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Abstract—Droplet-based microfluidic devices are a
well-established and highly potential Labs-on-Chip (LoC)
technology as droplets are especially suited to encapsulate
biological samples like cells, proteins, or DNA. These droplets
are injected in a continuous phase and flow through closed
microchannels to modules executing operations on the droplets –
eventually realizing a (bio-)chemical experiment. Moreover,
this technology even allows for the realization of multiple
experiments on a single device by letting droplets take different
paths through the microfluidic network. This requires, however,
a mechanism to route the droplets along these paths. To this end,
the concept of passive droplet routing has been suggested which
entirely avoids complex valves or switches and, instead, realizes
the routing by exploiting the hydrodynamic effect that a droplet
will always flow along the path with the highest volumetric flow
rate. Since droplets themselves affect the volumetric flow rate,
a dedicated sequence of droplets can define what path is taken
and, hence, what experiment is executed. However, determining
such a droplet sequence is a non-trivial task, as it is non-obvious
how much droplets are needed, when to inject them, and how
they are interacting. In this work, we are addressing this issue
by providing, for the first time, an automatic method for the
generation of droplet sequences realizing the desired experiments
on a given network. Evaluations confirm the practicability of
the proposed solution. Moreover, the suitability of the obtained
droplet sequences is additionally validated through simulations
on the 1D analysis model.

Index Terms—Droplet microfluidics, microfluidic networks,
droplet routing, design automation.

I. INTRODUCTION

Microfluidics allow to miniaturize the classical test tube
by using droplets of nano- to femto-liter volumes [1]. For
these droplet-based microfluidics, two main setups got es-
tablished in the past: In two-phase flow microfluidics, the
droplets (i.e. the first phase) flow in closed channels inside
an immiscible continuous phase (i.e. the second phase) which
is driven by a pump [2]. In digital microfluidics, the droplets
are moved on a planar-surface using electrowetting or dielec-
trophoresis [3], [4]. In this work, we focus on two-phase flow
microfluidics. Here, the droplets flow through closed channels
to modules executing standard unit operations like mixing,
incubating, sorting, and sensing. For example, heating can be
realized by a meander channel (which can automatically be
designed using the “Meander Designer” proposed in [5]) under
which a heating device is placed or merging and incubation
can be realized by microfluidic traps as e.g. proposed by
Garstecki’s and Ren’s group [6], [7]. Comprehensive reviews
of droplet operations and an overview of experiments are
available in [8]–[10].
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Fig. 1: Bifurcation

Despite the superior biocompatibility (e.g. the isolated
droplets avoid cross contamination and washing steps [9])
as well as the simple and cheap fabrication of correspond-
ing devices (usually realized with 3D printers, engraving
machines, or soft-lithography processes using polymers as
base material [11]–[13]), two-phase flow microfluidics bears
the potential to realize multiple droplet paths. This yields
microfluidic networks which allow multiple experiments on
a single device [14].

To this end, a mechanism is required to route the droplets
through the different paths of the microfluidic network. Instead
of using valves, switches, or any other active components, this
can be realized by exploiting hydrodynamic effects only –
yielding a concept for passive droplet routing. This concept
has been applied e.g. in Networked Labs-on-Chips [15] and
Hydrodynamic Controlled Microfluidic Networks [16].

More precisely, a bifurcation as shown in Fig. 1 allows to
route droplets through different paths. Therefore, the different
volumetric flow rates (i.e. the amount of fluid which passes
per time unit) in the successor channels of a bifurcation are
exploited (in Fig. 1 these successor channels are named c1
and c2). These flow rates inversely depend on the fluidic re-
sistances, which are mainly defined by the channel geometries
(i.e. the smaller the diameter and/or the longer the channel, the
higher the resistance) and viscosity of the continuous phase1.

This droplet routing is based on the effect that a droplet
always enters the channel with the highest volumetric flow
rate [17], [18]. When the bifurcation does not contain any
droplet, the larger amount of the flow enters the shorter
successor channel (due to the lower resistance of this de-
fault channel). Hence, a single droplet will flow through the
so-called default successor (cf. Fig. 1).

However, a droplet increases the overall resistance during its
flow through a channel. In fact, droplets themselves increase
the resistance of a channel e.g. through their viscosities,

1 A bypass channel [17] connects the endpoints of the two successor
channels. This bypass cannot be entered by any droplet and is used to make
the droplet routing only dependent on the resistances of the successors.
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droplet size, and geometry as studied e.g. in [14], [19], [20].
This has the effect that, during the flow of a droplet through
the default successor, the larger amount of the flow now enters
the non-default successor, i.e. the droplet temporarily blocks
the default successor for following droplets. This allows to
route a second, closely following, droplet into the non-default
successor (cf. Fig. 1). Corresponding design guidelines, ad-
dressing schemes, validation through CFD-simulations, and
initial experimental tests have been presented in [15], [16],
[21]–[24]

These concepts of default successors at bifurcations and
the possibility to route droplets with other droplets allow,
in principle, to realize arbitrary paths through a microfluidic
network. More precisely, if the actually considered droplet
(containing the biological sample and called payload droplet
in the following) is supposed to take a non-default successor at
any bifurcation in the network, it has to made sure that another
droplet (called header droplet in the following) arrives before
and flows through the default successor. By this, the header
temporarily blocks the default successor for closely following
droplets. This is accordingly sketched in Fig. 1.

In order to route the payload along the desired path, it
needs to be known how many headers are required and when
to inject these relative to the payload. More precisely, the
injected droplet sequence has to ensure that each bifurcation
where a droplet is supposed to take the non-default successor is
blocked by a header droplet. Furthermore, the time a header re-
quires in order to flow into the channel to be blocked depends
on the flow rates in the microfluidic network. These flow rates
however constantly change due to the resistances caused by
the flow of droplets. Furthermore, these flow interdependencies
make it hard to estimate whether droplets unintentionally
influence their respective ways or whether they merge. Thus
far, no automatic solution has been proposed for this problem
making it infeasible for larger networks to generate a proper
droplet sequence executing the desired experiment.

In this work, we address this problem by providing an
automatic method for the generation of droplet sequences
realizing the desired experiment. The contributions of this
paper can be summarized as follows:

• We propose an automatic method for generating droplet
sequences on an abstract model. The therefore used
abstract model was presented in [25] and allows to cope
with the complex flow interdependencies.

• We validate the obtained droplet sequences using simu-
lations. For the validation, we employed simulations as
proposed in [26]–[28]. This validation guarantees that all
interdependencies between droplets are considered and,
hence, confirms the suitability of the obtained results.

• We evaluate the resulting automatic method confirming
the capability to generate droplet sequences for large
microfluidic networks.

The remainder of this paper is structured as follows: The
next section first reviews the background on microfluidic
networks including the flow distribution and how this distri-
bution can be abstracted for design automation. Section III
motivates the considered problem. Section IV describes the
method for generating droplet sequences, which includes the

determination of the droplet sequence on the abstract model
and, afterwards, its validation by simulation. Results of our
evaluation are summarized in Section V. Finally, the paper is
concluded in Section VI.

II. BACKGROUND

In this section, we review microfluidic networks, how the
flow produced by the pumps distribute through these networks,
and how the complex flow interdependencies can be abstracted
in the form of a discrete model.

A. Microfluidic Networks and Experiments

In two-phase flow microfluidics, a pump produces a laminar
flow of the continuous phase in which the droplets are injected.
In order to support the passive droplet routing, the droplets
need to be injected into the network at dedicated times. There-
fore, corresponding droplet-on-demand components are uti-
lized where a second pump produces a force on the dispersed
phase and the droplets are generated with internal valves [29],
external valves [30], or with pressure pulses [31]–[33].

A microfluidic network consists of a set of modules M
executing unit operations and a set of channels C connecting
these modules. In order to avoid that operations of modules
are executed on headers, the modules are shielded by a droplet
by size sorter [34]. A sorter steers payloads towards the
module and forwards headers. Therefore, the sorter uses the
different droplet sizes (i.e. droplet volumes) of headers and
payloads. Finally, the network contains bifurcations allowing
droplets to take multiple paths and, by this, to realize different
experiments on a payload. Whether a path is implemented by
the default- or by the non-default successor channel, is also
defined by the network.

Example 1. Consider the network shown in Fig. 2. Here, a
pump produces a continuous flow in which payload and header
droplets are injected using two droplet-on-demand compo-
nents. The network consists of 19 channels C = {c1, . . . , c19}
and four modules M = {m,h, i, d} (for mixing, heating, incu-
bating, and detecting). Each module is shielded by a sorter at
its entry. Furthermore, this network contains two bifurcations
where channel c4 and channel c11 are the default successors
because their lengths are shorter than c5 and c12, respectively.
The resulting paths allow to implement e.g. the experiments
(m, h, i, d), (m, i, d), as well as (m, h, d).

B. Flow Distribution

This section reviews the one-dimensional (1D) analysis
model [35], [36], which allows to describe the flow distribution
in microfluidic networks. In microfluidic devices, the flow
usually occurs at low Reynolds numbers [12], [35] (the ratio
of inertial to viscous forces) due to the small channel sections
and relatively small flow rates. Hence, inertial effects such
as gravity, separation, secondary flow, and turbulence are
negligible. This allows to describe the flow using the Hagen-
Poiseuille’s law [37] with

∆P = Q ·R, (1)
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Fig. 2: Microfluidic network supporting passive droplet routing, which serves as a running example

where Q (in [µl/min]) is the volumetric flow rate, ∆P (in
[mbar]) is the pressure gradient, and R (in [mbar/(µl/min)])
is the fluidic resistance.

This fluidic resistance of a channel/module is at a low
Reynolds number constant and depends on the viscosity of the
continuous phase and the geometry of the channel/module. For
example, the resistance Rc of a rectangular channel c where
the ratio of hc/wc is less than 1, is defined by

Rc =
a µcont lc
wc h3

c

, (2)

where a denotes a dimensionless parameter defined as

a = 12

[
1− 192 hc

π5 wc
tanh

(
π wc

2 hc

)]−1

. (3)

The presence of droplets in channels/modules change the
flow distribution as they cause additional resistances. This
effect is used to route droplets through the system (cf. Fig. 1).
The droplet resistance itself has been experimentally studied
in several works such as e.g. [14], [19], [20].

In order to determine the flow distribution (i.e. the pressure
gradients and the volumetric flow rates) in all channels and
modules, the mass conservation and the relation described by
the Hagen-Poiseuille equation can be applied [36]. This allows
to obtain equations which are similar to the Kirchhoff’s law,
i.e. these laws can directly be transferred when we map the
Hagen-Poiseuille equation to the Ohm’s law with V = R I
(where the voltage V corresponds to the pressure gradient ∆P ,
the current I corresponds to the volumetric flow rate Q, and
the resistance R of a conductor corresponds to the fluidic
resistance R). More precisely, they can be described with the
following rules:

• The sum of flow rates into a node is equal to the sum
of flow rates out of that node. A node is a point in the
network where a channel splits into multiple channels or
where multiple channels merge to one channel.

• The directed sum of pressure gradients around any closed
cycle is zero. The sign of the pressure gradients thereby
depends on the direction of the flow rates.

The rules allow to obtain an equation system, which is used
to determine the flow distribution in the channels and modules
at a particular time and droplet state (i.e. their positions). That

means the equation system has to be resolved every time a new
droplet is injected or any droplet enters or exists a channel or
module. By constantly re-computing the flow rates, they can
be used to determine the droplets’ velocities (i.e. by dividing
the flow rate of a channel/module through its cross section)
and durations required to pass channels/modules.

C. Discrete Model

As reviewed in the previous section, the droplets cause
additional resistances and by their flow they constantly change
the flow distribution. However, in order to cope with the
complex flow interdependencies, we are employing the flow
abstraction of microfluidic networks which has been intro-
duced in [25] as a discrete model for design automation. This
model allows to approximate the time a droplet requires to
pass a channel/module as a discrete number of time steps.
Since header and payload droplets have different volumes
and, hence, cause different resistance changes, the discrete
model approximates different numbers of time steps for them
to pass channels/modules. More formally, the discrete model
is defined as follows:

Definition 1. The discrete model approximates the time a
header/payload requires to pass a channel/module in an
isolated manner, i.e. changes and interdependencies caused by
other droplets are not considered. Then, the approximated time
is discretized to a number of time steps by dividing it through
the real time of one atomic time step given as Ta. This allows
to define the number of time steps a payload requires to flow
through a channel c ∈ C or to execute a module m ∈M with
the function

pSteps : C ∪M → N. (4)

Accordingly, the respective number of time steps for headers
are defined by the function

hSteps : C → N. (5)

Example 2. Consider again the network shown in Fig. 2.
The input for the discrete model is a full specification of
the network (i.e. channel/module geometries, the input flow
rate/pressure produced by the pump, and the viscosity of the
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Fig. 3: The discrete model of [25] for a bifurcation with time steps for payloads (white segments) and headers (gray segments)

continuous phase) and of headers/payloads (i.e. viscosities and
volumes). Using this full specification and assuming one time
step to be equal to Ta = 2 ms, the required number of time
steps for all channels and modules can be derived, i.e. the
functions pSteps and hSteps as annotated in Fig. 2 can be
defined.

The discrete model also allows to predict the droplet routing
as sketched in Fig. 1 and also the sorter element at the module
entry. More formally, the discrete model predicts the path of
a droplet as follows:

Definition 2. The droplet behavior at a bifurcation (with
successor channels of the same section) is determined by
the number of time steps of the successors and other droplet
positions. More precisely, by default a droplet flows into the
successor requiring the least number of time steps (using the
function of the considered droplet type). If this channel already
contains a droplet, it flows into the other channel, i.e. non-
default successor. This behavior is accordingly applied if both
channels already contain a droplet. The discrete model also
handles the sorter by steering the payload into the module and
forwarding the headers.

Example 3. At the first bifurcation in Fig. 2 both, header and
payload, require 3 time steps to flow through channel c4 and 4
time steps to flow through channel c5. Hence, c4 is the default
channel and c5 is the non-default channel. This bifurcation
including droplets at different time steps is visualized in
Fig. 3. The segments in the channels represent the number of
time steps a payload droplet (white background) or a header
droplet (gray background) needs to pass this channel, i.e. they
respectively represent the functions pSteps and hSteps. Each
of the Figs. 3a-3c represent the position of a payload and a
header droplet at three consecutive time steps. As the default
channel c4 already contains a header droplet, the payload
flows into the non-default channel c5 in time step t+ 1.

III. CONSIDERED PROBLEM

The concepts of droplet routing allow to route a payload
through different paths of a network. However, in order to
establish a dedicated routing for the payload, payload and

header droplets have to be injected into the network so that
headers block the default successors which should not be taken
by the payload. Therefore, the headers have to arrive right
before the payload at corresponding bifurcations.

For ring networks as e.g. proposed in [16], [21], [22], [38],
[39] the injection time of the header and payload droplets can
be calculated by a formula because of the regular structure
(i.e. the modules in a ring are connected in series and a
re-injection mechanism of droplets closes this ring). However,
this is not the case for more complex microfluidic networks.
For example, for application-specific networks (which over-
come severe shortcomings of ring networks) as proposed
in [40], there is no formula possible which would allow to
calculate the injection times. Here, the question is how many
headers are needed and when to inject these headers relatively
to the payload. In other words, what droplet sequence should
be injected. In the following, this is discussed in more detail.

The path of the payload is predefined by the experiment
to be executed. This path defines the bifurcations where the
payload does flow along non-default successors and, hence,
defines when the default successor has to be blocked by a
header. In order to get a header blocking a default successor,
multiple potential paths can be considered. Moreover, when a
header takes a path which also contains non-default successors
at bifurcations, additional headers are required, i.e. headers are
required to route other headers.

Example 4. Consider again the network shown in Fig. 2.
In order to execute the experiment (m, h, i, d), no header
is required as the payload flows along the default successors
at both bifurcations. Therefore, the simplest droplet sequence
consisting of the payload only is sufficient.

In order to execute the experiment (m, i, d), one header
is required to temporarily block the default successor c4. This
header can take only one possible path from c1, c2, c3, into c4.
Therefore, the droplet sequence consists of a header and a
payload.

Finally, in order to execute the third experiment (m, h, d),
the channel c11 needs to be blocked so that it is not taken
by the payload. Therefore, a header can take two different
paths, namely c1, c2, c3, c4, c6, c8, c9, c10, into c11 as well
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as c1, c2, c3, c5, c7, c10 into c11. The second path requires
an additional header which blocks the default successor c4.
In this case, a header is used to route another header and,
overall, two headers are required.

In addition to selecting a possible set of headers and
their paths, also their respective injection times are needed.
Therefore, the time which a header requires in order to arrive
at the bifurcation with the channel to be blocked has to
be determined. This time depends on the flow rates in the
network. However, these flow rates permanently change as
the droplets cause additional resistances, i.e. whenever a new
droplet is injected or any of the droplets in the network
exits or enters another module/channel, all flow rates in the
network change as reviewed in Section II-B. Furthermore,
these complex interdependencies make it hard to determine
whether droplets unintentionally influence their respective
paths or whether droplets merge. Eventually, this may render
originally intended paths impossible (as e.g. a header cannot
timely arrive at the channel to be blocked) and, therefore,
requires the consideration of alternatives. If no alternative is
left, this is a clear indication that the considered network may
not allow to execute that particular experiment at all [41].

These non-trivial interdependencies motivate an automatic
method for the generation of droplet sequences since, in
particular for larger networks, it is infeasible to conduct all
corresponding considerations manually. Therefore, we propose
a two-step approach for generating a droplet sequence: In
the first step, a droplet sequence is generated on the discrete
model described in Section II-C. This allows to determine
the number of required headers as well as the (abstract) time
steps when they are supposed to be injected. In the second
step, the resulting droplet sequence is then validated through
a simulation on the 1D analysis model. If the sequence is
valid, i.e. indeed realizes the desired experiment, the process
terminates. Otherwise, another droplet sequence is generated
on the discrete model. In the following sections, both steps
are described in detail.

IV. GENERATION OF DROPLET SEQUENCES

In this section, we first introduce the used notation. Af-
terwards, the algorithmic details are described which consist
of generating candidates of headers as well as their paths,
determining respective injection times for a candidate, check-
ing the resulting droplet sequence for consistency, and, finally,
validating the obtained droplet sequence by simulation.

A. Used Notation

First, we introduce the notation which is used to describe the
proposed droplet generation method. This includes a notation
for paths, non-default successors, and the time a droplet needs
to flow through the path.

Definition 3. The path of the payload p is predefined by
the experiment to be executed and can be described as a
sequence over channels and modules, i.e. pathp ∈ {C ∪M}n
with 1 ≤ n ≤ |C|+ |M |. A header hk (with k ∈ N as its

identifier) can take multiple paths through the network until it
reaches the channel which should be blocked. This set of path
options for hk is described with Phk = {pathhk

0 , pathhk
1 , . . .}

and each pathhk
i is described as a sequence over channels,

i.e. pathhk
i ∈ Cn with 1 ≤ n ≤ |C|.

Whenever a payload or header path contains a non-default
successor of a bifurcation, the corresponding default successor
has to be blocked by a header. The non-default succes-
sors along a payload-path pathp and a header-path pathhk

i

are collected in the sets nonDefaultpathp ⊆ C and
nonDefault

path
hk
i

⊆ C, respectively.
The required time which the payload p needs in order to

flow from the injection point into a channel/module along its
path pathp is recursively defined by

Tpathp(pathp[1]) = 0

Tpathp(pathp[j]) = Tpathp(pathp[j − 1])+

pSteps(pathp[j − 1]),

where the index notation pathp[j] is used to access a chan-
nel/module at position j in the corresponding path. In a
similar fashion, the required time for a header hk to flow
along path pathhk

i is defined by using the function hSteps
instead of pSteps.

B. Generating Candidates

Using the notation introduced above allows to generate
possible sets of headers and their paths, so-called candi-
dates, which can be used to realize a desired experiment.
Therefore, the path of the payload pathp serves as starting
point. For this path, all non-default successors are collected
in nonDefaultpathp . For each channel in nonDefaultpathp ,
a header hk is required which blocks the corresponding default
successor. To this end, all possible paths to each of the default
successor are determined. These paths form possible options
for the header hk and are collected in Phk . Furthermore,
these paths possibly contain non-default successor channels
again. Therefore, in order to route these headers along the
non-default successors, further headers are required. This
procedure is recursively repeated for all determined paths until
all nonDefault sets are equal to ∅.

Example 5. Consider the network shown in Fig. 2 and
the experiment where the payload should flow through the
modules (m, h, d). Assignments of the variables introduced
before are shown in Fig. 4. First, the algorithm considers
the path of the payload, i.e. pathp. The payload has to
flow through the non-default successor c12 of the second
bifurcation, i.e. nonDefaultpathp = {c12}. Therefore, the
default successor c11 needs to be blocked. This blocking is
accomplished by using a header h0. For this header, there
are two path options: It can flow along pathh0

0 and pathh0
1

as defined in Fig. 4. The first option contains only default
successors (i.e. nonDefault

path
h0
0

= ∅). The second option
contains the non-default successor c5. The blocking of the
corresponding default successor c4 can be done by a further
header h1 which has to flow along pathh1

0 consisting of default
successors only.
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pathp = (c1,m, c3, c4, c6, h, c9, c10, c12, c14, c17, d, c19)

nonDefaultpathp = {c12}

two possible paths options exist

pathh0
0 = (c1, c2, c3, c4, c6, c8, c9, c10, c11) pathh0

1 = (c1, c2, c3, c5, c7, c10, c11)

nonDefault
path

h0
0

= ∅ nonDefault
path

h0
1

= {c5}

pathh1
0 = (c1, c2, c3, c4)

nonDefault
path

h1
0

= ∅

• Paths of the 1st candidate: pathp, pathh0
0

• Paths of the 2nd candidate: pathp, pathh0
1 , pathh1

0

Fig. 4: Candidate tree

This recursive procedure of determining path options pro-
duces a candidate tree, which contains all possible sets of
header paths. Recall that the options arise from the different
paths through which the headers can flow in order to get to
the default channel which should be blocked.

In order to realize the experiment, a set of paths, i.e. a
candidate, has to be selected. Therefore, the candidate tree is
traversed top-down. At each point where a header has multiple
path options, exactly one is selected. The other path options
and their subsequent headers are not required at this point and,
therefore, are not part of the currently considered candidate.
Overall, this candidate tree exhaustively provides all potential
candidates, i.e. contains all combinations of the path options.

Example 6. Let’s continue Example 5. Overall, two possible
candidates of header paths exist: The first candidate requires
a single header h0 which flows along pathh0

0 . The second
candidate requires two headers h0 and h1, which flow along
pathh0

1 and pathh1
0 , respectively. Both candidates including

the payload path are summarized in the bottom of Fig. 4.

However, not all of these candidates indeed result in a valid
execution of an experiment, since (1) droplets may merge or
(2) droplets may mutually influence their respective paths.
Since fewer headers cause fewer mutual interdependencies,
we check the candidates in ascending order with respect to
their number of required headers.

C. Determining the Injection Times
As next step, the injection times for a candidate are

determined. Again, the droplets contained in the selected
candidate are traversed starting with the payload path: First,
the algorithm starts with the payload p and sets its injection
time to t = tt. This allows to determine the payload’s entering
time in each non-default successor c ∈ nonDefaultpathp ,
i.e. Tpathp(c) + tt. At the time step when the payload
should enter a non-default successor, a header has to block
the corresponding default successor denoted here as d. That
means, the header has to flow through the default successor d,
which causes a higher flow rate into the non-default successor
allowing the payload to enter this non-default successor.

For this header hk, the earliest and latest time step at which
the header can enter the default successor d can be determined
by Tpathp(c) + tt − hSteps(d) and Tpathp(c) + tt − T∆, re-
spectively. The earliest time step guarantees that the header
is still in the default successor when the payload arrives
at the bifurcation. The latest time step guarantees a mini-
mum distance T∆ between droplets. The entering time step
of the header can be varied within this range. For ex-
ample, if the header should be in the middle of the de-
fault successor when the payload arrives, it has to enter at
middle = Tpathp(c) + tt − dhSteps(d)/2e.

Knowing when the header hk should block the default
successor and also knowing its path (i.e. pathhk

i , which
is defined by the selected candidate) allows to determine
its injection time. More precisely, the time the header hk
requires until it flows into the default successor d is given
by T

path
hk
i

(d). This allows to determine the injection time
of hk by Injhk = middle− T

path
hk
i

(d).
Again, the injection times of the headers which are nec-

essary to route hk are recursively determined by repeating
the steps from above. After the determination of all injection
times, tt is replaced with a number of time steps so that the
earliest injection of any droplet starts at time step t = 0.

Example 7. Let’s continue Example 5 and 6 for which
we determine injection time steps for the first candidate
(i.e. header h0 flowing along pathh0

0 ). Therefore, the values
of the functions hSteps and pSteps as provided in Fig. 2 are
used. A timeline showing the time steps at which the payload p
and the header h0 are injected as well as at which they are
supposed to enter the channels of the considered bifurcation
is provided in Fig. 5.

First, we assume that the payload p is injected at time
step t = tt. Then, the time step at which p arrives at the
non-default successor c12 is t = Tpathp(c12) + tt = tt + 45.
Therefore, h0 has to arrive in the default successor c11

before t = tt + 45. Since h0 stays 3 time steps in chan-
nel c11, this means that h0 should enter c11 at time step
45 + tt − hSteps(c11) = 45 + tt − 3 = tt + 42 at the earli-
est and at time step 45+tt−1 = tt+44 at the latest (assuming
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Fig. 5: Timeline

a minimum distance of T∆ = 1 time steps to the payload).
Here, we want h0 to be in the middle of c11 when p arrives,
which gives 45+ tt−d3/2e = tt +43 as the entering time. As
the header h0 flows along pathh0

0 , it needs 71 time steps in
order to arrive at c11, i.e. T

path
h0
0

(c11) = 71. Therefore, h0

is injected at time step Injh0 = 43 + tt − 71 = tt − 28. For
the considered candidate, no more injection times have to be
determined. Hence, in the last step, we replace tt with 28, so
that the earliest injection starts at t = 0.

D. Checking for Consistency

Next, the generated droplet sequence is checked for con-
sistency within the discrete model, e.g. it is checked whether
no droplets influence their respective ways and whether the
droplets meet a minimum distance T∆ (note that the minimum
distance T∆ is an input parameter of the proposed method and,
hence, can freely be chosen by the engineer). For example,
when a header should flow into the default successor which
is already occupied by another droplet, it flows into the non-
default successor – resulting in a wrong path for the header.
For this consistency check, the droplet positions at all time
steps are checked.

However, even if a droplet sequence passes all these checks,
it still might be possible that physical interdependencies pre-
vent a successful execution of the experiment. Because of this,
the resulting sequence has to be validated using simulation,
which is described next.

E. Validation of Droplet Sequences

The discrete model is useful to efficiently generate droplet
sequences. However, it abstracts the flow interdependencies
between droplets. Therefore, in the second step of the proposed
approach, a droplet sequence is validated through simulation.

To this end, simulation tools as proposed in [26]–[28]
(and publicly available at http://iic.jku.at/eda/research/
microfluidics simulation/) can be used. These tools employ
the concepts reviewed in Section II-B to simulate a generated
droplet sequence and trace the path of the payload as well
as all headers through the network – while, at the same
time, considering all physical interdependencies which may
affect the flow of the droplets. Therefore, if this simulation
confirms that the payload is routed along the desired path,
the sequence is valid and realizes the experiment.

The validation is conducted in a fully automated fashion:
The discrete times of the droplet sequence are multiplied by

Fig. 6: Overview of the overall algorithm

the “real time” of an atomic time step Ta. The resulting droplet
sequence and the network including all physical specifications
(as e.g. the input flow rate/pressure gradient produced by the
pump, the channel and module geometries, the viscosities of
the continuous and dispersed phase, as well as the droplet
sizes) are validated by simulations. This simulation allows
to predict the path of the droplets. If the results show that
the payload flows along the desired path, the sequence is
considered valid.

F. Overall Method

Overall, the inputs and the steps executed by the proposed
automatic method are summarized in Fig. 6. First, all possible
sets of headers and their paths are generated in the form of
the candidate tree (as described in Section IV-B). Then, the
candidates are checked one after another whether they allow to
correctly route the payload along the desired path. Therefore,
the injection times of the headers and payloads for a candidate
are determined (as described in Section IV-C). Finally, the
resulting droplet sequence is checked for consistency on the
discrete model (as described in Section IV-D) and validated
using simulation (as described in Section IV-E). In case
that either the consistency check or the validation fails, a
new droplet sequence is generated by varying the position
of the headers in the default channels (within the range as
e.g. discussed in Example 7) or by using a different candidate.

By this algorithm, the possible droplet sequences are ex-
haustively checked until a valid one is found. If no alternative

http://iic.jku.at/eda/research/microfluidics_simulation/
http://iic.jku.at/eda/research/microfluidics_simulation/


JOURNAL OF COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE I: Evaluation

Experiment #Headers #Checked Candidates Valid? Time [s]

Microfluidic Network with 8 Modules, 35 Channels, 3 Bifurcations
Exp. 1 1 1 3 < 1
Exp. 2 1 1 3 < 1
Exp. 3 1 1 3 < 1

Microfluidic Network with 10 Modules, 67 Channels, 8 Bifurcations
Exp. 1 0 1 3 < 1
Exp. 2 2 1 3 < 1
Exp. 3 3 1 3 < 1
Exp. 4 3 1 3 < 1
Exp. 5 3 1 3 < 1
Exp. 6 2 1 3 < 1
Exp. 7 3 1 3 < 1
Exp. 8 9 4 3 273

Microfluidic Network with 12 Modules, 82 Channels, 10 Bifurcations
Exp. 1 0 1 3 < 1
Exp. 2 1 1 3 < 1
Exp. 3 1 1 3 < 1
Exp. 4 2 1 3 < 1
Exp. 5 2 1 3 < 1
Exp. 6 4 2 3 3
Exp. 7 6 2 3 17
Exp. 8 5 1 3 < 1
Exp. 9 2 1 3 < 1
Exp. 10 8 26 3 12866

Microfluidic Network with 15 Modules, 101 Channels, 12 Bifurcations
Exp. 1 2 1 3 < 1
Exp. 2 4 2 3 9
Exp. 3 5 12 3 55
Exp. 4 2 1 3 < 1
Exp. 5 2 1 3 < 1
Exp. 6 3 1 3 2
Exp. 7 6 4 3 35
Exp. 8 2 1 3 < 1
Exp. 9 3 1 3 < 1
Exp. 10 5 1 3 4
Exp. 11 5 1 3 7
Exp. 12 7 1 3 < 1

Microfluidic Network with 17 Modules, 118 Channels, 15 Bifurcations
Exp. 1 1 1 3 < 1
Exp. 2 8 7 3 1259
Exp. 3 2 1 3 < 1
Exp. 4 4 1 3 < 1
Exp. 5 10 12 3 1773
Exp. 6 6 3 3 156
Exp. 7 2 1 3 < 1
Exp. 8 4 1 3 < 1
Exp. 9 4 1 3 < 1
Exp. 10 6 2 3 76
Exp. 11 12 1 3 1398
Exp. 12 4 1 3 4
Exp. 13 - - - -
Exp. 14 12 2 3 7479

is left, it is a clear indication that the considered network may
not allow to execute that particular experiment at all.

V. EVALUATION

The two steps of the proposed approach have been imple-
mented in Java and Matlab resulting in an automatic method
for generating droplet sequences. For the validation using
simulation on the 1D analysis model, the simulator of [28] has
been integrated into this automatic method. In order to evaluate
the approach, we used five application-specific architectures
generated with the method from [40] out of benchmarks
from [42]. The resulting microfluidic networks were automati-

cally dimensioned using the method from [43]. All evaluations
have been conducted on a 4.2 GHz Intel Core i7 machine with
32GB of memory running 64-bit Ubuntu 16.04.

The obtained results are summarized in Table I. For all
experiments per network, we provide the number of required
headers in order to route the payload along the desired path
(column “#Headers”), the number of checked candidates until
a valid sequence was found (column “#Checked Candidates”),
whether the obtained droplet sequence is valid in the 1D anal-
ysis model (column “Valid?”), as well as the required run-time
in CPU-seconds to obtain that sequence (column “Time”)2.

The results show that all obtained droplet sequences are
valid in the 1D analysis model. Furthermore, the desired
droplet sequences can be realized in negligible run-times for
the vast majority of experiments to be realized. But the results
also show that the complexity increases with an increasing
number of bifurcations. In fact, more bifurcations also result
in more channels which might have to be blocked – increasing
the number of headers (which in turn also need to be routed).
This may even lead to situations where much more candidates
have to be generated and validated as more droplets in the
network also increase the probability of unintended blockings
of channels, unintended merging, etc. Accordingly, the num-
ber of candidates and, hence, the run-time of the proposed
method increases (which is not a limiting factor as the droplet
sequences are generated only once upfront the experiment is
executed). In the worst case, this may even lead to scenarios
where no droplet sequence realizing the desired experiment
at the given network can be generated at all. This is the case
for one experiment of the last network, which gives a clear
indication that the designer should revise this network, e.g. by
removing bifurcations.

Using the method proposed in this work, droplet sequences
can automatically be generated. Moreover, through the val-
idation, it is guaranteed that all interdependencies between
droplets are considered and, hence, the obtained results are
indeed suitable.

VI. CONCLUSION

In this work, we presented the first automatic method
for generating droplet sequences for microfluidic networks,
which finally allow to route the payload droplet along a
path executing the desired experiment. In order to handle the
complex flow interdependencies in microfluidics, we proposed
a two-step approach: First, a droplet sequence is generated on
an abstraction, i.e. on a discrete model. Second, in order to
prove that this droplet sequence correctly routes the payload
along the desired path, the droplet sequence is validated
through simulation. This two-step approach determines droplet
sequences, which eventually allow to passively route droplets
in microfluidic networks.
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