
Exact Stimuli Minimization
for Simulation-based Verification

Sebastian Pointner Andreas Grimmer Robert Wille
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

Email: {sebastian.pointner, andreas.grimmer, robert.wille}@jku.at

Abstract—Due to the ever increasing complexity of modern
circuits and systems, verification represents one of the most
time-consuming tasks in the entire design process for embedded
systems. For this purpose, simulation-based techniques are widely
applied in industrial contexts. Here, stimuli are determined which
are used as input for the Design under Verification (DUV) and are
supposed to trigger different aspects of the new design. However,
usually much more stimuli are generated than actually needed
to comprehensively cover all aspects. This obviously increases
the run time of the verification significantly. Consequently,
verification engineers aim for minimizing the number of stimuli
after their generation – without loosing their coverage. Existing
solutions, however, usually generate results which are far from
being optimal. Besides that, their scalability is severely limited.
In this work, we propose a solution for an exact minimization of
stimuli. To this end, we utilize the computational power of modern
reasoning engines such as MAX-SAT solvers which can efficiently
minimize a given set of stimuli. Experimental evaluations confirm
that, compared to previous work, up to 63% further reduction
can be obtained and scalability significantly increases.

I. INTRODUCTION
Embedded systems have become an integral part of our

daily life. They can be found everywhere in our environment
and are especially very important in their usage for safety
critical applications. Since errors in safety critical applications
(e.g. the control unit to trigger the airbag in a car) may have
catastrophic consequences, guaranteeing their correctness is
of uttermost importance. Hence, verification is essential when
designing such systems.

To this end, methods for simulation-based verification [1]
are widely applied in industry. Here, previously generated
stimuli are applied to the system and, afterwards, it is checked
whether the actually intended output is obtained. In this
context, the system is treated as a black box where it is possible
to only interact with the inputs and the outputs. Every input,
i.e. stimulus, is supposed to trigger a certain functionality,
i.e. aspect, of the system. Since modern embedded systems
are highly complex systems, simulation-based verification fre-
quently requires a large amount of stimuli to completely cover
every aspect of the system.

The quality of the resulting set of stimuli is then measured
by their coverage of aspects. Usually, verification engineers
are interested to cover all given aspects of a system. Since
the complexity of modern embedded systems is very high, it
is usually not possible to generate a set of stimuli covering
all aspects by hand within acceptable time. Because of this,
several approaches for automatic stimuli generation have been
presented (see e.g. [2]–[6]). Since embedded systems are fre-
quently described in C++-based system description languages
(e.g. in SystemC [7]), these approaches are not limited to the
verification of embedded system only.

However, although automatic methods for stimuli gen-
eration are capable to generate a set of stimuli with high
aspect coverage [8], they usually yield much more stimuli than
actually needed. In fact, most of the aspects frequently get
covered not only by a single stimulus, but multiple ones. While
this does not have a negative impact on the verification result,
this may increase the run time needed for verification as more
stimuli have to be simulated. Considering that the verification
run time of a highly complex industrial system can easily last
multiple days, reducing the amount of unnecessary stimuli may
yield substantial accelerations – in particular, since a set of
stimuli usually includes a significant amount of redundancies.

Motivated by that, verification engineers aim for keeping
the number of stimuli as small as possible. Accordingly,
methods which optimize a given set with respect to their aspect
coverage have been introduced. To the best of our knowledge,
the method proposed in [9] constitutes the state-of-the-art.
Here, the authors mapped the problem to a logic minimization
problem which, afterwards, has been solved using Quine-
McCluskey’s algorithm. But since Quine-McCluskey’s algo-
rithm had been designed for the minimization of Boolean
logic functions (i.e. not for stimuli minimization), they cannot
guarantee that a minimal subset out of the given set of stimuli
is generated (in fact, even the optimized set frequently is
far from being optimal). Moreover, this approach is severely
limited with respect to scalability – often only some few
dozens stimuli can be optimized using the approach from [9].

In this work, we propose a solution for the exact min-
imization of a given set of stimuli, i.e. a solution which
determines the minimal subset still covering all aspects. To
deal with the complexity of this optimization problem, we
utilize the computational power of reasoning engines, i.e. so
called solvers for the Maximum Satisfiability (MAX-SAT)
problem [10], [11]. More precisely, we formulate the problem
in terms of a MAX-SAT instance which, afterwards, is passed
to a MAX-SAT solver. From the resulting solution, the minimal
subset can eventually be derived.

Experimental evaluations confirm the applicability and
efficiency of the proposed solution. In fact, reductions in the
number of needed stimuli amounting up to 63% compared to
the solution proposed in [9] can be observed. Moreover, while
the solution proposed in [9] hardly scales (already considering
e.g. 15 stimuli and 15 aspects leads to timeouts of 3000
CPU seconds), the proposed approach can minimize given sets
including thousands of stimuli in negligible run time (i.e. few
seconds at most).

The remainder of this paper is structured as follows: The
next section briefly reviews stimuli generation for simulation-
based verification and motivates the considered work (includ-
ing a discussion of related work). Afterwards, the proposed
solution is described in Section III. Finally, the results obtained
by our experimental evaluations are summarized in Section IV
before the paper is concluded in Section V.

II. BACKGROUND
In order to keep this work self-contained, this section

briefly reviews the stimuli generation for the simulation-based
verification of embedded systems. Based on this, we discuss
the problem of minimizing the resulting sets of stimuli (which
are very likely to be non-optimal) as well as the corresponding
related work.

A. Stimuli Generation
The verification of embedded systems remains one of

the most time consuming tasks in the design of circuits
and systems. For the development of embedded systems at
the Electronic System Level (ESL), SystemC [7], a C++-based
modeling language used for embedded systems is frequently
used within the industry. In this work, we assume that the
system to verify, i.e. the Design under Verification (DUV), has
been realized at the ESL level using SystemC. The verification
of new embedded systems at the ESL abstraction layer is
mostly performed by simulation-based verification [1]. The
term simulation-based verification in this sense means that
the verification is based on directly simulating or executing

1 i n t c o n s t BITWIDTH = 8 ;
i n t c o n s t BITWIDTH OPCODE = 2 ;

3

s c i n<s c u i n t<BITWIDTH> > s i d e a ;
5 s c i n<s c u i n t<BITWIDTH> > s i d e b ;

s c i n<s c u i n t<BITWIDTH OPCODE> > opcode ;
7 s c i n<bool> c a r r y i ;

9 sc ou t<s c u i n t<BITWIDTH> > r e s u l t ;
s c ou t<bool> c a r r y o ;

11 sc ou t<bool> z e r o ;

13 vo id a l u c o r e : : c a l c () {

15 s c u i n t<BITWIDTH+1> o u t ;
s w i t c h (opcode) {

17 c a s e a l u a d d :
o u t = s i d e a + s i d e b + c a r r y i ;

19 b r e a k ;
c a s e a l u s u b :

21 o u t = s i d e a − s i d e b − c a r r y i ;
b r e a k ;

23 c a s e a l u i n c :
o u t = s i d e a + 1 + c a r r y i ;

25 b r e a k ;
c a s e a l u d e c :

27 o u t = s i d e a − 1 − c a r r y i ;
b r e a k ;

29 }

31 r e s u l t . w r i t e (o u t . r a n g e (BITWIDTH−1 ,0)) ;
c a r r y o . w r i t e (o u t [BITWIDTH]) ;

33 z e r o . w r i t e (o u t == 0 ? 1 : 0) ;
}

Fig. 1: ESL model of an ALU.

the new system. By applying simulation techniques, the new
system can be verified by using so called stimuli. The idea of
simulation-based verification is to apply stimuli to the DUV
and to observe its response. For stimuli-based verification of
systems, the system is treated like a black box. The verification
itself is performed by observing the behavior (i.e. outputs) of
the DUV for certain known inputs (i.e. stimuli).

One of the most time consuming tasks in the
simulation-based verification process is the generation
of stimuli. Those stimuli can be generated by the SystemC
designer himself/herself (which knows the design best),
or they can be generated by the corresponding verification
engineer. In both cases, the generation of stimuli causes a high
effort and costs an enormous amount of human resources.
To keep the needed effort for test stimuli generation as low
as possible, automatic approaches have been proposed for
this task (see e.g. [2]–[6]). The idea of those approaches is
to exploit the knowledge of the underlying DUV for stimuli
generation.

For the aspect extraction of the underlying DUV, i.e. which
and how many aspects are there, either the design itself can
be used, e.g. in form of source code, or formal documentation
files can be used as input. Since the main language for
ESL modeling is SystemC [7], software engineering based
approaches can be also be applied here. Approaches which
rely on the source code representation are either based on
applying symbolic execution of the design [3], [12]–[14] or
are working on top of instrumentation and Control Flow Graph
(CFG) generation of the design [2]. Besides source code based
stimuli generation approaches, there are also approaches which
are based on documentations (e.g. the available datasheets)
of the designs. Such approaches try to formulate the stimuli
generation problem as an instance of the Boolean satisfiability
problem (SAT problem) which can then be solved by invoking
SAT-solvers to determine a solution for the problem [4], [6].

The major objective of automatic stimuli generation is to
generate stimuli which cover as much as possible of the design.
Almost all of the above mentioned approaches are capable to
deliver a high coverage for given designs.

Example 1. In this work, we are using an ESL model (i.e. a
SystemC implementation) of an Arithmetic Logic Unit (ALU)
as running example. The SystemC code of this ALU is shown
in Figure 1. The ALU has four inputs (side a, side b, carry i,
opcode) and three outputs (result, zero, carry o). To trigger
e.g. the execution of the add instruction, the corresponding
opcode has to be set to add. After that, the sum of the inputs
side a and side b is written to the output result. Depending
on the result of this instruction, the zero and carry outputs are
going to be set.

For the verification of the ALU design as shown in Fig-
ure 1, we have to provide a set of stimuli (in the following
denoted S) to cover every aspect (i.e. feature) of the design
(in the following, the set of all aspects to be considered
as denoted A). To identify all aspects of the design, we
can consider all branches of the design. If we can cover
all branches of the design, we can achieve a coverage of
100%. For the identification of all aspects, we can employ the
CFG which graphically represents all branches of the design.
Applying the CFG helps us to achieve the maximum branch
coverage possible for the design [4], [15].

TABLE I: Generated Stimuli for the ALU.

S
ti
m

u
li

s
j
∈

S

Aspects ai ∈ A
a1 a2 a3 a4 a5 a6 a7 a8

s1 1 0 0 0 1 0 0 1
s2 0 1 0 0 1 0 1 0
s3 0 1 0 0 1 0 0 1
s4 0 1 0 0 1 0 1 0
s5 0 0 1 0 1 0 0 1
s6 0 0 0 1 1 0 1 1
s7 0 0 1 0 0 1 0 1
s8 1 0 0 0 0 1 0 1

However, often a single stimulus is capable of covering
more than one aspect. Hence, the number |S| of actually
required stimuli is usually significantly smaller than the total
number |A| of aspects. Unfortunately, methods for stimuli
generation usually determine sets of stimuli which are far from
being minimal. Since having fewer stimuli directly translates
into a much faster execution and, hence, verification of the
considered system, this motivates the minimization of the
number of stimuli.
Example 2. Consider again the example from above and
assume that eight stimuli S = {s1, . . . , s8} have been gen-
erated to cover all eight aspects A = a1, . . . , a8. Since
the CFG (which provides the basis for the aspects) is not
composed of eight independent paths, it must be possible to
trigger all aspects with less than eight stimuli. To evaluate
that, Table I shows what aspects are covered by what stimuli
(more precisely, a “1” denotes that a stimuli sj ∈ S covers
an aspect ai ∈ A, whereby a “0” denotes that this is
not the case). From that, it can be concluded that e.g. an
aspect coverage of 100% can be achieved by only using the
stimuli S′ = {s2, s6, s7, s8}, i.e. with just half of the originally
generated stimuli.

B. Stimuli Minimization
Observations such as conducted above motivated to con-

sider minimizing the number of stimuli after their initial
generation. However, minimizing the number of stimuli is a
non-trivial task. Thus far, related work such as proposed in [9]
addressed this by mapping the stimuli generation problem to a
logic minimization problem. Here, methods like the Karnaugh
maps or the Quine-McCluskey algorithms are available [16].

In order to use them, the original coverage problem is trans-
lated to a logic minimization problem by treating stimuli like
prime-implicants and aspects like minterms. Since logic mini-
mization aims for minimizing the number of prime-implicants
while, at the same time, covering all minterms, this treatment
can accordingly be applied to minimize stimuli while, at the
same time, covering all aspects. The underlying method does
not change but is simply applied to different entities.

S
ti
m
u
li

s j
∈
S Aspects ai ∈ A

a1 a2 a3
s1 0 1 1
s2 1 0 1
s3 1 1 0

f(a, b, c) = abc+ abc+ abc

Fig. 2: Quine-McCluskey fails here.

Example 3. Consider again the ALU from above and the eight
stimuli S = {s1, . . . s8} together with their aspect coverage as
provided in Table I. Treating aspects ai ∈ A as minters leads
to the following Boolean functions in terms of a disjunction of
prime-implicants:

f(a1 . . . a8) = a1a5a8 + · · ·+ a1a6a8

Minimizing this function yields a reduced set of prime-
implicants which still cover all aspects.

Unfortunately, approaches like Karnaugh maps or the
Quine-McCluskey algorithm come with significant drawbacks.
First, Karnaugh maps and Quine-McCluskey’s algorithm have
an exponential complexity and, hence, hardly scale. In fact,
as discussed later in more detail in Section V, already for
rather small instances considering e.g. 15 stimuli and 15
aspects only, these solutions run into a timeout of 3000 CPU
seconds. Besides that, minimality is not guaranteed for the
problem considered in this work. This is because the purpose
of the Quine-McCluskey algorithm is the minimization of
logic functions, not the minimization of stimuli. An example
illustrates this problem.
Example 4. Consider the coverage table shown in Figure 2.
We can extract the minterms and the prime-implicants out
of the table and apply Quine-McCluskey’s algorithm. Since
we know that we can transform the coverage table into a
logic optimization problem that can be applied using Quine-
McCluskey’s algorithm, the table can be used for two different
applications. A table in terms of coverage, i.e. a coverage table
or in terms of a logic circuit, i.e. a truth table. If we apply the
Quine-McCluskey algorithm for this minimization problem, the
algorithm can not show up with any possible optimization. This
is of course true, as this formula can not be more optimized
without changing the formula itself. However, by referring to
the coverage table shown in Figure 2, we can detect that we
can cover all aspects by applying two stimuli only. By selecting
s1 and s2, we could cover all aspects while only applying two
of the three stimuli.

Overall, no solution exists yet, which determines a minimal
subset out of a given set of stimuli. In the next section, we
are introducing an approach which, for the first time, is able
to accomplish that.

III. PROPOSED SOLUTION
This section presents the proposed solution for exact stim-

uli minimization. For this minimization problem, we propose
to exploit the computational power of MAX-SAT solvers.
Therefore, in this section we first review the MAX-SAT
problem. Afterwards, we provide details how the stimuli
minimization problem is encoded as a MAX-SAT instance.

A. MAX-SAT Problem
The MAX-SAT problem [10], [11] is an extension of

the Boolean satisfiability (SAT) problem. Both problems are
defined as follows:
Definition 1. The Boolean satisfiability problem determines
an assignment to the variables of a Boolean function
Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or proves that
no such assignment exists. The function Φ is thereby given in
Conjunctive Normal Form (CNF). Each CNF is a conjunction
of clauses where each clause is a disjunction of literals and
each literal is a propositional variable or its negation. A CNF
is satisfied if all clauses are satisfied, a clause is satisfied if at

least one literal is satisfied, and a positive (negative) literal is
satisfied if the corresponding variable is set to 1 (0).
Definition 2. The MAX-SAT problem determines an assign-
ment to the variables of a set of clauses Ψ, such that a
maximum number of clauses is satisfied. Not necessary all
clauses have to be satisfied – hence, they are called soft
constraints. In addition to soft constraints, it is possible to
define a set of clauses that are mandatory to be satisfied as in
the pure satisfiability problem, so-called hard constraints.

Example 5. Let Φ = (x1∨x2∨¬x3)∧(¬x1∨x3)∧(¬x2∨x3).
Then, x1 = 1, x2 = 1, and x3 = 1 is a satisfying assignment
solving the SAT problem.

Accordingly, let Ψ = {¬x1 + ¬x2, x1,¬x1 + x2}. Then,
x1 = 0 and x2 = 1 is one possible solution to the MAX-SAT
problem, allowing two clauses to evaluate to true.

Both, SAT- and MAX-SAT solvers employ intelligent de-
cision heuristics, powerful learning schemes, and fast implica-
tion methods, which allow to efficiently traverse large search
spaces [17], [18]. They have been proven to be very effective
for many practically relevant design problems such as formal
verification [19] (e.g. Model Checking) as well as test pattern
generation for the post-silicon production test [20]. Our thesis
is that this deductive power can also be utilized in order to
determine the minimal set of required stimuli.

B. Problem Encoding
As already motivated in the last section, possibly only a

subset of stimuli is needed in order to completely cover all
aspects (e.g. by exploiting the fact that a single stimulus covers
multiple aspects). In our approach, we formulate the question
“How many and what stimuli have to be applied to the DUV
so that all aspects are covered?” as a MAX-SAT instance.
For this, we first provide a formalization of the input, second
introduce the used variables, and finally formulate the applied
constraints.

Input: As input to our approach, we use stimuli generated
by automatic stimuli generation engines (e.g. [3]) or by
invoking Constrained Random Verification (CRV) [1], [5].
Definition 3. The input is then given as a set of stimuli
S = {s1...sn} (with n ∈ N), a set of aspects A = {a1...am}
(with m ∈ N) as well as a value cj,i of each element of the
Cartesian product of S×A, which represent whether (cj,i = 1)
or not (cj,i = 0) the stimuli sj can cover aspect ai.

Variables: Next, we introduce the variables for the
MAX-SAT instance. Therefore, we introduce Boolean vari-
ables which represent whether a stimulus is used or not. More
formally:
Definition 4. For each stimulus sj ∈ S, we introduce a
free Boolean variable sj

1. These variables represent whether
(sj = 1) or not (sj = 0) the stimulus sj is used.

Passing the sj-variables to a MAX-SAT solver would yield
an arbitrary assignment to these variables. Hence, it is not
guaranteed that all aspects are covered by at least one stimulus
and that the number of used stimuli is minimal. Therefore, we
have to restrict the assignments of these variables as follows.

Constraints: Since we formulate the problem as a
MAX-SAT instance, in the following we have to differentiate
between hard constraints (cf. all of them have to be satisfied)
and soft constraints (cf. a maximum subset has to be satisfied).
Furthermore, the required representation, i.e. the CNF clauses,
can easily be derived from any Boolean function in linear time
(see e.g. [21] and [22]). Hence, for sake of clarity we provide
the following formulations in general pseudo-Boolean algebra.

The constraints have to ensure that all aspects of ai ∈ A are
at least covered by one stimulus sj ∈ S. Therefore, we have
to ensure for each aspect ai ∈ A that at least one conjunction

1Note that variables for the MAX-SAT instance are written in bold font.

TABLE II: Experiments comparing Quince-McCluskey and MAX-SAT
Quine-McCluskey Stimuli Optimization [16] Exact Stimuli Optimization

Number of Number of Result. Total Total Result. Total Total Improvement to
System Aspects Given Stimuli Stimuli Runtime Reduction Stimuli Runtime Reduction Quine-McCluskey
adpcm 10 10 6 6.5 s 4 (40%) 3 <0.1 s 7 (70%) 3 (50%)
adpcm 11 11 7 19.5 s 4 (36%) 3 <0.1 s 8 (72%) 4 (43%)
adpcm 15 15 - timeout - 3 <0.1 s 12 (80%) -
adpcm 15 5000 - timeout - 3 1.5 s 4997 (99%) -
aes128 10 10 7 8.3 s 3 (30%) 3 <0.1 s 7 (70%) 4 (43%)
aes128 50 50 - timeout - 5 <0.1 s 45 (90%) -
aes128 50 5000 - timeout - 5 1.2 s 4995 (99%) -
alu 8 8 7 1.1 s 1 (13%) 4 <0.1 s 4 (50%) 4 (43%)
euclid 8 7 5 <0.1 s 2 (29%) 3 <0.1 s 4 (57%) 2 (40%)
rsa 10 10 2 <0.1 s 8 (80%) 1 <0.1 s 9 (90%) 1 (50%)
rsa 20 20 2 <0.1 s 18 (90%) 1 <0.1 s 19 (95%) 1 (50%)
rsa 27 27 2 2820 s 25 (92%) 1 <0.1 s 26 (96%) 1 (50%)
arbiter 5 5 3 <0.1 s 2 (40%) 2 <0.1 s 3 (60%) 1 (33%)
arbiter 10 10 5 <0.1 s 5 (50%) 3 <0.1 s 7 (70%) 2 (40%)
arbiter 14 14 8 1080 s 6 (41%) 3 <0.1 s 11 (79%) 5 (63%)
b01 10 10 6 0.8 s 4 (40%) 4 <0.1 s 6 (60%) 2 (33%)
b01 20 20 - timeout - 6 <0.1 s 14 (70%) -
b01 25 25 - timeout - 6 <0.1 s 19 (76%) -

Note that the timeout which we have used for the experiments has been set to 3000 seconds.

between the cj,i and the sj-variable evaluates to true. In this
case, the stimulus sj allows to cover aspect ai (i.e. cj,i is
equal 1) and it is actually applied (i.e. the Boolean variable sj
is equal 1). Formally, this constraint is represented as:∧

1≤i≤m

∨
1≤j≤n

cj,i ∧ sj.

Adding these constraints, we now have ensured that each
aspect is covered by at least one stimulus. When we pass this
formulation to a MAX-SAT solver, it returns an assignment of
the sj-variables. In case, a variable sj is assigned equal 1, the
stimulus is used.

However, the MAX-SAT solver does not yet return a
minimal set of stimuli which have to be applied. Therefore,
we finally add soft constraints which ensure a minimal subset
of stimuli but still ensures all constraints. Therefore, we add for
each stimuli a soft constraint which tries to make the stimuli
unused (i.e. the stimuli is unused when sj = 0). Formally, we
add the following soft-constraints for all sj-variables: ¬sj.

When passing this formulation to a MAX-SAT solver, we
now obtain a minimal set of stimuli which have to be executed
in order to cover all aspects.

IV. EXPERIMENTS
In order to evaluate the performance of the proposed

approach, we implemented the solution described in Section III
in C++ and applied it to several stimuli sets obtained from
multiple test cases. To solve the resulting MAX-SAT instances,
we utilized Z3 [23]. In this section, we summarize the obtained
results. To this end, we first describe the setup as well as the
considered test cases. Afterwards, the results are provided and
discussed.

A. Setup and Benchmarks
For our experiments, we have considered multiple SystemC

benchmarks taken from [9], [24], [25] and representing: nosep
• Adaptive Differential Pulse Code Modulation - (ad-

pcm),
• Advanced Encryption Standard - (aes128),
• Arithmetic Logic Unit of a CPU, see Figure 1 - (alu),
• Euclidian algorithm - (euclid),
• Rivest-Shamir-Adleman cryptosystem - (rsa),
• Data processing algorithm for USB cores - (arbiter),
• FSM comparing serial flows - (b01)
For each of these systems, different sets of aspects to

be covered have been considered. Then, sets of stimuli have
been generated (using methods such as reviewed in Sec-
tion II) which fully cover the respective aspects. With this
as baseline, we afterwards applied two solutions for stimuli
minimization, namely the Qunie-McCluskey algorithm (which
has been used as a basis for the state-of-the-art solution [9])
and the MAX-SAT solution as described in Section III. All
experiments have been conducted on an Intel i5 CPU with 8
GB of RAM running Arch Linux.

B. Results and Discussion
The results of the conducted experiments are shown

in Table II. The table compares the performance of the
Quine-McCluskey algorithm and the proposed MAX-SAT
based approach. More precisely, the first columns provide the
name of the system as well as the number of considered aspects
and the originally determined number of stimuli. Afterwards,
the results of the considered stimuli minimization methods
are reported, including the resulting (minimized) number of
stimuli, the run-time required to determined the minimized
set, as well as the absolute and relative reduction. Note that,
in order to evaluate the scalability of the approaches, we
additionally considered a setting with a very high number of
originally given stimuli (namely 5000 for the systems adpcm
and aes). In order to observe the scalability with a very
high number of stimuli, we have used the benchmark with
the highest number of aspects, i.e. aes128, as well as the
benchmark with an average number of aspects, i.e. adpcm.

First, it can clearly been observed that the previously pro-
posed method based on Quine-McCluskey’s algorithm hardly
scales. Already for a rather small sets of stimuli (namely
15 e.g. for adpcm with 15 aspects), no minimization was
possible within a given timeout of 3000 CPU seconds. In
contrast, the proposed solution is highly scalable. Even for
the actually rather artificially large amount of 5000 stimuli for
the considered systems, results can be obtained in negligible
run time (i.e. few seconds at most).

Moreover, in contrast to the previously proposed solution,
the MAX-SAT approach even allows to determine an exact,
i.e. minimal, result. That is, based on a given set of stimuli
and their aspect coverage, the smallest possible set of stimuli
can be obtained. This also allows to reduce the number of
needed stimuli by further 63%. Overall, applying the proposed
MAX-SAT based approach allows for determining optimally
minimized results for every system. The execution time needed
for the minimization always stayed less then 2 seconds even
if a large number of stimuli has to be considered.

V. CONCLUSION
Since engineers for simulation-based verification are chal-

lenged with the ever increasing complexity of modern embed-
ded systems, approaches for automatic stimuli generation have
been proposed. Unfortunately those approaches do not always
deliver optimal sets of stimuli in terms of their number of
generated stimuli. In this paper, we proposed an approach for
the minimization of stimuli for simulation-based verification.
To this end, we employed solvers for the MAX-SAT problem.
In contrast to previously proposed solutions for this problem,
we were able to generate exact, i.e. minimal, results in a much
more scalable fashion. Overall, this allows for significantly
reducing the number of required stimuli even for larger systems
and corresponding sets of stimuli.

ACKNOWLEDGEMENTS
This work has partially been supported by the LIT Secure

and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] J. Yuan, C. Pixley, and A. Aziz, Constraint-based Verification. New

York, NY, USA: Springer, 2006.
[2] A. Dias Junior and D. C. da Silva Junior, “Code-coverage Based Test

Vector Generation for SystemC Designs,” in IEEE Annual Symposium
on VLSI. Porto Alegre, RIG, Brazil: IEEE, 2007.

[3] B. Lin, Z. Yang, K. Cong, and F. Xie, “Generating High Coverage
Tests for SystemC Designs Using Symbolic Execution,” in ASP Design
Automation Conf. Macau, China: IEEE, 2016.

[4] S. Yang, R. Wille, and R. Drechsler, “Improving Coverage of
Simulation-based Verification by Dedicated Stimuli Generation,” in
EUROMICRO Symp. on Digital System Design. Verona, Italy: IEEE,
2014.

[5] F. Haedicke, H. M. Le, D. Große, and R. Drechsler, “CRAVE: An
advanced constrained random verification environment for SystemC,” in
2012 International Symposium on System on Chip. Tampere, Finland:
IEEE, 2012.

[6] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based
Stimuli Generation in the SystemC Verification Library,” in Forum on
Specification and Design Languages. Sophia Antipolis, France: IEEE,
2009.

[7] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638,
2012.

[8] S. Yang, R. Wille, and R. Drechsler, “Coverage-driven Stimuli Gen-
eration,” in EUROMICRO Symp. on Digital System Design. Cesme,
Turkey: IEEE, 2012.

[9] K. Yamazaki, Y. Sekihara, T. M. Aoki, E. Hosoya, and A. Onozawa,
“A heuristic algorithm for reducing system-level test vectors with high
branch coverage,” in IEEE International Symposium on Circuits and
Systems. Rio de Janeiro, RJ, Brazil: IEEE, 2011.

[10] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
Journal of Computer and System Sciences, pp. 256–278, 1974.

[11] P. Hansen and B. Jaumard, “Algorithms for the maximum satisfiability
problem,” Journal of Computing, pp. 279–303, 1990.

[12] G. Li, I. Gosh, and S. P. Rajan, “KLOVER: A Symbolic Execution
and Automatic Test Generation Tool for C++ Programs,” in Computer
Aided Verification. Snowbird, UT, USA: Springer, 2011.

[13] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing

Engine for C,” in European Software Engineering Conference. Lisbon,
Portugal: ACM, 2005.

[14] P. Gonzales de Aledo, N. Prizigoda, R. Wille, R. Drechsler, and
P. Sanchez, “Towards a Verification Flow Across Abstraction Levels:
Verifying Implementations Against Their Formal Specification,” IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, pp. 475–488, 2017.

[15] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” IEEE Design & Test of Comp., pp. 36–45, 2001.

[16] T. Sasao, Switching Theory for Logic Synthesis. Norwell, MA, USA:
Kluwer Academic Publishers, 1999.

[17] A. Biere, “Picosat essentials,” Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), pp. 75–97, 2008.

[18] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “Sword:
A sat like prover using word level information,” in International
Conference on Very Large Scale Integration. Atlanta, GA, USA: IEEE,
2007.

[19] A. Biere, “Tutorial on Model Checking: Modelling and Verification
in Computer Science,” in International Conference Algebraic Biology.
Hagenberg, Austria: ACM, 2008.

[20] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved SAT-based ATPG:
More Constraints, Better Compaction,” in International Conference on
CAD. San Jose, CA, USA: IEEE, 2013.

[21] G. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logic.
Heidelberg, Germany: Springer, 1968.

[22] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation, pp.
1–26, 2006.

[23] N. de Moura, Leonardoand Bjørner, “Z3: An efficient SMT solver,”
Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340, 2008.

[24] B. C. Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC
Benchmark Suite for High-Level Synthesis,” IEEE Embedded Systems
Letters, pp. 53–56, 2014.

[25] E. Clarke, H. Jain, and D. Kroening, “Verification of SpecC using
predicate abstraction,” Formal Methods in System Design, pp. 5–28,
2007.

