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Abstract—Continuous-flow microfluidics rapidly evolved in
the last decades as a solution to automate laboratory procedures
in molecular biology and biochemistry. Therefore, the physical
design of the corresponding chips, i.e., the placement and routing
of the involved components and channels, received significant at-
tention. Recently, several physical design solutions for this task
have been presented. However, they often rely on general heuris-
tics which traverse the search space in a rather arbitrary fash-
ion and, additionally, consider placement and routing indepen-
dently from each other. Consequently, the obtained results are
often far from being optimal. In this work, a methodology is pro-
posed which aims for determining close-to-optimal physical de-
signs for continuous-flow microfluidic biochips. To this end, we
consider all – or, at least, as much as possible – of the valid so-
lutions. As this obviously yields a significant complexity, solving
engines are utilized to efficiently traverse the search space and
pruning schemes are proposed to reduce the search space without
discarding too many promising solutions. Evaluations show that
the proposed methodology is capable of determining optimal re-
sults for small experiments to be realized. For larger experiments,
close-to-optimal results can efficiently be derived. Moreover, com-
pared to the current state-of-the-art, improvements of up to 1-2
orders of magnitude can be observed.

I. INTRODUCTION

Flow-based microfluidic biochips rapidly evolved as they
revolutionized the traditional biology and biochemistry by au-
tomating laboratory tasks and reducing sample volumes [1–3].
These flow-based biochips are especially suited for high-
throughput applications and are e.g., successfully used for the
extraction of nucleic aids [4], protein crystallization [5], im-
munoassays [6], or DNA synthesizing [7].

A flow-based microfluidic biochip consists of hundreds or
even thousands of integrated microvalves [3,8], which are used
to control the flow of the liquids. Such biochips are made of
an elastomer material (polydimethylsiloxane, PDMS) and the
micro structures are produced in a multilayer soft-lithography
process [9,10]. Fig. 1a shows the respective schematic of these
chips: Each flow-based biochip consists of a two-layer channel
circuitry, where the control layer contains logic to trigger the
microvalves in order to either close or open a channel in the
flow layer. If an externally produced, pneumatic pressure to the
control channel is applied, the elastomer material pinches the
flow layer and, hence, blocks the fluid flow. After releasing this
external pressure, the elastomer material of the valve restores
back and the fluid flow resumes.

By combining and controlling the closing and opening of
multiple valves, more complex operations, such as merging,
splitting, dispensing, and mixing can be built [11]. Fig. 1b
shows a schematic view of a biochip containing a mixer com-
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Fig. 1. Continuous-flow microfluidic biochip

ponent. In order to mix two fluids, they have to be dispensed
from the input ports I1 and I2. Then, the valves c as well as k
are closed and the mixing is started. The mixing is conducted
by actuating the valves f , g, and h in a peristaltic sequence at a
high frequency (∼ 100Hz). This forces the liquids in the mixer
to circulate around and mix together [8].

In the physical design of such biochips, a placement and
routing (P&R) of all those components and their flow channels,
respectively, has to be determined. The quality of the physical
design is thereby measured by (1) the amount of flow channel
intersections, (2) the flow channel length, and (3) the resulting
flow layer size. In particular, a low amount of flow channel
intersections is desirable, as each flow channel intersection re-
quires a multiplexer component [12]. Such a multiplexer con-
sists of four valves, which are used to separate the two channels
and, in turn, avoid an unexpected mixing of the fluids. A short
flow channel length is desirable as it increases the structural
reliability and, by this, the fabrication success [13] while, at
the same time, reducing the fluid transportation latency [14].

In the recent past, automated design methods for the physi-
cal design of continuous-flow microfluidic biochips have been
presented [12,15,16]. However, all of them suffer from the fact
that they rely on heuristics, which traverse the search space in
an arbitrary fashion and, therefore, cannot guarantee the deter-
mination of a good design with respect to the different qual-
ity criteria. Furthermore, existing design methods consider the
placement of the components and the routing of the channels
as two independent steps – further contributing to the fact that
the obtained results are far from being optimal.

In this work, we present a methodology which tackles these
drawbacks and is capable of producing close-to-optimal de-
signs. Determining close-to-optimal or even optimal designs
requires that all possible designs are considered, which in
turn is only possible when the placement and routing is con-
ducted in a single step. This results in a significant complex-
ity, which is handled by using powerful satisfiability solvers
as well as dedicated pruning methods. Experimental evalua-
tions show that the proposed methodology indeed determines
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Fig. 2. Running example

designs, which are close-to-optimal and, by this, outperforms
the current state-of-the-art by up to 1-2 orders of magnitude.

The remainder of the paper is organized as follows: The next
section introduces the physical design task and reviews the re-
lated work. Section III motivates the proposed methodology
and how to deal with the resulting complexity. In Section IV
and Section V, details on the optimal placement and routing
method as well as the proposed pruning schemes are provided,
respectively. The results of our evaluation are summarized in
Section VI and, finally, the paper is concluded in Section VII.

II. BACKGROUND

This section describes the considered physical design task
and introduces the notion used in this work. Besides that, this
section reviews and discusses recently proposed design solu-
tions.

A. Placement & Routing for Continuous-Flow Microfluidics
In a design context, the flow layer of a continuous-flow mi-

crofluidic biochip is discretized as a grid. Then, physical de-
sign has to place the components and channels specified in an
experiment onto this grid. These components are bounded by
rectangular boxes where the heights and widths of these boxes
are specified as a number of grid cells. Similarly, the channel
has a width of one grid cell. More formally, the input for a
physical design method is given as
• a discretized grid of size w×h, where w is the width and h

is the height of the grid,
• a set of components V , which have to be placed on the

grid (each component v ∈ V has a given size wv×hv and
corresponding input/output ports), and
• a set of channels E (with E ⊆V ×V ), which connect dif-

ferent components.
This input can be represented as a graph G = (V,E), where
a node is either a component, an input, or an output and the
edges represent channels. Fig. 2a shows an experiment with
two detectors (d1 and d2) and two mixers (m1 and m2), which is
used as running example in this work. In addition to this graph,
information on the component sizes (e.g., that component d1

has a size of (wd1 ×hd1) = (2,2)) as well as their input/output
ports (e.g., that component d1 has its input port on the western
side in the top and its output port on the eastern side in the top)
are provided.

Using this input, a placement and routing method (P&R
method) has to determine a design in which all components
and all channels are placed and routed onto a grid. Grid cells
can be occupied by a single component (or a part of a compo-
nent), occupied by one or two channels (the latter leading to a
channel intersection), or can be empty. The quality of a design
is measured by

• its number of flow channel intersections,
• its overall flow channel length, and
• its grid size.

Fig. 2b shows a possible design of the running example on a
12×10 grid with no channel intersections and a channel length
of 20.

B. Related Work
The design of continuous-flow microfluidic biochips can be

divided into several main steps: Methods exist for architectural
synthesis and resource binding (e.g., [13, 17, 18]). The latter
yields a precise specification serving as input for the physical
design of the flow layer. This physical design is then the basis
for the design of the control layer, for which automated design
methods (e.g., [8,19–21]) aim for e.g., minimizing the amount
of control pins and the pressure propagation delay.

In this work, we focus on the physical design of the flow
layer. Here, various solutions have been presented. For exam-
ple, the work presented in [16] introduces a placement algo-
rithm based on simulated annealing which takes “routability-
issues” into consideration. The work in [15] proposes a rout-
ing algorithm for flow channels but assumes a fixed placement.
Hence, both works [15, 16] cover a single part of the physical
design only. The approach presented in [12] covers both as-
pects, placement and routing, in a single work by proposing a
sequence-pair-based placement and a negotiation-based rout-
ing algorithm. The work aims for iteratively eliminating over-
congested regions (which may cause problems for routing) by
increasing the spacing of components. But also here, a sepa-
rate method for placement and a separate method for routing is
eventually employed.

Overall, all solutions for the physical design of continuous-
flow microfluidic biochips consider placement and routing as
two – more or less independent – steps. This often leads to
inappropriate designs since the total number of channel inter-
sections and the channel length can only be estimated when
conducting the placement (e.g., by approximating the channels
with lines between components and, then, calculating the in-
tersection points or by considering the Manhattan distances
between components). Moreover, in order to avoid routing
failures, placement methods usually allocate extra space which
often is not needed but, of course, increases the size of the re-
sulting design. On top of that, all solutions proposed thus far
rely on general heuristics which traverse the search space in a
rather arbitrary fashion. Eventually, this yields solutions which
are far from being optimal.

III. CLOSE-TO-OPTIMAL PLACEMENT & ROUTING

In this work, we propose an alternative design approach,
which conducts the placement and routing for continuous-flow
microfluidic biochips in a single step. The main premise is not
to heuristically and incompletely traverse the search space in
order to determine a rather arbitrary solution, but to determine
a realization which is as close as possible to the optimal solu-
tion with respect to the needs of the designer. In the ideal case,
this would include the consideration of all possible solutions –
obviously a computationally very expensive task. In order to
cope with this complexity, a methodology is proposed which
relies on
• powerful solving engines that can cope with large search

spaces and the underlying complexity as well as
• pruning schemes which reduce the search space without,

at the same time, discarding promising solutions.
In this section, we briefly sketch the anticipated core concepts
of the proposed methodology. Details on their implementation
are, afterwards, provided in Section IV and Section V.



A. Using Satisfiability Solvers for Optimal P&R

In order to guarantee the best possible physical design, all
possibilities have to be considered. In a naive fashion, this
could be conducted by enumeratively generating and evaluat-
ing all possible designs. More precisely, for a given grid size,
a given list of components, as well as all required channels
between components, all possible placements of components
and all possible routings between components are iteratively
considered. From all these realizations, those are eventually
discarded which do not realize the respectively given exper-
iment. Afterwards, from the remaining solutions, the design
is picked which fits best to the designer’s needs, e.g., has the
smallest number of intersections.

Moreover, an approach like that would eventually yield
an optimal Placement and Routing method (optimal P&R
method) which, for a given input (i.e., a given experiment to be
realized, a given grid size, etc.), determines a solution satisfy-
ing the given constraints (e.g., a restricted number of intersec-
tions). If no design satisfying the given constraints is possible,
the optimal P&R method would prove the non-existence of a
solution (since all possibilities have been considered). This can
then also be used to determine optimal results by e.g., checking
for a solution with none intersections and iteratively increasing
the number of intersections until a solution is found (which,
due to the iterative increases, has to be optimal)1.

However, a naive approach based on enumeration would not
be capable of determining designs of appropriate size – the
sheer number of possibilities would be too huge. Hence, we
are proposing to utilize the computational power of solving
engines such as satisfiability solvers (see e.g., [22, 23]). They
are heavily optimized and additionally employ highly sophis-
ticated deduction and learning schemes which allow them to
automatically prune large parts of the search space without dis-
carding any valid solution. Applying satisfiability solvers al-
lows for the consideration of all possible solutions without the
need to explicitly enumerate each and everyone of it. For the
design of other biochip technologies, this concept has already
successfully been employed (see e.g., [24, 25]).

B. Search Space Pruning

Despite the efficiency of satisfiability solvers, the com-
plexity is still significant when all possible solutions shall
be considered. Already with a grid size of 4× 4, just two
components to be placed, and four channels to be routed,
approx. (2+4+1)4·4 > 1013 combinations have to be consid-
ered (more precisely, 4 ·4 cells which each can be assumed to
be occupied by one of the two components, one of the four
channels, or by neither). This yields a complexity which, even
with satisfiability solvers, can only be handled for small exper-
iments to be realized.

In order to address that, we additionally propose to further
prune the search space – in contrast to the pruning of satis-
fiability solvers, by additionally accepting a discard of valid
solutions. While this obviously would lead to solutions for
which no optimality is guaranteed anymore, we aim to prune
the search space in a fashion which does not discard promising
solutions. To this end, two schemes are proposed:
• Downscaling

We apply a simplification which reduces the search space
by scaling down the size of all components. This sig-
nificantly reduces the search space and will make the re-
sulting problem more likely solvable by the optimal P&R

1Note that, in a similar fashion, optimality for other constraints such as grid
size, channel length, etc. can be guaranteed as well.

method. If a result for this instance is determined, the re-
sulting design is scaled up again. This keeps the number
of channel intersections optimal while optimality of the
grid size and channel length is only harmed by a bounded
factor (namely the scaling factor).

• Partitioning
We partition the initial experiment into sub-problems. To
this end, the experiment is split into equally large sub-
sets and, then, the optimal P&R method is applied to
solve these sub-problems (which are now significantly
less complex). The resulting sub-designs can again be
seen as components which, applying the optimal P&R
method again, are arranged in an optimal fashion. This
way, several local optima are combined in the best possi-
ble fashion.

In the remainder of this work, the concepts introduced above
are described in detail. Afterwards, experimental evalua-
tions demonstrate how the resulting methodology indeed sat-
isfies the promise of an efficient generation of optimal or, at
least, close-to-optimal placements and routings for microflu-
idic biochips.

IV. OPTIMAL PLACEMENT & ROUTING METHOD

The optimal Placement and Routing method (optimal P&R
method) is the “heart” of the proposed methodology and is sup-
posed to determine a placement and a routing realizing the de-
sired experiment with the respectively given constraints. Since
an explicit consideration of all possible solutions would be in-
feasible (as discussed in Section III.A), a symbolic formulation
is created instead. This symbolically represents all possible so-
lutions in a much more compact fashion and can be passed to
a satisfiability solver in order to determine an explicit solution.
In this section, the details on the symbolic formulation and how
this eventually realizes the placement and routing is described.

A. Symbolic Formulation of the Grid

To symbolically formulate the placements of the compo-
nents and the channels on the grid, a formulation of all pos-
sible grid cell assignments is created: For each grid cell a one-
hot encoding for the components is applied, where a single
Boolean variable represents whether this cell is occupied by a
respective component. Similarly, for each grid cell, a one-hot
encoding for the channels is applied, where a single Boolean
variable represents whether this cell is occupied by a channel.
More formally:

Definition 1 Consider a grid of size w×h. Each grid cell has
a unique position (x,y) with 1≤ x≤ w and 1≤ y≤ h. Then,

• for each component v ∈ V to be placed on the grid, a
Boolean variable vp(x,y),v is introduced stating whether
(vp(x,y),v = 1) or not (vp(x,y),v = 0) the grid cell at position
(x,y) is occupied by the component v and

• for each channel between these components (u,v) ∈ E, a
Boolean variable ep(x,y),(u,v) is introduced stating whether
(ep(x,y),(u,v) = 1) or not (ep(x,y),(u,v) = 0) the grid cell at
position (x,y) is occupied by the channel (u,v).

Passing the resulting formulation to a satisfiability solver
would yield arbitrary assignments to the variables and, hence,
arbitrary placements and routings. Hence, as a next step,
the possible solutions are restricted so that only valid grid
cell assignments (and, hence, placement/routings) are possi-
ble. Therefore, constraints are added which ensure that a grid
cell can only be occupied



• by at most one component, i.e.,∧
1≤x≤w
1≤y≤h

(
∑

v∈V
vp(x,y),v≤1

)
, (1)

• by at most two channels (if interconnections are allowed),
i.e., ∧

1≤x≤w
1≤y≤h

(
∑

(u,v)∈E
ep(x,y),(u,v)≤2

)
, and (2)

• by a component or a channel but not by both simultane-
ously, i.e., ∧

1≤x≤w
1≤y≤h

¬

(
∑

v∈V
vp(x,y),v>0 ∧ ∑

(u,v)∈E
ep(x,y),(u,v)>0

)
. (3)

B. Enforcing the Placement
Next, constraints are added, which enforce that all compo-

nents v ∈V are placed on the grid. Therefore, we introduce
new Boolean variables representing the positions of the com-
ponents. A position of a component can uniquely be deter-
mined by the position of the north west corner. More formally:

Definition 2 Consider the set of components V which have
to be placed on the grid. Then, new Boolean variables
plm(x,y),v are introduced stating whether (plm(x,y),v = 1) or not
(plm(x,y),v = 0) the north west corner of a component v ∈V is
placed at the grid cell at position (x,y).

Next, a constraint is added which enforces that each compo-
nent is placed exactly once, i.e.,

∧
v∈V

 ∑

1≤x≤w−wv+1
1≤y≤h−hv+1

plm(x,y),v=1

. (4)

The variables wv and hv specify the size of the component v
in terms of grid cells. Since this placement only determines the
grid cell with the component’s north west corner, another con-
straint is added which, depending on the size of the respective
component, also occupies the corresponding grid cells, i.e.,∧

v∈V

∧
1≤x≤w
1≤y≤h

plm(x,y),v =⇒
∧

x≤xn<x+wv
y≤yn<y+hv

vp(xn ,yn),v. (5)

More precisely, if a plm(x,y),v-variable is set to 1 for a posi-
tion (x,y) and a component v, it is enforced that the vp(x,y),v-
variables of the grid cells occupied by the component v are set
to 1 as well.

Passing the resulting formulation to a solving engine yields
a valid placement of the components. Note that Eq. 1 ensures
that no component overlaps with another component. If the
specified grid is too small to place all components, the solving
engine will determine the unsatisfiability of the instance and,
by this, will prove the non-existence of a valid solution.

C. Enforcing the Routing
After adding constraints enforcing a valid placement of the

components, it is left to connect the components with channels
according to E. A channel (u,v) ∈ E connects the output port
of the source component u with the input port of the destination
component v. Therefore, the grid has to contain a continuous
path of grid cells connecting the output port with the input port
(diagonal channels are not allowed).

The routing of the channels is accomplished in two steps: A
channel starts at a grid cell next to an output port and ends at a
grid cell next to an input port. Therefore, in the first step, we

add constraints fixing the channel next to the output and input
ports. In the second step, we add constraints ensuring that,
for a grid cell which is occupied by a channel, its neighboring
grid cells continue to be a channel – eventually realizing the
start-to-end connection.

More precisely, for fixing a channel (u,v) ∈ E to the output
and input ports of the respective components, we employ the
plm(x,y),u- and plm(x,y),v-variables. They provide information
where the respective source and destination component have
been placed. Additionally, considering all possible port posi-
tions of both components (which are provided by the compo-
nent’s specification and, for sake of clarity, are abstracted by
the functions Out and In), the start- and end-cell of the grid
can be implied, i.e.,

∧
(u,v)∈E

∧
1≤x≤w
1≤y≤h

plm(x,y),v =⇒
∨

(xin,yin)∈
In(x,y,v)

ep(xin ,yin),(u,v)
(6)

∧
(u,v)∈E

∧
1≤x≤w
1≤y≤h

plm(x,y),u =⇒
∨

(xout ,yout )∈
Out(x,y,u)

ep(xout ,yout ),(u,v). (7)

Based on these fixed channel-cells, the corresponding start-
to-end connections can be realized: To this end, we enforce
that a cell (x,y) which realizes a channel (u,v) always has cor-
responding neighboring cells (xn,yn)∈NB(x,y) (with NB(x,y)
defining a set of all neighbors of grid cell (x,y)) realizing the
same channel as well (and, hence, form a path through sev-
eral grid cells). In the general case, a channel-cell requires two
neighboring cells of the same channel (one incoming cell and
one outgoing cell) – leading to the constraint

∧
(u,v)∈E

∧
1≤x≤w
1≤y≤h

ep(x,y),(u,v)∧(x,y)/∈In(x,y,v)∧(x,y)/∈Out(x,y,u)

=⇒ ∑
(xn ,yn)∈NB(x,y)

ep(xn ,yn),(u,v)=2.
(8)

If a cell is next to a port, a single cell realizing the same
channel is sufficient (as either the incoming or outgoing path
leads to the port). In case, the source and destination com-
ponents have been placed next to each other the ports alone
are already sufficient and no neighbors are required. For these
special cases, Eq. 8 is adjusted accordingly.

Finally, it is left to add constraints enforcing the routing of
the channels in a way that the designer’s constraints are sat-
isfied. For example, a maximal allowed amount of channel
intersections can be enforced by counting the intersections of
all grid cells and restricting the sum to the desired limit (given
as maxIntersections), i.e.,

∑

1≤x≤w
1≤y≤h

(
∑

(u,v)∈E
ep(x,y),(u,v)=2

)
≤maxIntersections. (9)

Similarly, the maximal channel length can be restricted by
adding the number of all grid cells realizing a channel and re-
stricting this number to the desired limit (given as maxLength),
i.e.,

∑

1≤x≤w
1≤y≤h

(
∑

(u,v)∈E
ep(x,y),(u,v)

)
≤maxLength. (10)

Passing the formulation to a solving engine now either gives
an assignment of the variables representing a valid design or
proves that the given experiment cannot be realized on the
given grid size, with the given maximal number of intersec-
tions, and with the given maximal channel length.
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V. SEARCH SPACE PRUNING

As discussed in Section III, the optimal P&R method has
to tackle a significant complexity and, hence, might only be
applicable for small experiments to be realized. Hence, we ad-
ditionally propose two methods which can be used to prune the
search space and, by this, reduce the complexity. The pruning
shall thereby be conducted in a fashion which does not discard
promising solutions. In the following, details are provided.

A. Downscaling
The first method aims for reducing the complexity by reduc-

ing the size of the respective components and the overall grid.
To this end, we first scale down all components v∈V as well as
the considered grid by a constant factor f . The value of f may
depend on the originally given component and grid sizes2. For
example, the design problem discussed before in Section II.A
assumed a grid size of 12×10 as well as component sizes 2×2
and 4× 4 – hence, a factor f = 2 yielding a grid size 6×5 as
well as component sizes 1×1 and 2×2 seems obvious3.

The resulting (downscaled) design problem is significantly
easier to solve and, hence, enables the optimal P&R method to
determine a result in significantly less time (for larger designs,
downscaling may enable the optimal P&R method to deter-
mine a result at all). For the downscaled version of the consid-
ered example, this yields a placement and routing as shown in
Fig. 3a.

Next, the obtained design is scaled up to the originally de-
sired grid and component sizes. This can easily be conducted
for the grid itself as well as all its components. While this
already yields a valid placement, an upscaling of the deter-
mined routing obviously would lead to disproportional dimen-
sions between components and channels. Hence, we apply the
optimal P&R method again in order to determine a routing for
the obtained placement. As the placement is assumed to be fix,
the complexity of this task is feasible and, for the considered
example, yields the design as shown in Fig. 2b.

Overall, this results in a design solution which is close to the
optimal result. In fact, although an optimal design is only guar-
anteed for the downscaled version, many structurally proper-
ties are preserved when scaling up the solution to the origi-
nal dimension. This particularly holds for the important issue
of intersections: When e.g., a routing with no intersection is
determined at the downscaled level, the optimal P&R method
will also determine such a routing in the original dimension.

B. Partitioning
The second method aims for reducing complexity by par-

titioning the overall problem into sub-problems. As the sub-
problems are smaller, also the complexity to be tackled by the

2In case this leads to fractional numbers for components and/or grid sizes,
the resulting values are rounded up.

3Also bigger scaling factors can be used (the maximal possible scaling
factor would yield 1×1 components).

optimal P&R method is reduced. At the same time, the quality
of the resulting design can be expected to be close-to-optimal
since, eventually, local optima are combined4.

Using the running example discussed before in Section II.A,
the proposed method works as follows: First, the initial exper-
iment (shown in Fig. 2a) is partitioned into equally large parts
as shown in Fig. 3b. Then, the optimal P&R method deter-
mines a sub-design for all sub-problems. To this end, addi-
tional constraints are added which allow that skipped channels
between sub-designs remain routable, i.e., that a channel from
the output port located in one sub-design can still be connected
to the input port located in another sub-design.

These sub-designs can be seen as components, which have
to be placed and routed on the original grid. Since this leads
to a problem of moderate complexity, also this final step can
again be conducted by the optimal P&R method.

Overall, partitioning provides a further trade-off between
quality and run-time. While quality is obviously harmed due to
the local consideration of sub-problems, results of rather good
quality still can be ensured.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed methodology in Java and
used Boolector [23] in its latest version as solving engine for
the optimal P&R method. Afterwards, we evaluated the result-
ing approach using three different configurations, namely

• a sole application of the optimal P&R method as proposed
in Section IV (denoted by Optimal P&R Method),

• the additional application of the downscaling pruning
method as proposed in Section V.A (denoted by Down-
scaling; a scaling factor of f = 5 is used), and

• the additional application of the partitioning pruning
method as proposed in Section V.B (denoted by Down-
scaling + Partitioning; 4 partitions are used).

These configurations allow for an evaluation of the flexibility
of the proposed methodology with respect to optimality and
efficiency. Besides that, we compared the obtained results to
solutions generated by
• the current state-of-the-art method as proposed in [12]

(denoted by Heuristic presented in [12]).
As benchmarks, we considered all experiments which have
been used before in [12]. Besides that, in order to evalu-
ate the scalability of the proposed approach, we additionally
applied another series of experiments in which we assumed
smaller component specifications (denoted by the suffix Small
in the benchmark name). All experiments using the proposed
methodology have been conducted on a desktop machine with
a 3.2GHz Core i5 and 8GB of main memory running 64-bit
Ubuntu 14.04 LTS. The evaluations of the heuristic presented
in [12] have been conducted on a 2.6GHz 32-core Intel Xeon
Linux workstation with 132GB main memory.

Table I reports the obtained results. The first columns pro-
vide the name of the experiment to be realized as well as its
number of components (|V |) and channels (|E|) to be placed.
Afterwards, the size of the grid (Area), the number of channel
intersections (Int.), the channel length (Length), and the run-
time in CPU-seconds (T[s]) are provided for all configurations
as well as the method proposed in [12]. Benchmarks for which
no result could be determined within 4 CPU hours have been
aborted (denoted by “—”).

4This has also been confirmed by experimental evaluations which are sum-
marized later in Section VI.



TABLE I
EVALUATION RESULTS

Benchmark Heuristic presented in [12] Optimal P&R Method Downscaling Downscaling + Partitioning
Name |V | |E| Area Int. Length T [s] Area Int. Length T [s] Area Int. Length T [s] Area Int. Length T [s]

InVitro-1 Small 30 24 84×123 8 1368 80 9×9 0 24 253 9×9 0 24 253 15×15 0 36 3
InVitro-2 Small 45 36 126×123 22 2546 172 11×11 0 36 5474 11×11 0 36 5474 20×20 0 74 9
InVitro-3 Small 60 48 158×156 68 4670 310 13×13 0 62 7456 13×13 0 62 7456 14×14 0 48 10
PCR Small 16 15 63×41 0 609 34 9×9 0 19 801 9×9 0 19 801 23×23 4 97 6
ProteinSplit-1 Small 30 27 78×90 17 1405 117 11×11 0 60 11935 11×11 0 60 11935 20×20 1 72 13
ProteinSplit-2 Small 66 60 58×72 331 2324 379 — — — — — — — — 27×27 2 145 6005

InVitro-1 30 24 70×73 1 802 84 — — — — 45×45 0 144 253 63×63 0 212 3
InVitro-2 45 36 84×98 8 1485 180 — — — — 55×55 0 228 5474 76×76 0 338 9
InVitro-3 60 48 99×113 6 1846 301 — — — — 65×65 0 314 7457 70×70 0 288 10
PCR 16 15 51×58 1 522 43 — — — — 45×45 0 103 801 79×79 4 389 28
ProteinSplit-1 30 27 63×78 5 1162 114 — — — — 55×55 0 272 11938 76×76 1 328 14
ProteinSplit-2 66 60 131×130 42 3247 528 — — — — — — — — 99×99 2 625 6018

Name: the name of the benchmark |V |: number of components |E|: number of channels Area: the size of the grid
Int.: the number of channel intersections Length: the channel length T[s]: run-time in CPU-seconds

The results clearly show the flexibility and strengths of the
proposed methodology. For the first time, optimal placements
and routings can be obtained for continuous-flow microfluidic
biochips – although for rather small benchmarks only. How-
ever, this lack of scalability can easily be addressed by the pro-
posed pruning methods. While applying Downscaling alone
already allows for completing the tasks for all benchmarks ex-
cept one5, additionally employing Partitioning allows to real-
ize all experiments in acceptable run-time.

The quality of the obtained results is thereby hardly harmed
by the pruning methods. In fact, despite the downscaling, an
optimal placement/routing with respect to the number of inter-
sections (as discussed in Section I, the most important criteria)
can still be derived. If partitioning is additionally applied, only
slight increases for the grid size (avg. increase of 40%), inter-
sections (between 0 and only 4 new intersections), and channel
length (avg. increase of 77%) are observed. Hence, close-to-
optimal results can be achieved.

Overall, compared to the current state-of-the-art method
proposed in [12], substantial improvements are reported for all
design criteria. Often differences with 1-2 orders of magni-
tude are reported. In particular, the improvement with respect
to the number of intersection is of importance: While the pre-
vious solution generated placements/routings requiring dozens
or even hundreds of intersections, the proposed methodology
can reduce them to just a few or, oftentimes, none.

VII. CONCLUSIONS
In this work, we presented a placement and routing method-

ology for continuous-flow microfluidic biochips, which is ca-
pable of generating optimal or close-to-optimal results. To this
end, we considered placement and routing together and aimed
for covering the entire search space. In order to cope with
the resulting complexity, efficient solving engines and pruning
schemes are utilized. Experimental evaluations showed that
the resulting methodology satisfies the promise of being capa-
ble to generate close-to-optimal designs. By this, results gener-
ated by the current state-of-the-art method could be improved
by up to 1-2 orders of magnitude.
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