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Abstract—Several methods and tools have been proposed
which supports designers in verifying embedded systems in
early phases of the design process, e.g. at the Electronic System
Level (ESL). However, they only show whether an error indeed
exists in the system, but it frequently remains open to efficiently
locate the source of this error. In this work, we propose a generic
error localization methodology. More precisely, by applying code
augmentations and conducting further runs of the verification
method, it is analyzed what statements may have caused the
error. The respectively determined statements then pin-point the
verification engineer to possible error locations. By conducing
all this on the code level only, the proposed methodology can be
applied to any verification method available today. The suitability
of the proposed methodology is demonstrated by means of a
verification flow based on symbolic execution.

I. INTRODUCTION
Nowadays, verification is an essential step within the

design of embedded systems and should already begin in
early phases of the design process, e.g. at the Electronic
System Level (ESL, [1]). To this end, engineers are applying
sophisticated methodologies and tools to ensure the correct
functionality of a new system, e.g. assertion checkers [2],
[3], property checkers [4] or symbolic executers [5], [6], [7].
However, once it has been identified that a considered system
includes an error (e.g. because an assertion could not be
satisfied or a verification method generated a counterexample
violating a property), it frequently remains open to efficiently
locate the source of this error. Since modern embedded sys-
tems are getting steadily more complex, localizing errors has
become a very complex task. In many cases, huge parts of
the source code have to be inspected for this – usually a
manually conducted and, hence, rather time-consuming task.
In fact, checking the correctness of a system and identifying
the location of errors nowadays consumes significantly more
time than the actual design process itself [8].

Motivated by that and in an attempt to reduce the overall
verification and debugging time, some few methods have been
proposed which aid designers in locating the source of an
error. For example, in [9] the authors propose an automatic
debugging environment which is build up on the GCC compiler
front-end and a special graph-representation which eventually
is used as starting point for symbolic execution. Compared to
this approach, the authors of [10] propose an approach for error
localization based on the Maximum Satisfiability (MAX-SAT)
problem. Their idea is to use the control flow graph of any
program as an initial point and to extract traces which even-
tually will be formulated in terms of an MAX-SAT instance.
In [11], the authors propose an approach based on introducing
a kind of oracle function which is used to replace the right
hand site of assignment statements in order to find possible
locations capable for violating the program execution while
in [12] the authors try to identify errors in traces by invoking
so called correctness functions which are used to classify the
according traces in terms of transitions.

However, related work on error localization at the ESL in
general is still significantly restricted to a particular application
domain and/or requires a huge modification of the respectively
utilized core methods such as symbolic simulation or reasoning
engines. The latter particularly makes those solutions depen-
dent on the current version of both, the code in which the
verification approach is implemented as well as the current
version of the core methods. Future releases/updates will likely

render those solutions non-applicable or require substantial
efforts for adjustment.

In this work, we propose the idea of a generic error
localization methodology which overcomes these problems.
The main idea is to impose strategies for error localization
directly at the code level in which the considered system is
implemented and, afterwards, utilize core methods only in a
“black box” fashion (i.e. without interfering with their inter-
nals). To this end, we automatically augment an erroneous im-
plementation of a system with so called replacement-variables
which allows to replace the execution of a single statement
with an arbitrary one. Then, arbitrary verification methods
can be applied (e.g. assertion checkers, property checkers
or symbolic execution methods which have been applied to
identify the existence of the error in the first place). As they
now are “allowed” to replace certain statements with arbitrary
ones, they will generate execution traces satisfying the failing
assertion or property. By analyzing what statements have been
replaced, the designer gets pin-pointed to possible sources
of the error. By conducing all this only on the code level,
the proposed methodology can be applied to any verification
method available today (including possible updates and newly
proposed ones in the future). The suitability of the proposed
methodology is demonstrated by means of a verification flow
based on symbolic execution.

II. GENERAL IDEA
In this section, we will illustrate the general idea of the

proposed methodology for a generic error localization. To this
end, we are considering the implementation of a small function
from a system as running example. Note that this function as
well as the considered error are kept simple in order to ease
the corresponding descriptions. The proposed methodology can
eventually be applied to all (practically relevant) functions/sys-
tem implementations which can be handled by the respectively
applied verification method (see also discussions in Section III
and Section IV).
Example 1. Consider the code snippet shown in Figure 1
which is supposed to provide the implementation of a func-
tion abs() calculating the absolute value of a given integer
number. Here the user has made an error where instead of
assign the inverted value, the negative value has been assigned.
Applying a verification method such as an assertion checker,
a property checker, a symbolic executer, or similar would
e.g. yield the following counterexample: Applying −1 as input
returns −1 and not 1 as expected. The goal is now how to
efficiently locate the source of this error, i.e. statements which
could indicate to the error.

To determine possible statements which might explain the
error (or are responsible for the error), we can now utilize the
same verification method which has been applied to detect
the error in the first place. To this end, we particularly
consider the respectively obtained counterexample (i.e. the
determined input/output which showed the existence of the
error) and enforce the input of the counterexample as well
as the actually desired output to the function. If we would
now apply the verification method again (i.e. checking whether
the erroneous implementation generates the correct output for
an input which already has been determined as triggering the
error), the verification method obviously would not find a
possible execution trace.



1 i n t abs ( i n t c o n s t i n p u t ) {
i f ( i n p u t < 0)

3 r e t u r n i n p u t ;
e l s e

5 r e t u r n i n p u t ;
}

7

i n t main ( ) {
9 i n t s i g n e d v a l = −42;

i n t u n s i g n e d v a l = abs ( s i g n e d v a l ) ;
11

a s s e r t ( u n s i g n e d v a l >= 0) ;
13

r e t u r n 0 ;
15 }

Fig. 1: Erroneous implementation of abs().
Example 2. Consider again the code from Figure 1. Setting the
input of the abs() function to −1 obviously is a counterexample,
since the function would generate an output of −1, although
an output of 1 is desired. Now conducting e.g. a symbolic
execution (as one representative of an applied verification
method) while, at the same time, enforcing input to −1 and
the output to be a positive integer number, no executable trace
can be generated.

Next, we augment the code itself in order to allow for
the generation of traces. To that end, for each stmni, we
introduce an additional variable ri ∈ B called replacement
variable to alter the statement stmnsi used in the program
in terms of ri → stmnti (this is similar to approaches
used e.g. in [13], [14]). If the verification method now sets
ri = 0, the statement stmnti will be enforced as in the
original implementation. If in contrast the verification method
sets ri = 1, an arbitrarily new value for stmnti can be
employed. This may eventually allow for the generation of an
execution trace which, although a counterexample is applied,
generates the desired (i.e. correct) value. In the latter case, the
correspondingly modified statement stmnti serves as possible
source of the error or, at least, could help the designer to locate
the source of the error.

However, the verification method now could alter the entire
set of statements – by simply setting an arbitrary number of
the replacement variables ri to 1. In order to avoid that, we
limit the number of replacement variables set to 1, i.e. we
enforce

∑
ri

= k (using so-called cardinality constraints [15])
where k can initially be set to 1 and accordingly increased in
order to generate further traces.

Following this scheme, the verification method applied to
detect the existence of an error can now also be applied to
localize the source of it. In fact, if the verification method
determines valid execution traces, these traces must include
a statement whose corresponding ri-variable has been set
to 1. The activation of the ri-variable for a certain state-
ment now shows that altering this statement is capable to
influence the functions behaviour in such a manner that the
enforced counterexample nevertheless generates the desired
output. Accordingly, this statement may pinpoint the designer
to a possible error location.
Example 3. Consider again the code shown in Figure. 1 and
the counterexample used in Example 2. Introducing replace-
ment variables r1, r2, r3 ∈ B for the statements shown in
lines 2,3 and 5 of Figure 1, respectively, and extending these
statements with the implications as described above yields an
extended version of the original program. Passing this program
to the verification method yields an executable trace when r2
is set to 1 (allowing for the assignment of an arbitrary value
for variable output at this point which eventually allows to
generate the desired output 1). Hence, line 3 may indicate a
possible error.

Applying this approach more than once, may lead to further
ri = 1 assignments and, hence, may pinpoint to further
statements (and, hence, locations) in the code that may lead to
the desired results. Moreover, we could increase the number
of ri variables set to 1 to generate further assignments (might

be necessary, if e.g. multiple errors occur which prevent the
generation of the desired result). Overall, this pinpoints the
designer to several locations which are worth inspecting. Those
locations can eventually be utilized because:
• they already pinpoint to the actual error,
• they, at least, reduce the number of possible statements

to be considered for debugging since not the entire
code has to be inspected but only the determined state-
ments (because only changes here eventually allow for
the desired result), and

• they provide starting points for further debugging
methods such as slicing [16], [17].

III. REPRESENTATIVE REALIZATION
The methodology proposed above can, in principle, be

realized on top of every available verification method that
initially generated the respective counterexample showing the
existence of the error. In this section, we discuss an according
realization. To this end, we consider symbolic execution as
a representative verification method. The following provides
the corresponding details, i.e. we briefly review symbolic ex-
ecution as a verification method, describe the implementation
of the proposed error localization approach on top of the
symbolic execution engine Forest [6], and, finally, discuss
further possible optimizations for this particular realization.

A. Symbolic Execution
Symbolic execution [18], [19] is an advanced program

analysis technique in which, instead of evaluating the execution
of the program by applying the semantics of the language
to precise values of the variables (i.e. explicit simulation),
placeholders are used which can hold any value. Symbolic
execution keeps track of all symbolic values in terms of sym-
bols and constants for every variable. Each time the execution
of a program reaches a branching condition, the program
forks and symbolic execution considers both outcomes of
the branching condition. For each existing execution path,
those branch conditions will eventually be utilized to construct
so-called path conditions, which symbolically represent the
constraints that are associated to a value in a particular state of
the program. Even when the main use of symbolic execution
has been test-case generation for reachability [20], the uses of
symbolic execution covers many domains such as worst-case
execution time determination [21] or equivalence-testing [22].
Example 4. To illustrate the application of symbolic execution,
we apply the technique to the function introduced in Figure 1.
Recall that the function is build up out of 4 lines of code
containing three basic blocks and one branch. Due to this
branch, there are two possible execution paths of this function:

abs(input) =

{
input < 0 return − input
else return input

(1)

Symbolic execution engines like KLEE [5] or Forest [6]
are able to systematically explore feasible paths in program
functions by combining heuristic-based search and satisfiabil-
ity solvers like [23], [24]. In the following, we will rely on the
symbolic execution engine Forest, which implements symbolic
execution for the LLVM Intermediate Representation (IR) [25].

For our work, we rely on the LLVM intermediate repre-
sentation as a common representation to both introduce the
error localization primitives as well as applying the veri-
fication technique. LLVM IR is a low-level language with
precise semantics to which many high-level languages can be
translated. Supporting LLVM IR as a common language for
instrumentation and verification enables our technique to be
applicable for many verification frameworks. Indeed, if a tool
implements the verification of reachability conditions in the
LLVM IR – due to the fact that the instrumentation for error
location is decoupled from the verification itself –, it can also
be used for error localization.



Example 5. Consider again the running example introduced
in Figure 1. In this function, we have used the function
call assert(). This function call tells Forest that it should try
to come up with a counterexample to satisfy and to violate
the assertion. By invoking Forest together with the assertion
from line 12 of Figure 1, we are able to directly generate a
counterexample violating the assertion.

B. Error Localization on Top of Forest
Having the counterexample, we now aim to determine

possible error locations by realizing the methodology proposed
in Section II on top of Forest. Since Forest is based on the
LLVM IR, we first review the corresponding input and how
to generate it. Afterwards, we introduce how the correspond-
ing replacement variables (eventually employing ri → stmnti
for each statement stmnti) are incorporated to alter statements
and allowing the replacement of the value used by statement
stmnti.

The basic idea of LLVM [25] is to introduce a virtual
machine for system languages. LLVM is based on a three
layer approach where (1) the top layer, the so-called front
end, translates the system language program code into an
(2) intermediate format which can then be further processed
as well as optimized, and (3) eventually be translated into
machine language by a back-end available for the needed target
architecture. The LLVM IR representation can be compared to
the assembly language. Moreover, by translating any C pro-
gram into the LLVM IR level, most of the complex instructions
have already been broken down into basic operations (e.g. load,
branch, add). Since Forest is capable for using C code or the
LLVM IR representation of any program as input, it deems
suitable to introduce the proposed replacement-variables at this
layer as well. To this end, the respectively given code has first
to be translated to the LLVM IR representation which can be
done by applying an LLVM front-end like Clang.

Next, the resulting LLVM code shall be augmented with
the corresponding replacement variables. For processing the
program in the LLVM IR layer, LLVM offers the application
of so-called optimization passes. By applying an optimization
pass, the program can be altered at the LLVM IR layer
which makes the optimization completely independent of any
programming language or target architecture. In oder to realize
the introduction of the replacement-variables, we have imple-
mented an optimization pass capable to handle the augmenta-
tion. Finally, Forest is capable to apply additional optimization
passes out of the box. To this end, we could realize the
augmentation based on the optimization pass and could directly
hand the pass over to Forest which applies the optimization
pass before it starts to prepare the code for the symbolic
execution.

After Forest has completed the symbolic execution
of the program which has been augmented with the
replacement-variables, we can obtain the generated results.
Forest stores all evaluated traces and, we can now inspect these
traces for activated replacement variables. Again, if Forest
activated a replacement variable in order to alter a trace, we
can use this information as an indicator for a possible error
within the statement which has been altered by the replacement
variable.
Example 6. Consider again the running example from above
(i.e. the broken implementation of the abs() function as shown
in Figure 1). By applying the proposed optimization pass,
we are now introducing the replacement variables for each
statement. Therefore our optimization pass is realizing the
ri → stmnti transaction by employing an if-then-else selec-
tion operator. This finally allows us to replace the content of
the statement by eventually activating the transaction.

Forest is now going to perform symbolic execution on
top of this augmented LLVM IR version of the broken abs()
function. In order to explore every possible trace through
our augmented version of the abs() function, Forest is now
constructing possible traces which then will be evaluated. If a
trace can be evaluated to true only when the reasoning engine

applied by Forest has to activate an replacement variable, this
trace might possibly pinpoint to an error location.

C. Statements to be Instrumented
In this section, now we finally discuss what statements

should be considered to get augmented by a replacement-
variable and its corresponding program modification.

To this end, recall that the corresponding augmentation
with replacement-variables should be applied to statements
which are capable of influencing the program’s behavior in
a fashion so that they are actually able to generate the desired
outputs (although the counterexample is applied). In an ideal
scenario, of course all statements should be considered for
this (one of them definitely is responsible for the failed
assertion output). However, that would lead to scalability
issues. In fact, adding only one replacement variable ends
up in doubling the search space to consider. Doing that
for every statement will easily become infeasible. Therefore,
a limitation of what statements to be augmented is needed
in order to prevent an exponential number of traces (namely
2number of selected statements) to be generated.

To this end, we propose a selection scheme which limits
the number of augmented statements. For this purpose, we
are focusing on the program in terms of the control flow
graph and the data flow graph. By focusing on those graph
representations of the program, we could identify statements
which are more likely of influencing the program execution
(and, hence, are also more likely to violate any assertion). This
is basically based on previous evaluations conducted in [26].
Here, the authors concluded that common flow patterns in
terms of control and data flow are likely to cause the error
of a program. In the following, we describe these influential
statements in somewhat more detail.

Control Flow Operator: The compare operator has been
identified as the most influencing operator of the control flow.
It is capable to change the programs behavior by routing
the execution through a different trace of the program than
the desired one. Because of this, we are focusing our error
localization approach to those compare operators.

Data Flow Operator: Compared to control flow, where
we were able to classify one single operator as the most
influencing operator, the data-flow is more versatile. Hence,
instead of identifying one single operator we consider a class
of most influencing operators. Those operators, namely binary
operators, are mostly invoked into data flow manipulations.
Binary operators can be represented by arithmetic operators
like addition or logic operators like exclusive or.

Based on the discussions above, a compromise between a
full consideration of all statements and a restricted considera-
tion of statements is provided. In fact, by considering only the
data flow and control flow operators as shown above, we focus
on the most influencing operators. This significantly reduces
the complexity of the error localization methodology while, as
confirmed by evaluations summarized in the following section,
still yields useful results that, indeed, pinpoint the designer to
the actual error location.

IV. DEMONSTRATION AND APPLICATION
In this section, we demonstrate the applicability of the

proposed methodology. To this end, we have implemented
the approach as described in the previous section as a rep-
resentative. As test cases, we employed instances from the
Siemens’ Traffic Collision Avoidance System (TCAS) bench-
mark suite [27]. This benchmark suit offers different versions
of an algorithm for a traffic collision detection system into
which different errors have been injected. In the following, we
demonstrate how the determination of the location of these
errors can be improved with the proposed methodology. More
precisely, we first discuss this from a user perspective for a
single case. Afterwards, a summary of further cases which
have been considered is provided.



TABLE I: TCAS Experiments.
Input Result

Benchmark Type Time [s] Candidates Match
v1 operator mutation 66 8 X
v2 operator mutation 24 6 X
v3 logic change 20 3 X
v4 logic change 76 11 X
v5 missing code 14 6 X
v6 logic change 38 5 X
v20 logic change 23 8 X
v28 branch manipulation 365 13 X
v39 operator mutation 570 13 X
v41 wrong assignment 68 16 X

A. User View
In order to illustrate the application of the proposed

methodology from a users perspective, we have chosen one
of the benchmarks from the TCAS suite, namely v3. Here,
a logic change has been injected into the algorithm (i.e. a
Boolean AND-operation has been replaced by a Boolean
OR-operation). Applying the proposed methodology (using
the Forest realization as introduced in Section III) eventually
yields three possible error locations, i.e. statements which
could help the designer in understanding the source of the
errors. In a consequently following step, the designer could
use this information now by e.g. setting breakpoints for those
statements to investigate their influence even further. By this,
he/she is eventually pin-pointed to the actual error. Although
this is a rather small example, it illustrates how the designer
can utilize the proposed methodology. In fact, he/she does not
need to change the respectively applied verification method or
to step through the single steps of a counterexample. Instead,
the designer is directly pinpointed to possible error locations
out of which he/she can easily derive the actual source of the
error.

B. Further Cases
Besides the case from above, we additionally applied the

proposed methodology to further benchmarks from the TCAS
benchmark suite. Correspondingly obtained results from those
case studies are summarized in Table I. Here, the first columns
provide the name of the respectively considered benchmarks
as well as the type of error which has been injected here. Af-
terwards, we list the runtime needed by the proposed method-
ology in order to determine the error candidates. the number of
obtained candidates, and whether the actual reason of the error
was within the set of obtained error candidates (i.e. whether
the error candidates indeed matched the error). The results
clearly show the benefit of the proposed methodology. For
all cases, the proposed approach was capable of reducing the
set of statements to consider to a rather small number which
can easily be inspected by the designer. Moreover the actual
error was always be amongst those determined statements. As
for run-time performance, the considered realization (using the
symbolic executer Forest as verification method) was able to
determine the error candidates in reasonable time.

Overall, the proposed methodology was able to signifi-
cantly support the designer in determining the error of the
considered benchmarks.

V. CONCLUSION
The ever increasing complexity of modern systems remains

a significant challenge. Therefore, verification engineers are
trying to perform the verification of new systems already in
early design phases. However, every time when an error has
been unveiled by a certain verification method, the reason
of the error has to be localized – posing yet another chal-
lenge. In this work, we proposed a generic error localiza-
tion methodology which can be applied with any verification
method (e.g. assertion checkers, property checker, symbolic
executers) available today and which pinpoints the designer
to possible error locations in the code. We exemplary realized
the proposed methodology on top of a symbolic executer and
demonstrated the applicability on benchmarks realizing a traf-
fic collision avoidance system. As shown by these applications,
the proposed methodology can significantly aid designers in
the process of error localization.
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[15] A. Süllflow, R. Wille, G. Fey, and R. Drechsler, “Evaluation of
Cardinality Constraints on SMT-based Debugging,” in Int’l Symp. on
Multi-Valued Logic. IEEE, 2009.

[16] M. Weiser, “Program slicing,” in Proceedings of the Int’l Conf. on
Software Engineering, San Diego, USA, 1981.

[17] E. Alves and M. Gligoric and V. Jagannath and M. d’Amorim, “Fault-
localization using dynamic slicing and change impact analysis,” 2011.

[18] L. A. Clarke, “A System to Generate Test Data and Symbolically
Execute Programs,” IEEE Transactions on Software Engineering, 1976.

[19] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, 1976.

[20] H. Yoshida and G. Li and T. Kamiya and I. Ghosh and S. Rajan and
S. Tokumoto and K. Munakata and T. Uehara, “KLOVER: Automatic
Test Generation for C and C++ Programs, Using Symbolic Execution,”
IEEE Software, 2017.
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