
Efficient Mapping of
Quantum Circuits to the IBM QX Architectures

Alwin Zulehner1 Alexandru Paler1,2 Robert Wille1
1Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
2Linz Institute of Technology, Johannes Kepler University Linz, Austria

alwin.zulehner@jku.at alexandru.paler@jku.at robert.wille@jku.at

Abstract—In March 2017, IBM launched the project IBM Q
with the goal to provide access to quantum computers for a broad
audience. This allowed users to conduct quantum experiments
on a 5-qubit and, since June 2017, also on a 16-qubit quantum
computer (called IBM QX2 and IBM QX3, respectively). In order
to use these, the desired quantum functionality (e.g. provided
in terms of a quantum circuit) has to properly be mapped so
that the underlying physical constraints are satisfied – a complex
task. This demands for solutions to automatically and efficiently
conduct this mapping process. In this paper, we propose such an
approach which satisfies all constraints given by the architecture
and, at the same time, aims to keep the overhead in terms
of additionally required quantum gates minimal. The proposed
approach is generic and can easily be configured for future
architectures. Experimental evaluations show that the proposed
approach clearly outperforms IBM’s own mapping solution with
respect to runtime as well as resulting costs.

I. INTRODUCTION

In the past, there has been a lot of research on quantum
algorithms that allow to solve certain tasks significantly faster
than classical ones [8, 10, 14, 18]. These quantum algorithms
are described by so-called quantum circuits, a sequence of
gates that are applied to the qubits of a quantum computer.
While the theoretical algorithms have already been developed
in the last century (e.g. [8, 10, 18]), physical realizations have
not publicly been available for researchers.

This changed in March 2017 when IBM launched its project
IBM Q with the goal to provide access to a quantum computer
to the broad audience [1]. Initially, they started with the 5
qubit quantum processor IBM QX2, on which anyone could run
experiments through cloud access. In June 2017, IBM added a
16 qubit quantum processor named IBM QX3 to their cloud [2]
and, thus, more than tripled the number of available qubits
within a few months.

This rapid progress in the number of available qubits as
well as the predictions for providing a quantum computer
with 50 qubits by the end of 2017 (also Google announced
to manufacture a quantum chip with 49 qubits by the end
of 2017 to show quantum supremacy [6]) demand for design
automation in order to allow for an efficient use of these
quantum computers. In fact, mapping a quantum circuit to
a real quantum computer constitutes a non-trivial task.

One issue is that the desired functionality (usually described
by higher level components) has to be decomposed into
elementary operations supported by the IBM QX architectures.
Furthermore, there exist physical limitations, namely that
certain quantum operations can be applied to selected physical
qubits of the IBM QX architectures only. Consequently, the
logical qubits of a quantum circuit have to be mapped to
the physical qubits of the quantum computer such that all
operations can be conducted. Since it is usually not possible
to determine a mapping such that all constraints are satisfied
throughout the whole circuit, this mapping may change over
time. To this end, additional gates, e.g. realizing SWAP
operations, are inserted in order to “move” the logical qubits

This work has partially been supported by the European Union through the
COST Action IC1405 and the Linz Institute of Technology (CHARON).

to other physical ones. This affects the reliability of the circuit
(each further gate increases the potential for errors during the
quantum computation) as well as the execution time of the
quantum algorithm. Hence, the number of SWAP gates should
be kept as small as possible.

While there exist several methods to address the first issue,
i.e. how to efficiently map higher level components to elemen-
tary operations (see [5, 12, 13]), there is hardly any work on
how to efficiently satisfy the additional constraints for these
new and real architectures. Although there are similarities
with recent work on nearest neighbor optimization of quantum
circuits as proposed in [15, 16, 17, 21, 22], they are not
applicable since simplistic architectures with 1-dimensional
or 2-dimensional layouts are assumed there which have sig-
nificantly less restrictions. Even IBM’s own solution, which
is provided by means of a Python SDK [3] fails in many
cases since the random search employed there does not cope
with the underlying complexity and cannot generate a result
in acceptable time.

All that motivates an approach that is as efficient as circuit
designers e.g. in the classical domain take for granted today.
In this work, we propose such an approach based on a
depth-based partitioning, an A* search algorithm, a look-ahead
scheme, as well as a dedicated initialization of the mapping.
Experimental evaluations show that the proposed approach is
capable to cope with the complexity of satisfying the con-
straints discussed above – significantly outperforming IBM’s
own mapping solution. Additionally equipped with a decom-
position method to transform arbitrary quantum functionality
to elementary operations, this results in a comprehensive
mapping scheme for the QX architectures provided by IBM.
The implementation of this mapping scheme is made publicly
available at http://www.jku.at/iic/eda/ibm_qx_mapping.

II. BACKGROUND

A. Quantum Circuits
While classical computations and circuits use bits as infor-

mation unit, quantum circuits perform their computations on
qubits [14] that can not only be in one of the two basis states
|0〉 or |1〉, but also in a superposition of both – allowing to
represent all possible 2n basis states of n qubits concurrently.

The qubits of a quantum circuit are manipulated by quantum
operations represented by so-called quantum gates. These op-
erations can either operate on a single qubit (e.g. a Hadamard
gate), or on multiple ones (e.g. a CNOT gate or a SWAP gate).
For multi-qubit gates, we distinguish target qubits and control
qubits. The value of the target qubits is modified in the case
that the control qubits are set to basis state |1〉.

To describe quantum circuits, high level quantum languages
(e.g. Scaffold [4] or Quipper [9]), quantum assembly lan-
guages (e.g. OpenQASM 2.0 developed by IBM [7]), or circuit
diagrams are employed. In the following, we use the latter
to describe quantum circuits. Here, qubits are represented by
horizontal lines, which are passed through quantum gates. In
contrast to classical circuits, this however does not describe

Q0 Q1

Q2

Q4 Q3

(a) IBM QX2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q0 Q15 Q14 Q13 Q12 Q11 Q10 Q9

(b) IBM QX3
Fig. 1: Coupling map of the IBM QX architectures [2]

a connection of wires with a physical gate, but defines (from
left to right) in which order the quantum gates are applied to
the qubits.

Example 1. Fig. 3 shows several quantum circuit diagrams. A
Hadamard gates is represented by a box labeled with H, while
the control and target qubit of the CNOT gate are represented
by • and ⊕, respectively. Each of the two target qubits of a
swap gate is represented by ×.

B. IBM’s QX Architectures
In this work, we consider how to efficiently map a quantum

circuit to the IBM QX architectures provided by the project
IBM Q [1]. IBM provides a Python SDK [3] that allows to
describe quantum circuits, to simulate them, and to execute
them on the real device (a so-called backend) in their cloud.
The first backend composed of 5 qubits and called IBM QX2
was launched in March 2017. In June 2017, IBM launched a
second one called IBM QX3 which is composed of 16 physical
qubits [2].

The IBM QX architectures support the elementary single
qubit operation U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) that is com-
posed by two rotations around the z-axis and one rotation
around the y-axis, as well as the CNOT operation. By adjusting
the parameters θ, φ, and λ, single-qubit operations of other
gate libraries like (e.g. H; cf. Section II-A) can be realized.

However, there are significant restrictions which have to
be satisfied when running quantum algorithms on these ar-
chitectures. Besides decomposing all non-elementary quantum
operations (e.g. Toffoli gate or SWAP gate) to the elementary
operations U(θ, φ, λ) and CNOT , further constraints have
to be satisfied. These restrictions apply to CNOT gates and
are given by the so-called coupling-map illustrated in Fig. 1,
which sketches the layout of the currently available IBM QX
architectures. The circles indicate physical qubits (denoted
by Qi) and arrows indicate the possible CNOT applications,
i.e. an arrow pointing from physical qubit Qi to qubit Qj
defines that a CNOT with control qubit Qi and target qubit Qj
can be applied. In the following, these restrictions are called
CNOT-constraints and need to be satisfied in order to execute
a quantum circuit on an QX architecture.

III. MAPPING OF QUANTUM CIRCUITS
TO THE IBM QX ARCHITECTURES

Mapping quantum circuits to the IBM QX architectures
requires to consider two major issues:

First, all gates of the given quantum circuit to be mapped
have to be decomposed to elementary operations supported by
the hardware, i.e. CNOTs and parameterized U gates. This has
already intensely been considered in the past (e.g. by methods
which allow to describe quantum functionality in terms of
elementary operations or building blocks derived from that [7]
as well as decomposition and synthesis methods as proposed
in [5, 12, 13] and provided by [9, 11, 19]).

Second, the n logical qubits q0, q1, . . . qn−1 of that quan-
tum circuit have to be mapped to the m physical qubits
Q0, Q1, . . . Qm−1 (m = 5 for QX2 and m = 16 for QX3) of
the IBM QX architecture such that all CNOT-constraints are
satisfied. Since there usually does not exist a mapping solution
that satisfies all CNOT-constrains throughout the whole circuit,

Q0 � q0 q1

Q1 � q1 q0

Q0 � q0 q1

Q1 � q1 q0

Q0 � q0 q1

Q1 � q1 q0

H

H

H

H

Fig. 2: Decomposition a SWAP operation

the mapping might change during the execution of a quantum
circuit. To this end, H and SWAP gates can be applied to
change the direction of a CNOT gate and to change the
mapping of the logical qubits, respectively.1 In other words,
these gates can be used to “move” around the logical qubits on
the actual hardware until the CNOT-constraints are satisfied.

Example 2. Consider the quantum circuit composed of 5
CNOT gates shown in Fig. 3a and assume that the logical
qubits q0, q1, q2, q3, q4, and q5 are respectively mapped to
the physical qubits Q0, Q1, Q2, Q3, Q14, and Q15 of the
IBM QX3 architecture shown in Fig. 1b. The first gate can
directly be applied, because the CNOT-constraint is satisfied.
For the second gate, the direction has to be changed because
a CNOT with control qubit Q0 and target Q1 is valid, but not
vice versa. This can be accomplished by inserting Hadamard
gates as shown in Fig. 3b. For the third gate, we have to
change the mapping. To this end, we insert SWAP operations
SWAP (Q1, Q2) and SWAP (Q2, Q3) to move logical qubit
q1 towards logical qubit q4 (see Fig. 3b). Afterwards, q1 and
q4 are mapped to the physical qubits Q3 and Q14, respectively,
which allows to apply the desired CNOT gate. Following this
procedure for the remaining gates eventually results in the
circuit shown in Fig. 3b.

However, inserting the additional gates to satisfy the
CNOT-constraints drastically increases the number of gates,
which which significantly affects the reliability of the quantum
circuit since each gate has a certain However, inserting the
additional gates to satisfy the CNOT-constraints drastically
increases the number of gates, which significantly affects the
reliability of the quantum circuit since each gate has a certain
error rate. Since each SWAP operation is composed of 7
elementary gates (cf. Fig. 2), particularly their number shall
be kept as small as possible.

Example 3. Consider again the given quantum circuit from
Fig. 3a as well as its mapping derived in Example 2 and
shown in Fig. 3b. This circuit is composed of 51 elementary
operations and has a depth of 36. In contrast, the same
quantum circuit can be realized with only 23 elementary
operations and depth of 10 as shown in Fig. 3c (g2 and g3
can be applied concurrently) – a significant reduction.

Determining proper mappings has similarities with recent
work on nearest neighbor optimization of quantum circuits
proposed in [15, 16, 17, 21, 22]. Also here, SWAP gates have
been applied to move qubits together in order to satisfy a
physical constraint. However, these works are not applicable
here since they consider more simplistic architectures where
a two-qubit gate can be applied to any adjacent qubits. The
CNOT-constraints to be satisfied for the IBM QX architectures
are much stricter with respect to that and also what physical
qubit may act as control and as target qubit.

As a further alternative, also IBM itself provides a solution
within its SDK [3] that randomly searches for mappings of the
qubits at a certain point of time. However, this random search
is hardly feasible for many quantum circuits and, hence, is not
as efficient as circuit designers e.g. in the conventional domain
take for granted today (also evaluated in Section V).

1Fig. 2 shows the IBM QX-compatible realization of a SWAP operation.
The Hadamard operations H = U(π/2, 0, π) are required to flip the direction
of the middle CNOT gate in order to satisfy the CNOT-constraints.

q0 q0

q1 q1

q2 q2

q3 q3

q4 q4

q5 q5
g0 g1 g2 g3 g4

l0 l1 l2

(a) Original circuit

Q0 ← q0 q0

Q1 ← q1 q2

Q2 ← q2 q3

Q3 ← q3 q1

Q14 ← q4 q4

Q15 ← q5 q5

H

H

H

H
q2

q1 q3

q1

q1

q3 q4

q3

q3

q4

q3

q1

g0 g1 g2 g3 g4

(b) Naive strategy

Q0 ← q2 q3

Q1 ← q3 q2

Q2 ← q1 q1

Q3 ← q0 q4

Q4 ← q4 q0

Q15 ← q5 q5

q3

q2

q4

q0

H

H

H

H

g0,g1 g2 g3 g4

(c) Proposed strategy
Fig. 3: Mapping of a quantum circuit to the IBM QX3 architecture

IV. EFFICIENTLY SATISFYING CNOT-CONSTRAINTS
In this section, we propose an efficient method for mapping

a given quantum circuit (which has already been decomposed
into a sequence of elementary gates) to the IBM QX architec-
tures. The main objective is to minimize the number of ele-
mentary gates which are added in order to make the mapping
CNOT-constraint-compliant. Two main steps are employed:
First, the given circuit is partitioned into layers which can be
realized in a CNOT-constraint-compliant fashion. Afterwards,
for each of these layers, a respectively compliant mapping is
determined which requires as few additional gates as possible.
A. Partitioning the Circuit Into Layers

As mentioned above, the mapping from logical qubits to
physical ones may change over time in order to satisfy all
CNOT-constraints, i.e. the mapping may have to change before
a CNOT can be applied. Since each change of the mapping
requires additional SWAP operations, we aim for conducting
these changes as rarely as possible. To this end, we combine
gates that can be applied concurrently into so-called layers
(i.e. sets of gates). A layer li contains only gates that act on
distinct sets of qubits. This allows to determine a mapping such
that the CNOT-constraints for all gates gj ∈ li are satisfied at
the same time. We form the layers in a greedy fashion, i.e. we
add a gate to the layer li where i is as small as possible.2
In the circuit diagram representation, this means to move all
gates to the left as far as possible without changing the order
of gates that share a common qubit.

Example 4. Consider again the quantum circuit shown in
Fig. 3a. The dashed lines indicate a partition of the circuit
into the layers l0 = {g0, g1}, l1 = {g2, g3}, and l2 = {g4}.

To satisfy all CNOT-constraints, we have to map the logical
qubits of each layer li to physical ones. Since the resulting
mapping for layer li does not necessarily have to be equal
to the mapping determined for the previous layer li−1, we
additionally need to insert SWAP operations that permute
the logical qubits from the mapping for layer li−1 to the
desired mapping for layer li. In the following, we call this
sequence of SWAP operations permutation layer πi. The
mapped circuit is then an interleaved sequence of the layers li
of the original circuit, and the according permutation layers πi
(i.e. l0π1l1π2l2 . . .).

B. Determining Compliant Mappings for a Layer
For a layer li, we have to determine a mapping

σi : {q0, q1, . . . qn−1} → {Q0, Q1, . . . Qm−1} describing to
which physical qubit a logical qubit is mapped such that
all CNOT-constraints are satisfied. Furthermore, this mapping
shall have the minimum distance from the mapping σi−1 of the
previous layer, i.e. the mapping that requires the permutation
layer πi with the fewest elementary operations. In the worst
case, this requires the consideration of m!/(m− n)! possibil-
ities (where m and n are the number of physical qubits and

2Note that the depth of a circuit is equal to the number of layers of a circuit.

Q0 ← q0 q0

Q1 ← q1 q1

Q2 ← q2 q2

Q3 ← q3 q3

Q14 ← q4 q4

Q15 ← q5 q5

H

H

H

H
q2

q1

q4

q3

q1

q2

q3

q4

l0 l1 l2

g0 g1 g2,g3 g4

Fig. 4: Circuit resulting from locally optimal mappings

logical qubits, respectively) – an exponential complexity. We
cope with this complexity by applying an A∗ search algorithm.
A∗ is a family of search algorithm that can be used (guided

by an appropriate heuristic) to determine σi. We start with the
mapping of the previous layer σi−1 and generate subsequent
mappings by inserting SWAP operations – eventually resulting
in a mapping that satisfies all CNOT-constraints. By having a
heuristic that does not overestimate the real distance to such a
mapping, A∗ yields an optimal solution. The distance can be
estimated with the coupling map of the architecture (cf. Fig. 1),
since the shortest path (following the arrows in the coupling
map) between the target and the control qubits of each CNOT
gate serves as lower bound for the distance to a mapping that
satisfies all CNOT-constraints.

Example 5. Consider again the quantum circuit shown in
Fig. 3a and assume we are searching for a mapping for layer
l1 = {q2, q3}. In the previous layer l0, the logical qubits
q1, q3, q4, and q5 have been mapped to the physical qubits
Q0, Q3, Q14, and Q15, respectively (i.e. σ0). This mapping
does not satisfy the CNOT-constraints for the gates in l1.
Following the A* approach sketched above, we eventually
determine a mapping σ1 that maps the logical qubits q0, q1,
q2, q3, q4, and q5 to the physical qubits Q0, Q2, Q1, Q4,
Q3, and Q5 by inserting two SWAP operations (as depicted
in Fig. 4). Applying the algorithm also for mapping layer l2,
the circuit shown in Fig. 4 results. This circuit is composed of
37 elementary operations and has depth 15.

C. Optimizations
A∗ allows to efficiently determine an optimal mapping (by

means of additionally required operations) for each layer.
However, these local optima may not lead to a (or close to
a) globally optimal solution.

To overcome this issue, we propose to employ a look-ahead
scheme which incorporates information of the following layer
to the cost function of the A∗ search algorithm. To this end, we
only have to change the heuristics to estimate the costs for πi
(i.e. for reaching a mapping that satisfies all CNOT-constraints
from the current one). To incorporate the look-ahead scheme,
we additionally add a term that estimates the cost for πi+1
to these costs. This way, the solution is not guaranteed to
be locally optimal. However, this is not desired anyways,
since we want to allow locally sub-optimal solutions in order
to determine cheaper mappings for the following layers –
resulting in smaller overall circuits.

Besides the look-ahead scheme, we can further improve the
algorithm by not starting with a random mapping for layer l0.
Instead, we propose to start with an empty mapping σ0

(i.e. none of the logical qubits is mapped to a physical one).
Then, before we start searching a mapping for layer li, we
check whether the qubits that occur in the CNOTs g ∈ li
have already been mapped to a physical qubit. If not, we can
chose one of the “free” physical qubits (i.e. a physical qubit no
logical qubit is mapped to). Obviously, we choose the physical
qubit in a way, such that the costs for finding σi is as small
as possible. This scheme gives us the freedom to evolve the
mapping throughout the mapping process, rather than starting
with an initial mapping that might be non-beneficial with
respect to the overall number of elementary operations.

Example 6. Optimizing the algorithm with a look-ahead
scheme and a partial mapping that is initially empty results
in the circuit already shown before in Fig. 3c. This circuit
is composed of 23 elementary operations and has depth 10
(gates g2 and g3 can be applied concurrently).

V. EXPERIMENTAL EVALUATION

In this section, we compare the efficiency of the proposed
mapping scheme (publicly available at http://www.jku.at/iic/
eda/ibm_qx_mapping) to the solution provided by IBM [3].
Several circuits taken from RevLib [20] as well as quantum
algorithms written in the Scaffold language [4] (and pre-
compiled by the ScaffoldCC compiler [11]) have been con-
sidered as benchmarks.

Table I lists the respectively obtained results. For each
benchmark, we list the name, the number of logical qubits n,
and the number of gates g of the quantum circuit before
mapping it to the IBM QX3 architecture. In the remaining
columns, we list the number of gates and the runtime t
(in CPU seconds) for IBM’s solution as well as for the
solution proposed in this work. Since IBM’s solution randomly
searches for mappings that satisfy all CNOT-constrains, we
ran this algorithm several times and list only the obtained best
results.

The results clearly show that the proposed solution can
efficiently tackle the considered mapping problem – in partic-
ular compared to the method available thus far. While IBM’s
solution runs into the timeout of 1 hour in several cases,
the proposed algorithm determines a mapping for each circuit
within 5 minutes or less – in most cases, only a fraction of a
second is needed. Besides efficiency, the proposed method for
mapping a quantum circuit to the IBM QX architectures also
yields circuits with significantly fewer gates than the solution
determined by IBM’s solution (on average by 23%).

VI. CONCLUSIONS

In this paper, we have proposed an approach that efficiently
maps a given quantum circuit to IBM’s QX architectures. To
this end, the desired quantum functionality is first decomposed
into the supported elementary quantum gates. Afterwards,
CNOT-constraints imposed by the architecture are satisfied.
Particular the later step caused a non-trivial task for which an
efficient solution based on a depth-based partitioning, an A∗

search algorithm, a look-ahead scheme, as well as a dedicated
initialization of the mapping has been proposed. The resulting
approach eventually allows to efficiently map quantum circuits
to real quantum hardware – clearly outperforming IBM’s
solution regarding the runtime as well as regarding the number
of additionally required gates.

TABLE I Mapping to the IBM QX3 architecture
IBM’s solution Proposed approach

Name n g gmin tmin g t
hwb9 10 207 775 – >3600.00 749 975 28.21
max46 10 27 126 125 157 1516.32 99 398 29.06
qft10 10 200 881 8.20 624 0.01
rd73 10 230 1 107 13.04 760 0.01
urf3 10 423 488 – >3600.00 1 452 222 130.32
life 11 22 445 108 137 1292.65 85 804 36.19
urf4 11 512 064 – >3600.00 1 847 780 29.88
wim 11 986 4 401 51.13 3 401 0.01
z4 11 3 073 14 311 170.48 11 302 0.19
cm152a 12 1 221 5 371 62.58 4 352 0.02
cycle10 12 6 050 28 800 342.62 22 474 17.29
rd84 12 13 658 66 381 790.16 51 095 3.97
adr4 13 3 439 16 122 191.19 12 667 0.12
radd 13 3 213 15 433 177.20 11 678 0.27
rd53 13 275 1 422 15.37 1 133 0.02
root 13 17 159 83 999 1002.43 65 158 43.83
squar5 13 1 993 9 547 114.01 7 364 0.04
cm85a 14 11 414 55 513 663.99 43 248 1.97
plus63mod8192 14 187 112 – >3600.00 723 610 268.60
pm1 14 1 776 8 112 97.38 6 274 0.02
sao2 14 38 577 193 496 2302.52 148 558 258.01
sym6 14 270 1 396 14.80 932 0.01
dc2 15 9 462 46 479 566.36 35 153 46.74
ham15 15 8 763 40 988 492.87 31 503 0.75
misex1 15 4 813 22 738 273.83 18 369 0.06
rd84 15 343 1 895 17.71 1 252 0.04
square_root7 15 7 630 35 431 412.86 28 417 62.97
cnt3-5 16 485 2 192 22.90 1 617 0.14
example2 16 28 492 147 149 1723.58 113 995 65.88
ground_state10 16 390 180 – >3600.00 878 735 1.10
inc 16 10 619 50 326 619.13 38 853 0.77
ising_model16 16 786 1 246 5.65 1 170 2.52
mlp4 16 18 852 95 005 1140.70 73 664 29.55
qft16 16 512 2 539 26.15 1 635 23.29

REFERENCES
[1] IBM Q. https://www.research.ibm.com/ibm-q/.
[2] IBM QX backend information. https://github.com/QISKit/

ibmqx-backend-information.
[3] QISKIT Python SDK. https://github.com/QISKit/qiskit-sdk-py.
[4] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F.

Chiang, S. Vanderwilt, J. Black, and F. Chong. Scaffold: Quantum programming
language. Technical report, Princeton univ nj dept of computer science, 2012.

[5] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(6):818–830, 2013.

[6] R. Courtland. Google aims for quantum computing supremacy. IEEE Spectrum
June 2017.

[7] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open quantum
assembly language. arXiv preprint arXiv:1707.03429, 2017.

[8] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.
In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 439, pages 553–558. The Royal Society, 1992.

[9] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper:
a scalable quantum programming language. In Conference on Programming
Language Design and Implementation, pages 333–342, 2013.

[10] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Symposium on the Theory of Computing, pages 212–219, 1996.

[11] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi. Scaffcc: a framework for compilation and analysis of quantum
computing programs. In Computing Frontiers Conference, CF’14, Cagliari, Italy
- May 20 - 22, 2014, pages 1:1–1:10, 2014.

[12] K. Matsumoto and K. Amano. Representation of quantum circuits with clifford
and π/8 gates. arXiv preprint arXiv:0806.3834, 2008.

[13] D. M. Miller, R. Wille, and Z. Sasanian. Elementary quantum gate realizations
for multiple-control Toffolli gates. In International Symposium on Multi-Valued
Logic, pages 288–293, 2011.

[14] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

[15] M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum circuits for linear
nearest neighbor architectures. Quantum Information Processing, 2010.

[16] A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quantum circuits for
interaction distance in linear nearest neighbor architectures. In Design Automation
Conf., pages 41–46, 2013.

[17] A. Shafaei, M. Saeedi, and M. Pedram. Qubit placement to minimize communica-
tion overhead in 2d quantum architectures. In 19th Asia and South Pacific Design
Automation Conference, ASP-DAC 2014, Singapore, January 20-23, 2014, pages
495–500, 2014.

[18] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[19] M. Soeken, S. Frehse, R. Wille, and R. Drechsler. RevKit: A toolkit for reversible
circuit design. In Workshop on Reversible Computation, pages 69–72, 2010. RevKit
is available at http://www.revkit.org.

[20] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an
online resource for reversible functions and reversible circuits. In International
Symposium on Multi-Valued Logic, pages 220–225, 2008. RevLib is available at
http://www.revlib.org.

[21] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler.
Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum
circuits. In Asia and South Pacific Design Automation Conference, pages 292–
297, 2016.

[22] R. Wille, A. Lye, and R. Drechsler. Exact reordering of circuit lines for nearest
neighbor quantum architectures. IEEE Trans. on CAD of Integrated Circuits and
Systems, 33(12):1818–1831, 2014.

