
A Staircase Structure
for Scalable and Efficient Synthesis of Memristor-Aided Logic

Alwin Zulehner
1
, Kamalika Datta

2
, Indranil Sengupta

3
, and Robert Wille

1

1
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

2
National Institute of Technology Meghalaya, India

3
Indian Institute of Technology, Kharagpur, India

alwin.zulehner@jku.at, kdatta@nitm.ac.in, isg@iitkgp.ac.in, robert.wille@jku.at

ABSTRACT
The identification of the memristor as fourth fundamental circuit

element and, eventually, its fabrication in the HP labs provide new

capabilities for in-memory computing. While there already exist

sophisticated methods for realizing logic gates with memristors,

mapping them to crossbar structures (which can easily be fabri-

cated) still constitutes a challenging task. This is particularly the

case since several (complementary) design objectives have to be sat-

isfied, e.g. the design method has to be scalable, should yield designs

requiring a low number of timesteps and utilized memristors, and

a layout should result that is hardly skewed. However, all solutions

proposed thus far only focus on one of these objectives and hardly

address the other ones. Consequently, rather imperfect solutions are

generated by state-of-the-art design methods for memristor-aided

logic thus far. In this work, we propose a corresponding automatic

design solution which addresses all these design objectives at once.

To this end, a staircase structure is utilized which employs an al-

most square-like layout and remains perfectly scalable while, at the

same time, keeps the number of timesteps and utilized memristors

close to the minimum. Experimental evaluations confirm that the

proposed approach indeed allows to satisfy all design objectives at

once.

1 INTRODUCTION
In 1971, Chua envisioned the memristor as fourth fundamental

circuits element [4]. With the property that its resistance value

changes depending upon the total amount of charge flowing through

it—coupled by the fact that the change in resistance is non-volatile—

memristors allow for new capabilities in in-memory computing.

First physical realizations were fabricated in the HP labs in 2008 [15].

Due to their small size and power consumption, arrays of mem-

ristors (also called crossbars) leveraged research on in-memory

computing.

In this work, we focus on memristor based design of in-memory

logic, where all operations are conducted in memory without in-

termediate read-outs or reinitialization—thus, avoiding the require-

ment of a complex controller (cf. [6]). One design style achieving

that—the IMPLY logic design style—was proposed in [10], where

material implication operations (A → B) are realized using two

memristors and one resistor, by applying different voltages to the

inputs of the memristors. Synthesis approaches using this design

style have been presented e.g. in [3, 10, 11, 14].

Recently, also the MAGIC design style [8] has been proposed,

where each n-input gate is realized using n + 1 memristors. Since

this design style has superior performance compared to the IMPLY

design style (regarding speed and energy; cf. [8]), we choose to

follow the MAGIC design style in this work.

However, mapping a netlist of gates following the MAGIC design

style to a crossbar structure in a clever and efficient fashion is

a non-trivial task, since all memristors involved in an operation

must be located in the same row or column of the memristor array.

This requires to include several copy operations in order to move

logic values to other memristors, which increase the number of

required timesteps as well as the number of utilized memristors—

a number which obviously should be kept as small as possible.

Besides that, also the resulting layout matters, since the memristors

active in a gate operation shall be kept close to each other in order

to avoid high resistances by long wires that may lead to incorrect

computations. Consequently, design methods for memristors have

to tackle several (complementary) design objectives. Unfortunately,

previously proposed solutions such as proposed in [5, 6, 17] only

focus on one of these design objectives and hardly address the other

ones—yielding rather imperfect solutions which are generated by

state-of-the-art methods thus far (all that is discussed and illustrated

in more detail later in Section 2.3).

In order to overcome this issue, we discuss the existing design

objectives as well as the current state of the art in detail (focusing

on strengths as well as on weaknesses). Based on that, we propose

a mapping approach that utilizes a staircase structure for mapping

logic gates to an array of memristors. This method yields mappings

that employ an almost perfect square-like layout, while remaining

perfectly scalable and keeping the number of timesteps and mem-

ristors low. Experimental evaluation confirms that the proposed

approach indeed satisfies all design objective at once.

This paper is structured as follows. In Section 2, we review the

background of realizing logic using the MAGIC design style as well

as current state-of-the-art approaches for realizing these gates in a

crossbar structure. In Section 3, we present the proposed mapping

approach, followed by a discussion of post-mapping optimizations

in Section 4. Section 5 summarizes the results obtained by the pro-

posed approach and compares them to previously propose methods,

while Section 6 concludes the paper.

2 BACKGROUND
In order to keep this work self-contained, this section reviews the

MAGIC design style, as well as corresponding design objectives

including a review on whether and how related works satisfy them

thus far. Motivated by the shortcomings of related works, the pro-

posed mapping approach is provided afterwards in Section 3.

2.1 Memristors in the MAGIC Approach
As mentioned earlier, the resistance value of a memristor changes

in response to the voltage applied across its terminals. Due to the

unique properties of oxygen vacancies that act as charge carriers,
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Figure 1: MAGIC realization of a NOR gate

the device exhibits a non-volatile behavior and retains its resistance

value even when the voltage is withdrawn. The voltage-current

characteristic curve of a memristor shows two distinct resistive

regions, where one corresponds to low resistance (Ron ), while the
other corresponds to high resistance (Rof f ). The resistance can be

switched by applying a suitable voltage across the terminals.

Within the MAGIC design style [8], gate inputs are applied as

initial resistive states of the input memristors, while the output

memristor is initialized to 0 or 1 (depending on the desired logic

gate). During gate evaluation, the output terminal is groundedwhile

a voltage Vo is applied to the input terminals—changing the resis-

tance of the output memristor to the desired value. The magnitude

of Vo is determined from the following inequalities

Vof f
Ron

[
Ron +

Rof f
n−1 | |Ron

]
< Vo (1)

Vo < min
[
Vof f .

(
1 +

Rof f
nRon

)
,

(
1 +

nRon
Rof f

)
|Von |

]
, (2)

where Vof f and Von respectively denote the threshold voltages for

switching a memristor to the OFF (i.e. logic 0) and ON (i.e. logic 1)

states. By this, e.g. an n-input NOR gate can be realized with n + 1
memristors as illustrated by the following example.

Example 1. A 2-input NOR gate can be realized using memristors
as shown in Fig. 1a. The memristors labeled x0 and x1 serve as inputs
of the gate, (assuming they are initialized accordingly), while the
one labeled y holds the output. Before the computation, y has to be
initialized with logic 1 (by applying a voltage that sets its resistance to
Ron ). Then, after applying voltageVo to x0 and x1, as well as applying
VGND to y as shown in Fig. 1a, the logic value of y changes to zero in
case that x0 or x1 holds logic 1. Thus, y = NOR(x0,x1) afterwards.

2.2 Logic Design for Memristor Crossbar
To enable in-memory computing, memristors are fabricated in a

crossbar array, where the memristors of a row (column) are con-

nected by wires. Each memristor at the junction of a row and a

column connects the respective wires (as shown in Fig. 1b). Using

MAGIC, only NOR gates can be realized directly in the memristor

crossbar [17].
1
Again, an example illustrates the idea.

Example 2. Fig. 1b shows how NOR gates can be mapped to
memristor crossbars. We use the memristor at (R0,C2) to compute
y = NOR(x0,x1).2 By applying voltage Vo to columns C0 and C1 as
well as voltage VGND to column C2, a circuit equivalent to the one
shown in Fig. 1a results. Again, we assume that the memristorsM0,0

1
Since NOT gates are a special case of a NOR gate (one with a single input), they can

also be realized directly.

2
In the following, we denote a memristor at the junction of row Rx and column Cy
as Mx,y .

and M0,1 hold the value of x0 and x1, respectively, as well as that
M0,2 was initialized with logic 1.

As can be seen in Fig. 1b (highlighted in red), NOR gates can be

applied within a row of a crossbar Besides that, it often is beneficial

to transpose this structure so that NOR gates are applied within

a column—resulting in a so-called transposed crossbar [17]. Then,
the voltages that have to be applied in order to conduct the desired

operation need to be swapped, i.e. the voltage Vo is applied to the

row in which the output is located, while the voltage VGND is

applied to the rows that hold the input memristors.

Furthermore, by applying voltages to a column (row) of the cross-

bar, multiple NOR gate operations are carried out in all available
rows (columns) of the crossbar structure. While this allows for a

parallel execution of gates, it might not always be desired (e.g. if

memristor M1,2 holds a value which must not be overwritten).

Hence, in order to avoid that, one can apply a so-called isolation
voltage Viso to those rows (columns) in the crossbar that shall be

excluded from gate evaluation (e.g. applying Viso to R1 in Fig. 1b

would avoid the execution of a NOR operation in this row). It may

be noted that, when multiple gates are mapped to a single row (col-

umn), it is not possible to carry out parallel rowwise (columnwise)

gate operations.

Following these basic rules, arbitrary functions can be mapped

to a memristor crossbar array. First, a representation in terms of

NOR gates is constructed. This is accomplished by representing the

function to be realized in terms of an AND-Inverter-Graph (AIG [7]).

After optimizing the AIG (e.g. by using graph rewriting techniques;

cf. [13]), the resulting AIG is transformed to a netlist composed

of NOR gates and inverters (e.g. using DeMorgan’s rules: a · b =

a + b). More precisely, each node (representing an AND operation)

translates directly to a NOR gate by inverting the inputs. After this

translation, a dedicated mapping algorithmmaps the resulting NOR

gates into the memristor crossbar structure. While doing that, it has

to be guaranteed that, for each gate, the inputs as well as the output

are located in the same row or column. If this is not the case, so

called copy operations (composed of two NOT gates) are required

to arrange the inputs accordingly. Finally, the result of the mapping

algorithm is an assignment of all inputs, intermediate values and

outputs (since we use MAGIC gates) to memristors as well as a

sequence of operations (i.e. voltages that have to be applied to the

rows and columns) required to realize the desired Boolean function.

Note that the effect of graph rewriting techniques, e.g. for mini-

mizing the number of nodes or the depth of the AIG, has intensely

been studied for conventional design (c.f. [13]) and can also directly

be applied here. Therefore, we do not focus on different optimiza-

tions of the function description (the AIG). Instead, we focus on

mapping a fixed (and already optimized) netlist composed of NOR

gates and inverters to a memristor crossbar. As further benefit,

this allows to conduct a fair comparison to previously proposed

mapping approaches (cf. Section 5).

2.3 Design Objectives and Related Work
When conducting the mapping from a NOR netlist to a memristor

crossbar, the following objectives should be considered:

• Scalability: The mapping approach shall be scalable and

allow large Boolean functions to be mapped to memristor

crossbars.



• Required Timesteps: The mapping approach shall aim for

a small number of required timesteps. This number has a

lower bound defined by the number of stages (i.e. the depth)

of the netlist to be mapped. In the ideal case, the outputs of

all gates in a stage can be computed in parallel. However,

this will hardly be possible since the inputs and the output

of the gates have to be arranged in the same row or column.

• Utilized Memristors: The mapping approach shall reduce

the number of utilized memristors. The fewer memristors

used for intermediate computations, the less energy will be

consumed. Usually, this metric is correlated to the number of

required timesteps, since additional memristors are caused

by the requirement of copy operations. Within the MAGIC

design style, the number of utilized memristors is bound

below by the sum of the number of gates and the number of

inputs.

• Resulting Layout: The memristors occurring in a gate oper-

ation should be close to each other in order to reduce the

resistance of the wires connecting them (cf. [12, 17]). Conse-

quently, the dimensions of the bounding box that surrounds

the utilized memristors shall be kept as small as possible and

hardly skewed.

Several related works exist which conduct the mapping of a NOR

netlist to a memristor crossbar [5, 6, 17]. But unfortunately, they

either ignore (some of) the design objectives reviewed above or

address them in an unsatisfactory fashion. In the following, we

briefly discuss the state-of-the-art (assuming that a netlist with n
inputs and k gates has to be mapped).

A naive mapping approach has been presented in [17], where

all gates are mapped into a single row of the crossbar. This leads to

sequential evaluation of the gates but avoids copy operations since

all inputs are inherently located in the same row. The approach

is scalable, since its complexity grows linearly with the number

of gates in the netlist, i.e. O(k). Moreover, the number of required

memristors is the minimum, since only one memristor is required

for each gate in the netlist (in addition to the memristors needed for

the inputs, i.e. in total n + k memristors). However, the number of

required timesteps is usually not optimal since always k timesteps

are required and no gates can be executed in parallel. Furthermore,

the resulting layout is totally skewed since a layout of 1 × (n + k)
results.

Example 3. Consider the NOR netlist shown at the top of Fig. 2.
The naive mapping approach results in the crossbar shown at the
bottom of Fig. 2. Assuming that the inputs x0, x1, x2, and x3 are
mapped to the first four memristors of the crossbar, we can compute
output д0 of the NOR gate G0 by applying Vo in columns C0 and C1

as well as VGND in column C4 (cf. Section 2.2). Analogously, we can
compute д1 afterwards. Eventually, we can compute д2 in row R0 since
the values of д0 and д1 are present in the memristorsM0,4 andM0,5,
respectively.

Another approach, called compact mapping (proposed in [5]) tries
to overcome the issue of the naive approach regarding the resulting

layout by additionally mapping gates to columns—resulting in a

mapping that grows more equally in the two dimensions. However,

the resulting layouts are still rather skewed and the number of

required timesteps and memristors is larger than for the naive

approach (even though several gates are applied in parallel). This is

caused by the large number of copy operations required for aligning

the inputs and outputs of the gates.

G0

G1

G2

x0x1

x2x3

C0 C1 C2 C3 C4 C5 C6

R0

x0 x1 x2 x3 д0 д1 д2

Figure 2: Naive mapping approach

The approach described in [6] instead minimizes the number of

required timesteps to reduce the latency of the computation. To

this end, they formulate the mapping problem as an optimization

problem that is solved with the IBM ILOG CPLEX solver [16]—

leading to optimal mappings with respect to the number of required

timesteps. However, the solution is not really scalable. In fact, in [6]

only benchmarks with up to 21 inputs and at most 10 outputs

are listed. Furthermore, no execution times are given in the paper,

which makes it hard to estimate the scalability of the approach.

With a publicly available implementation of the approach, we could

not come up with a solution for functions with fewer than 10 inputs

within several days of runtime.

Overall, the current state-of-the-art of mapping a NOR netlist to a

memristor crossbar is not capable of satisfying all design objectives

at once. In this work, we propose a new scalable mapping approach

that keeps the number of required timesteps close to the minimum,

uses rather few additional memristors, and yields a layout that

is almost a square. How this can be achieved is described in the

following section.

3 PROPOSED MAPPING APPROACH
In this section, we propose a dedicated approach for mapping gate

netlists to a memristor crossbar.

3.1 General Idea
The general idea is to compute as many gates of the circuit as

possible in parallel. All such gates are mapped in different rows, but

with the inputs and the output in the same column for each gate.

By this, the respective results are located in a single column which

then can be used to compute the following gates. This way, each

stage of the circuit is alternately mapped in columns and rows—

eventually yielding a staircase structure which conforms to the

design objectives reviewed above. The general idea is illustrated by

means of the following example.

Example 4. Consider again the NOR netlist shown in Fig. 2. Using
the proposed approach results in the mapping shown in Fig. 3. Here,
we map the gates д0 and д1 to the rows R0 and R1 of the crossbar. For
both gates (in both rows), we use the columns C0 and C1 as inputs,
and column C2 as output. By applying suitable voltages, both gates
are computed in parallel.3 Since afterwards the outputs д0 and д1 are
both available in column C2, we use this column to compute д2. We
require only two timesteps (instead of three as in naive mapping).
Moreover, the bounding box of the mapping is 3 × 3 instead of 1 × 7.

Generalizing this idea leads to a staircase-shaped mapping as

shown in Fig. 4. Here, only memristors highlighted in red and blue

are used. The computation starts in the bottom right corner of

the crossbar. Memristors highlighted blue serve as inputs of gates

3
Note that we apply Viso in row R2 to avoid a calculation in this row.
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in odd stages, whereas the outputs of these gates are stored in

memristors above the inputs highlighted in red. In contrast, gates

of even stages have memristors highlighted in red as inputs as well

as the memristors highlighted in blue on the left as outputs. Hence,

the outputs of a stage are inherently arranged to serve as inputs

for the next stage—resulting in a dedicated mapping algorithm that

satisfies the objectives outlined in Section 2.3. More precisely, it

is scalable, keeps the number of required timesteps and utilized

memristors low, and results in a layout where the bounding box is

almost a square.

However, there are still open issues, namely how to map the

gates precisely as well as how to handle occurring fanout. This

is discussed in detail in the following subsection by means of the

netlist shown in Fig. 5. The resulting mapping is shown in Fig. 6,

whereas the corresponding operation sequence is shown in Table 1.
4

3.2 Mapping the Gates of a Stage
As outlined above, we sequentially map the stages of the netlist (in

the following denoted by si ) to the memristor crossbar—starting

at the outputs since this allows to handle fanout more efficiently.

In fact, whenever we map a gate, we already know all the posi-

tions where the fanout must be copied to. If a signal at stage sj
(j < i) serves as input for multiple gates of stage si , we map all its

occurrences into the same row (column) to keep the overhead of

handling the fanout as small as possible.

Example 5. Consider the netlist shown in Fig. 5. First we map
stage s3 which contains the gatesG7,G6, andG5. We map these gates
to the columns C0, C1, and C2, respectively. To allow for a parallel
execution of the three gates, we have to map the output as well as
the inputs to the same row for each gate. Fig 6 shows one possible
mapping for the gates of stage s3. The output of the gates (i.e. д7, д6,
and д5) are mapped to row R0 while the inputs are mapped to rows
R1 and R2, respectively. Since the signals д4 (i.e. the output of gate д4)
as well as д0 serve as input for two gates, we map all their occurrences
to the same row (i.e. R1 for д4 as well as R2 for д0).

After mapping the gates of stage s3, we continue by mapping s2
that contains a single gate (G4) only. We map this gate in row R1. As
input for the gate serve the signals д3 as well as д2 (mapped in the
columns C3 and C4, respectively). To compute both occurrences of д4
in row R1 concurrently, we apply the voltage VGND in columns C0

and C1. This way, the fanout of gate G4 is handled without the need
of a copy operation.

Since fanouts across multiple stages are undesired, we do not

treat inverters as gates when decomposing the netlist into stages.

Instead, we use negated inputs for gates (as e.g. shown for gate G4

4
We only list an abstract description of the operations (in terms of NOR gates and

inverters) in order to improve readability.

in Fig. 5), i.e. we invert the value stored in one memristor whenever

necessary and store the result in an auxiliary memristor. Note that

this never causes problems with misaligned inputs, since an inverter

has only one input. Our internal parameter study has shown that

using negated inputs significantly reduces the number of required

timesteps.

Example 5 (continued). The stage s1 contains two gates (G3 and
G2). We map these two gates in columns C3 and C4, respectively. For
both gates, the inputs are located in rows R3 and R4. However, since
the output ofG2 is only needed in negated form (i.e. д

2
), an auxiliary

memristor is required. We place this memristor in an auxiliary row Rx
(indicated in orange in Fig. 6). When determining д

2
, we first compute

д2 using the auxiliary memristor, and invert this value afterwards.
The corresponding operation sequence is shown in Table 1.

3.3 Handling Fanout Across Multiple Stages
As shown in Example 5, fanout of signals from stage si−1 to stage

si can be handled efficiently by storing the output of a gate in

several memristors concurrently (by applying the required ground

voltage to the respective columns or rows).
5
However, fanouts

across multiple stage of the netlist have to be handled by using

auxiliary memristors. We again use them to copy the output of a

gate to the location where it is required afterwards.

Example 5 (continued). After mapping gate G0 of stage s0, we
have to handle the fanout for this gate. The value д0 is required at
the memristorsM2,1 andM2,2 (highlighted red in Fig. 6). To this end,
a copy operation is required. We use an auxiliary memristor M2,4

(highlighted in orange in Fig. 6) where we storeд
0
by using an inverter,

i.e.M2,4 = INV (M4,4). By using another inverter we can store д0 at
the desired positions concurrently, by applying voltage VGND to C1

as well as to C2. The corresponding operation sequence is shown in
Table 1.

Note that this is an ideal case where the memristor M2,4 was
not used for storing an intermediate value. If we assume that this
memristor cannot be used, more inverters and auxiliary memris-
tors are required. In fact, another option is to use an inverter to
computeM0,4 = INV (M4,4), followed by an inverter that computes
M0,3 = M0,4 (M0,3 now holds д0). Finally, another inverter is needed
to computeM2,3 = INV (M0,3), which enables to set the memristors
M2,1 andM2,2 to д0 as discussed above.

4 POST-MAPPING OPTIMIZATIONS
The mapping algorithm described in Section 3 yields a mapping of

the inputs and gate outputs to the memristors in the crossbar as well

5
As discussed in [17], this changes the equivalent resistance at the output. Hence, Vo
has to be adjusted in Eq. (1) and (2). Some memristor models listed in [9] support gates

with a fanout larger than 20—more than the maximum observed in our experiments.
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Table 1: Operation Sequence
t operations comment

s0
1

M3,4 = NOR(M3,5, M3,6) д0 , д1M4,4 = NOR(M4,5, M4,6)

2 M2,4 = I NV (M4,4)
fanout of д0

3 M2,1 = M2,2 = I NV (M2,4)

s1
4 M1,3 = NOR(M3,3, M4,3) д3
5 Mx,4 = NOR(M3,4, M4,4) д

2
6 M1,4 = I NV (Mx,4)

s2 7 M1,0 = M1,1 = NOR(M1,3, M1,4) д4

s3 8

M0,0 = NOR(M1,0, M2,0)

д5 , д6 , д7M0,1 = NOR(M1,1, M2,1)

M0,2 = NOR(M1,2, M2,2)

as an operation sequence. In this section, we discuss post-mapping

optimizations. While optimizing the mapping to the memristors

results in amore compact layout, optimizing the operation sequence

reduces the number of required timesteps.

4.1 Optimizing the Mapping
Recall that the mapping algorithm presented in Section 3 yields a

staircase-shaped mapping and also uses some auxiliary memristors

outside this shape. When we consider the bounding box of this

layout in both dimensions, we observe that many memristors that

are not utilized.

Example 6. The bounding box of the mapping shown in Fig. 6 is a
rectangle with dimension 6 × 7. However, out of these 42 memristors,
only 21 (i.e. the half) are actually utilized.

In order to increase the density of the utilized area, we try

to merge rows as well as columns whenever possible. Merging

two rows Ri and Rj (columns Ci and Cj ) is possible if in none

of the columns (rows) the memristor is used in both rows, i.e if

∀kunused(Mi,k )∨unused(Mj,k ). Then, we just move the mappings

from row Rj (column Cj ) to Ri (Ci ). Accordingly, we have to adapt

the operation sequence.

Example 6 (continued). In the mapping shown in Fig. 6, we
can merge rows R0 and Rx , since in Rx the memristor Mx,4 is used
whereas the memristorM0,4 is not. Similarly, we can merge columnC5

and C6 with columns C0 and C1, respectively. Afterwards, a mapping
results where the bounding box is only 5 × 5. Only four out of these
25 memristors are not utilized.

4.2 Reducing the Number of Timesteps
Besides a more compact mapping, we can also reduce the number of

required timesteps in certain cases by inspecting the operation se-

quence generated by the mapping algorithm. In fact, two operations

in the same row (column) that only differ in the target column (row)

but have the same source columns (rows) can be merged—resulting

in a gate with multiple outputs (similar to the handling of fanouts

as described in Section 3.2). Note that this always works since inter-

mediate values stored in the memristors are not overwritten once

they are set.

Example 7. Assume that the mapping algorithm generates a
sequence of operations including oi : M0,2 = NOR(M0,0,M0,1)

and oj : M0,4 = NOR(M0,0,M0,1) with i < j. Then, we can merge
these two operations by replacing oi with o′i : M0,2 = M0,4 =

NOR(M0,0,M0,1) and by removing oj .

Furthermore, there may exist two operations oi and oj (i < j)
which operate on different rows (columns) but use the same columns

(rows) as sources and targets. Then, we can again merge these op-

erations to execute both of them in parallel. However, note that

merging is not always possible, because the inputs that are required

for oj must already be computed at timestep i . If this is not the case,
the two operations cannot be merged.

Example 8. Assume the mapping algorithm generates a sequence
of operations including o14 : M0,2 = NOR(M0,0,M0,1) and
o26 : M1,2 = NOR(M1,0,M1,1). The two operations can only bemerged
if the memristorsM1,0 andM1,1 are set to their desired value before
timestep 14.

5 EVALUATION
In this section, we evaluate how well the proposed mapping ap-

proach satisfies the design objectives outlined in Section 2.3. To al-

low for a fair comparison to previous mapping approaches (e.g. pro-

posed in [5, 6, 17]), we decouple the mapping process from the

overall design flow, which additionally includes optimization on

the netlist level. To this end, we used ABC [1] to optimize the AIG

of the function to be realized, before mapping it to a NOR netlist.

Since this NOR netlist serves as input for all mapping approaches

we compare to, a fair comparison is ensured. The combinational

functions of the ISCAS benchmark suite [2] serve as benchmarks.

The obtained numbers for the design objectives outlined in Sec-

tion 2.3 are presented in Table 2. For each benchmark, we list the

number of primary inputs (PI ) and primary outputs (PO), as well
as the number of gates in the optimized netlist (д). Furthermore, we

list the number of timesteps t , the number of utilized memristorsm,

as well as the resulting layout for the naive mapping approach

(cf. [17]), the compact mapping approach (cf. [5]), as well as for

the approach presented in this paper.
6
Note that we do not list the

results of the approach proposed in [6] since this approach is not

feasible for benchmarks considered here.
7

As can be seen in Table 2, the proposed approach clearly requires

the fewest timesteps on average. More precisely, we obtain a re-

duction of the timesteps compared to the naive and the compact

6
Note that we do not list the runtime since all approaches determine a mapping within

a second.

7
In fact, the authors of [6] confirmed that the scalability of their approach is rather

limited and that functions with less than 10 inputs may already require several days

of runtime. Despite that, we conducted that evaluations anyway on the benchmarks

considered in [6] but, due to their relatively small size, this led to rather meaningless

results.



Table 2: Experimental Evaluation
Naive mapping [17] Compact mapping [5] Proposed approach

name PI PO g t m layout t m layout t m layout

c6288 32 32 2 718 2 718 2 749 2749 × 1 3 776 3 952 2297 × 6 3 751 6 369 151 × 870

c1908 33 25 583 583 615 615 × 1 1 056 1 150 312 × 13 517 1 087 83 × 85

c432 36 7 251 251 286 286 × 1 349 443 146 × 9 225 405 22 × 42

c1355 41 32 606 606 646 646 × 1 1 072 1 232 359 × 10 236 1 035 96 × 63

c499 41 32 606 606 646 646 × 1 1 155 1 293 323 × 13 242 1 021 96 × 44

c3540 50 22 1 422 1 422 1 471 1471 × 1 2 396 2 554 650 × 16 1 435 2 764 137 × 164

c880 60 26 521 521 580 580 × 1 761 919 383 × 5 427 889 67 × 39

c5315 178 123 1 989 1 989 2 166 2166 × 1 3 295 3 737 1261 × 11 1 361 3 553 221 × 136

c7552 207 108 2 345 2 345 2 551 2551 × 1 3 929 4 514 845 × 14 2 182 4 461 214 × 175

c2670 233 140 1 060 1 060 1 292 1292 × 1 1 490 2 018 664 × 9 551 1 513 66 × 92

P I : number of primary inputs PO : number of primary outputs д: number of gates in the optimized netlist t : number of required timesteps

m: number of utilized memristors layout: dimension of the bounding box of utilized memristors

mapping of 26.4% and 54.1% on average, respectively. Considering

the number of utilized memristors, the naive mapping approach is

the clear winner, which is obvious since it yields mappings where

this number is the minimum (using the MAGIC design style). How-

ever, the proposed approach is only 64.2% above this minimum and

requires even 3.8% fewer memristors than the compact mapping

algorithm. Finally, the proposed approach yields layouts that are

very close to a square, which is desired to keep the resistance low

(cf. Section 2.3). In contrast, the layout resulting from naive map-

ping is totally skewed, and also the layouts obtained by the compact

approach are only marginally better.

Overall the mapping approach presented in this paper clearly

outperforms the approaches proposed in [5, 6, 17] when consid-

ering all design objectives outlined in Section 2.3. For example,

the approach proposed in [6] yields circuits where the number of

timesteps is the minimum, but is not scalable at all. In contrast, the

naive mapping approach is scalable and yields a mapping where

the number of utilized memristors is the minimum, but generates a

mapping layout that is totally skewed and, hence, cannot be used

for real applications. The compact approach proposed in [5] tries

to overcome this issue, but does not give compelling results either

since the layout is still quite skewed in many cases and the number

of required timesteps and utilized memristors is quite high. Hence,

the proposed approach is the only one that targets all design objec-

tives outlined in Section 2.3 in an integrated fashion at once—even

though it may have slight drawbacks compared to other methods

when looking at one certain design objective only.

6 CONCLUSIONS
In this paper, we have proposed an approach that maps logic func-

tions to memristor crossbar following the MAGIC design style. This

constitutes a non-trivial task due to the constraint that all memris-

tors that are active when applying a gate operation either have to

be located in the same row or the same column. Therefore, several

(contradicting) design objectives have to be considered. In fact, a

scalable solution is desired, which keeps the number of required

timesteps and utilized memristors low, while generating a mapping

whose bounding box has small dimensions and is hardly skewed.

While previously proposed solutions only focused on one certain

of these objectives and hardly addressed the others, the approach

proposed in this paper satisfies all design objectives at once by uti-

lizing a staircase structure whenmapping NOR netlists to a crossbar.

Experimental evaluations confirmed that the proposed approach

indeed is the only one that targets all design objective at once.
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