win32 sockets), all provide proper “off-the-shelf”
TCP/IP solutions. Moreover, the flexibility offered by TCP/IP
even allows to completely abstract from the location of the
workstation executing the virtual tester and, by this, the virtual
DUT. Because of this, the execution of a virtual test is
not restricted to a local workstation anymore, but can be
“outsourced” to other platforms or even server farms — a
significant plus particularly for international companies with
designers remotely working from different places.

ATE Interface: The test program initiates the execution of
any operation by a function call of the ATE Interface. After
the function call has been applied, this information is then
forwarded to the DUT. Since now two DUTs could be available
(the actual DUT or a virtual one), a mechanism to select
the target we want to test is needed. This requires changes
in the ATE Interface. Moreover, as we want to hide all the
details from the user (he/she should not need to know on what
DUT the test program is executed), each instrument has to
be re-implemented in order to (1) keep the interfaces to the
user the same and (2) generate the proper packages for both,
the hardware tester and the virtual tester. Since existing tester
software is actually proprietary, this required the complete re-
implementation of the ATE interface to realize these changes.

However, once such an implementation is available, further
virtual testers (i.e. targets) can be integrated very easily.
Moreover, the costs for the realization are a non-recurring
investment for each particular test system, i.e. several projects
can be realized based on it after the system is available.

Overall, this leads to a virtual ATE which enables the
virtual test methodology proposed in this paper. In fact, every
ASIC design for which an ESL model is available can now be
tested using the virtual description. By this, errors in the test
program can be checked early so that, eventually, a correct test
program is ready for application right after first-silicon of the
ASIC is available.

IV. INDUSTRIAL CASE STUDY

The virtual test methodology proposed in this work
has completely been implemented as described above and
evaluated within an industrial environment. In the following,
we demonstrate the application of the resulting solution by
means of a representative case study. To this end, we consider
the test program development for an ASIC designed within
Infineon Technologies. In the following, the ASIC as well
as the correspondingly developed test program are briefly
reviewed. Afterwards, it is shown how the proposed virtual
test methodology helped in checking the test program prior to
first silicon®.

A. Considered ASIC and Test Program

In this case study, the design of an ASIC is considered
which is equipped with a Serial Peripheral Interface (SPI)
to be tested. The interface is supposed to be used for the
communication with the internal registers of the chip. The
chip has a fixed number of internal registers which can all
be addressed using a digital interface. Not all registers are
writable. Following the design flow reviewed before by means
of Fig. 1, an ESL model of this design has been implemented in
SystemC-AMS (in version SystemC-AMS 2.0 [17]) using the
system level design environment COSIDE [18]. This special
integrated design environment is build up on top of the Eclipse
framework [19]. Overall, this yielded a description which was
used as virtual DUT.

In parallel to the design process, the development of the
test program started. One aspect of this test program was the
execution of a memory test. To this end, an implementation of
the March-X algorithm has been applied which is a member
of the widely known March algorithm family for memory
testing (see e.g. [20] for details). More precisely, the following
four steps have been conducted:

e (w0): All registers are set to “0”.

e f (r0,wl): All registers are checked for their value
and are set to “1”.

e | (rl,w0): All registers are checked again and are
set to “0” again.

e (r0): All registers are checked again for their
correct value.

According to [20], applying this March-X algorithm is
capable of covering fault models like stuck-at fault, address
decoding faults, as well as transition faults.

3Note that, due to TP reasons, not all details of this case study (in particular
of the considered ASIC) can be revealed. Those information are, however, not
needed to demonstrate the benefits of the proposed methodology.

B. Obtained Results

The ASIC reviewed above has been tested with the test
program using both, the original ATE (after a first silicon
realization was available, i.e. rather late in the design process)
and the virtual ATE (after an ESL model was available,
i.e. rather early in the design process). In the former case, the
test has been executed based on a Teradyne UltraFLEX test
system [21]. In the latter case, the virtual ATE as described
in Section III has been executed on a local workstation with
an Intel Xeon CPU and 16 GB of RAM running Microsoft
Windows.

The correspondingly obtained user outputs are provided in
Fig- 3. By applying the original flow (e.g. by utilizing the
original tester), an error could be unveiled as reported in lines
9-12 of the left-hand-side of Fig. 3. The test program reported
that one register (namely 0x258) failed the memory test. In
order to test the applicability of our virtual test methodology,
we have also executed this test by applying the test program
together with the virtual ATE. As can be seen on the right-
hand-side of Fig. 3, the error could also be unveiled by
applying our methodology which ended up in finding the same
error. Finally the error which could be unveiled by both had
been caused by the fact that not all register were writeable.

Following the original test flow, the execution of this test
lasted some few seconds. In contrast, using the virtual test flow,
approx. 2 hours were needed. This was expected as, of course,
the execution on real hardware is faster than its corresponding
simulation on software. Nevertheless, the proposed virtual test
flow clearly outperforms the original flow. In fact, although
a longer run-time is needed, the virtual test can be executed
before first silicon is available — usually months before a first
test was possible using the original test flow. This provides a
clear benefit as the error can be detected and fixed significantly
earlier in the design process. In contrast, detecting the error
in the test program when first-silicon is available would have
caused a debugging loop at a time, where actually the mass-
production and deployment of the chip is due — yielding a
significant delay in the production cycle.

Besides that, the obtained results clearly show that the
proposed virtual test methodology is completely generic and
can be conducted in a fully black-box fashion. In fact, exactly
the same test program has been applied in both cases and, as
confirmed by Fig. 3, exactly the same outputs were generated
(except for the required run-time). This demonstrates that the
user actually does not need to know whether he/she works
with an actual DUT or a virtual DUT. Finally, the virtual
solution proposed here offers further advantages because of its
broader applicability. Since ATE hardware is very expensive,
usually very restricted access is granted to the user. In contrast,
the proposed virtual ATE gives the users unlimited accesses
to multiple tester platforms offering the same behavior as an
original ATE tester. Even remote access (important particularly
for international companies with testers working from different
places) is possible. These benefits have been confirmed on
several further design projects at Infineon Technologies as
well.

V. CONCLUSION
In this paper, we have proposed a virtual methodology for
the development of test programs for industrial designs. To
this end, we revisited all major steps conducted by an ATE
thus far, and developed corresponding virtual, i.e. software,

1 Site Number:
0, 1, 2, 3
Device#: 1
tfMemoryTestl
Total test duration: 6918 s
Individual test duration:
9 Reset: 1259.44 s, Failed Registers: (None)
Zero: 1883.15 s, Failed Registers: 0x258
1 Mask : 1889.29 s, Failed Registers: 0x258
SecondZero: 1886.12 s, Failed Registers: 0x258
13
Number Site Test Name
15| <MemoryTest>
16000 0 MEM_ETT
71 16010 0 MEM_Reset
16011 0 MEM_Zero
9] 16012 0 MEM_Mask
16014 0 MEM_SecondZero
21
Site Failed tests/Executed tests
0 3 5
2 Site Sort Bin
27 0 1 1

1 Site Number:
0, 1, 2, 3
Device#: 1
tfMemoryTestl
Total test duration: 3.48 s
Individual test duration:
9 Reset: 1.51 s, Failed Registers: (None)
Zero: 0.72 s, Failed Registers: 0x258
1 Mask : 0.74 s, Failed Registers: 0x258
SecondZero: 0.52 s, Failed Registers: 0x258
13
Number Site Test Name
15| <MemoryTest>
16000 0 MEM_ETT
71 16010 0 MEM_Reset
16011 0 MEM_Zero
9] 16012 0 MEM_Mask
16014 0 MEM_SecondZero
21
Site Failed tests/Executed tests
0 3 5
5| Site Sort Bin
27 0 1 1

Fig. 3: Test reports generated by both, the virtual ATE and the original ATE.

solutions for them. In contrast to the established design flow
(as summarized in Fig. 1), this allows to check test programs
even before first silicon is available and overcomes a serious
bottleneck in today’s industrial flows. A case study within
Infineon Technologies confirmed the benefits of the proposed
methodology. Testers were able to conduct the required tests
before first silicon, i.e. months earlier than with the original
test flow. This significantly reduced the pressure caused by
time-to-market objectives.

ACKNOWLEDGEMENTS

The authors would like to thank K. Dominizi, E. Dorfer,

H. Eichinger, S. Kampfer, G. Krebelder, B. Mariacher,
O. Pfabigan and R. Reiterer for making this contribution
possible.

This work has partially been supported by the LIT Secure

and Correct Systems Lab funded by the State of Upper Austria.

[1]

[4]

[5]

[6]

[7]

REFERENCES

G. Martin, B. Brian, and P. Andrew, ESL Design and Verification: A
Prescription for Electronic System Level Methodology. San Francisco,
USA: Morgan Kaufmann Publishers, 2007.

“IEEE Standard SystemC Language Reference Manual,” IEEE Std
1666-2005, pp. 1-423, 2006.

“IEEE Standard VHDL Language Reference Manual,” IEEE Std 1076-
2008, pp. 1-640, 2008.

“IEEE Standard Verilog Hardware Description Language,” IEEE Std
1364-2001, pp. 1-856, 2001.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking Without BDDs,” in Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems, London, UK, 1999.

P. Gonzalez-de Aledo, N. Przigoda, R. Wille, R. Drechsler, and
P. Sanchez, “Towards a Verification Flow Across Abstraction Levels
Verifying Implementations Against Their Formal Specification,” Trans-
actions on CAD of Integrated Circuits and Systems, vol. 36, no. 3,

2017.
T. Larrabee, “Test pattern generation using boolean satisfiability,” Trans-

actions on CAD of Integrated Circuits and Systems, vol. 11, no. 1, Jan
1992.

(8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

S. EggersgliiB3, R. Wille, and R. Drechsler, “Improved SAT-based ATPG:
More Constraints, Better Compaction,” in Proceedings of the Int’l Conf.
on CAD, San Jose, USA, 2013.

M. Burns and G. W. Roberts, An Introduction to Mixes-Signal IC Test
and Measurement. New York City, USA: Oxford University Press,
2001.

M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for
digital, memory and mixed-signal VLSI circuits. New York City, USA:
Kluwer Academic, 2002.

J. O’Doherty, “A Virtual Test Approach to Mixed Signal Test Devel-
opment,” in Colloquium on Systems on a Chip, London, UK, 1999.

T. Austin, “Creating a Mixed-Sigal Simulation Capability for Concur-
rent IC Design and Test Program Development,” in Proceedings of the
Int’l Test Conf., Baltimore, USA, 1993.

G. Krampl, M. Rona, and H. Tauber, “Test Setup Simulation - a High-
Performance VHDL-based Virtual Test Solution Meeting Industrial
Requirements,” in Proceedings of the Int’l Test Conf., Baltimore, USA,
2002.

A. 1. Voinea and S. Kampfer, “Rapid Prototyping and Test before Silicon
of Integrated Pressure Sensors,” in Proceedings of the Int’l Test Conf.,
Anaheim, USA, 2015.

“HDL Simulation Environment,” https://www.mentor.com/products/fv/
modelsim/, Mentor Graphics, (accessed: 01.05.2019).

Teradyne: Spectrum hs — functional test platform. http://www.teradyne.
com/products/defense-aerospace/spectrum-hs. (accessed: 01.05.2019).

“Standard SystemC AMS extensions 2.0: Language Reference Manual,”
Accellera, 2013.

Coseda Technologies: System Level Design Environment COSIDE. ,
note = (accessed: 01.05.2019).

Eclipse Foundation: Eclipse. https://eclipse.org/. (accessed: 01.05.2019).

W.-B. Jone, Memory Testing.
Cinncinati, 2008.

Cincinnati, OH, USA: University of

Teradyne: Ultraflex test system. http://www.teradyne.com/products/
semiconductor-test/ultraflex. (accessed: 01.05.2019).

