
Analyzing Frame Conditions in UML/OCL Models:
Consistency, Equivalence, and Independence

Philipp Niemann1, Nils Przigoda2, Robert Wille1,3 and Rolf Drechsler1,4

1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2Siemens AG, Braunschweig, Germany

3Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
4Group for Computer Architecture, University of Bremen, Bremen, Germany

philipp.niemann@dfki.de, nils.przigoda@siemens.com, robert.wille@jku.at, drechsle@informatik.uni-bremen.de

Keywords: UML/OCL, Operation Contracts, Frame Conditions, Validation and Verification

Abstract: In behavioral modeling using UML/OCL, operation contracts defined by pre- and postconditions describe
the effects on model elements (such as attributes, links, etc.) that are enforced by an operation. However,
it is usually not clearly stated which model elements can be affected and which shall not, although this in-
formation is essential in order to obtain a comprehensive description. A promising solution to this so-called
frame problem is to define additional frame conditions. However, properly defining frame conditions which
complete the model description in the intended way is a non-trivial, tedious and error-prone task. While for
UML/OCL models in general, methods for validation and verification are available, no analysis methods for
frame conditions exist so far that could support the designer in this process. In this work, we close this gap
and propose a set of primary analysis objectives (namely consistency, equivalence, and independence) that
provide substantial information about the correctness and adequateness of given frame conditions. Moreover,
we formalize these objectives as to be able to conduct the corresponding analyses in an automatic fashion
using the deductive power of established approaches for model validation and verification. Finally, we discuss
how the resulting methodology can actually be applied and demonstrate its potential for elaborated analyses
of frame conditions.

1 Introduction

The design of software as well as hardware sys-
tems has become an increasingly complex task. The
introduction of modeling languages aims to aid de-
signers in this process by providing description means
that abstract from implementation details but remain
precise enough to specifically describe the intended
system. Nowadays, the Unified Modeling Language
(UML) (Rumbaugh et al., 1999) is one of the standard
modeling languages which allows, e. g., the descrip-
tion of a design by means of class diagrams. Since
UML version 1.1, the respective models can addi-
tionally be enriched by descriptions formulated in the
Object Constraint Language (OCL) (OMG – Object
Management Group, 2014)—a declarative language
that allows to impose additional textual constraints
which further refine properties and relations between
the respective model elements (such as attributes,
links, etc.). Overall, this allows to define valid sys-
tem states by invariants and to describe the behavior

of operations by means of pre- and postconditions—
eventually yielding UML/OCL models that precisely
describe the structure and behavior of the system.

A well-known shortcoming of the resulting
declarative descriptions is that pre- and postcondi-
tions often do not make clear enough what may or
may not be modified in a transition between two sys-
tem states. In fact, they only define restrictions of
the calling and the succeeding system state, respec-
tively, but do not specify precisely what is within
the frame that might be modified by an operation—
possibly allowing for unintended behaviour. This so-
called frame problem (Borgida et al., 1995) does not
only occur in UML/OCL, but also in many other lan-
guages that use declarative descriptions like, e.g., Eif-
fel, Z, JML, VDM, or CML. Consequently, there has
been a large body of research on this problem. A com-
mon approach to cope with it and avoid unintended
behaviour is to provide additional constraints in terms
of so-called frame conditions. While each of the men-
tioned languages has built-in functionalities for this

purpose, mechanisms for specifying frame conditions
in UML/OCL have been suggested only recently (Ko-
siuczenko, 2013; Brucker et al., 2014).

However, while frame conditions are indeed able
to solve the frame problem, properly defining them is
a non-trivial process. Similarly as the definition of the
UML/OCL model itself, it requires a full understand-
ing of the considered system as well as its dependen-
cies. But while the designer is aided by several tools
and methods when defining the UML/OCL model
(see, e. g., (Gogolla et al., 2007; Gogolla et al., 2009;
Demuth and Wilke, 2009)), almost no support exists
yet for the proper definition of frame conditions. In
fact, initial approaches providing the designer with
proposals for frame conditions and/or a classification
of model elements that may be affected by an opera-
tion have recently been proposed in (Niemann et al.,
2015b). But they cannot guarantee that the derived
frame conditions are indeed correct or complete the
specification of the model in the actually intended
way. While for UML/OCL models in general, corre-
sponding methods for validation and verification are
available (see, e. g., (Anastasakis et al., 2007; Cabot
et al., 2008; Cabot et al., 2009; Brucker and Wolff,
2008; Choppy et al., 2011; Soeken et al., 2011; Hilken
et al., 2014; Przigoda et al., 2015a; Przigoda et al.,
2016b)), no dedicated analysis method for frame con-
ditions exists so far.

In this work, we close this gap by providing a
methodology for the dedicated analysis of frame con-
ditions in UML/OCL models. To this end, we first
discuss primary objectives for such an analysis—
yielding a notion of consistency, equivalence, and in-
dependence of frame conditions. Based on that, a
method is introduced afterwards, which automatically
analyzes a given set (or sets) of frame conditions with
respect to these objectives. An application of the re-
sulting methodology confirms the benefits of the pro-
posed approach. In fact, designers are aided with a
tool that allows them to efficiently check whether the
derived frame conditions are consistent with the given
UML/OCL model and complete the specification of
the model in the actually intended way.

The remainder of this paper is structured as fol-
lows: All ideas and concepts covered in this work are
illustrated by means of a simple UML/OCL model
specifying an access control system which serves as
a running example and is introduced in Section 2. Af-
terwards, Section 3 briefly reviews the frame prob-
lem as well as the different UML/OCL description
means introduced in the past to define frame condi-
tions. Based on that, primary objectives for analyzing
the respectively obtained frame conditions are intro-
duced and discussed in Section 4 and an automatic

method for conducting these analyses is described in
Section 5. Finally, an implementation of the resulting
methodology is discussed in Section 6 and the paper
is concluded in Section 7.

2 Preliminaries

In this section, we introduce basic concepts and
notions of UML/OCL by means of the running exam-
ple that will also be later on used to illustrate the basic
concepts of frame conditions as well as the proposed
analysis methodology.

The running example, a slightly modified version
of the one originally presented in (Przigoda et al.,
2015b), specifies a control system which grants ac-
cess to buildings based on magnetic cards as au-
thentication method. The cards are checked at turn-
stiles at the buildings’ entries and exits. The system
model is given in terms of a UML class diagram en-
riched with textual OCL constraints and is depicted
in Fig. 1. The pure UML part describes the struc-
ture of the system in terms of classes (e. g., Building,
MagneticCard, Turnstile), attributes and available op-
erations of each class (e. g., Building::inside or
Turnstile::goThrough()) as well as relationships
between the classes in terms of associations. For the
sake of a convenient reference, we will refer to the
union of all attributes (of all classes) together with all
relations of a model as the set of model elements.

In this particular case, there is a single relation-
ship stating that each turnstile is associated with a
unique building and that each building contains at
least two turnstiles (gates). Such multiplicity con-
straints—besides inheritance of classes which is not
present in the running example—are essentially the
only constraints that can be stated in class diagrams
using pure UML.

To enforce further constraints or properties of
a system, textual OCL constraints are applied. On
the one hand, invariants describe properties such as
the uniqueness of a magnetic card’s ID (invariant
uniqueID), the existence of at least one entry and one
exit for each building (invariants atLeastOneEntry
and atLeastOneExit) or the fact that permanently
either the green or the red light of a turnstile is
lit (invariant eitherGreenOrRedLight). On the
other hand, OCL is employed to formulate so-called
operation contracts (Meyer, 1992) which comprise
preconditions (denoted by C) that are necessary to
invoke an operation call in the first place as well
as postconditions (denoted by B) that can be taken
for granted after the execution of the operation
has been completed. For instance, the operation

2

Turnstile
greenLightOn: Boolean
redLightOn: Boolean
currentlyAuthorized: Integer
entry: Boolean
checkCard(card : MagneticCard)
goThrough()

Building
authorized: Set(Integer)
inside: Set(Integer)

MagneticCard
id: Integer

gates

2..∗

building1

inv eitherGreenOrRedLight:

greenLightOn xor redLightOn

inv uniqueID:

MagneticCard.allInstances()->isUnique(id)

context Turnstile::checkCard(card : MagneticCard):

pre: greenLightOn = false

post: greenLightOn =

building.authorized->includes(card.id)

and (entry <> building.inside->includes(card.id))

post: if (greenLightOn = true) then

currentlyAuthorized = card.id

end if

context Turnstile::goThrough():

pre : greenLightOn = true

post : if (entry = true) then

building.inside = building.inside@pre->including(currentlyAuthorized)

else

building.inside = building.inside@pre->excluding(currentlyAuthorized)

end if

post : greenLightOn = false

inv atLeastOneEntry:

gates->exists(t |

t.entry = true)

inv atLeastOneExit:

gates->exists(t |

t.entry = false)

Figure 1: Class diagram of the access control system

checkCard() can only be invoked on a turnstile
if its green light is not on (precondition). The
state of the green light after the operation has been
executed depends on whether (a) the inserted card
is in principle authorized to enter/leave the building
(building.authorized->includes(card.id))
and whether (b) the card has been inserted on
the “expected” side of the turnstile (entry <>
building.inside->includes(card.id); the sec-
ond part has been added in order to prevent multiple
persons from using the same card to enter/leave a
building one after the other). If these checks are
passed, the postconditions enforce that the green light
is lit and the ID of the inserted card is stored in the
attribute currentlyAuthorized.

All these constraints determine which instantia-
tions of the model (system states) and operation calls
(transitions) are valid and which are not:

• A system state σ is a set of objects together
with attribute values (instantiations of classes) and
interconnecting links (instantiations of associa-
tions). A state σ is termed valid if, and only if,
it satisfies all UML constraints (multiplicity and
inheritance) as well as all OCL invariants.

• A transition between two system states σ1,σ2
through an operation call ω (i.e., an operation opω

called on some object from σ1) is termed valid if,
and only if, the preconditions Cω of ω are satis-
fied in σ1 and the associated postconditions Bω

are satisfied in σ2.1

A valid transition is denoted as σ1
ω→ σ2 and is termed

valid execution scenario if, and only if, also both sys-
tem states σ1 and σ2 are valid (which is not required
in the definition of valid transitions).

1Note that the postconditions might also refer to the pre-
state of the operation (σ1) using the suffix @pre as, e.g., for
Turnstile::goThrough() in the running example.

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

B1:Building
authorized = {1}
inside = {42}

T1:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = 1
entry = true

T2:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

T1.checkCard(M1)

Figure 2: A valid execution scenario for the operation
Turnstile::checkCard(..)

Example 1. Figure 2 shows two valid system states
comprising a single building with two turnstiles. In
both states, all multiplicity constraints as well as in-
variants hold. As indicated, calling the operation
checkCard(M1) on turnstile T1 leads to the transi-
tion from the system state depicted on the top of Fig. 2
to the system state depicted on the bottom of Fig. 2.
This transition is valid since all pre- and postcondi-
tions are satisfied. Overall, Fig. 2 shows a valid exe-
cution scenario for the operation checkCard().

3 Frame Problem and Frame
Conditions

This section briefly reviews the frame problem
of behavioral models and presents the state-of-the-art
for the specification of frame conditions which are
employed to address this problem. Based on that,
the resulting validation gap and the proposed analy-
sis methodology are discussed in detail in Section 4.

In UML/OCL class diagrams, behavior is ex-
pressed in terms of operations with pre- and postcon-
ditions. At first glance, these declarative descriptions
of the operation’s behavior ideally fit to the paradigm
of designing systems without the need to provide de-
tailed implementations. However, a closer look re-

3

veals that this may allow for undesired behavior.
Example 2. Consider again the valid execution sce-
nario shown in Fig. 2. Recall that both system states
are valid, i. e. all model constraints are satisfied.
Moreover, also the transition from the system state on
the top to the one on the bottom is valid, since for the
operation checkCard(M1) (called on turnstile T1)
the corresponding preconditions (postconditions) are
satisfied in the top (bottom) system state.

More precisely, as intended by the designer, the
green light of turnstile T1 is turned on and the ID
of M1 is stored in the currentlyAuthorized at-
tribute. However, at the same time it is also possible
to turn on the green light of the other turnstile T2 or
to add an arbitrary ID (e. g., 42) to the inside at-
tribute of the building B1 as highlighted in red and
italics in Fig. 2. Although such a behavior is obvi-
ously not intended, it is completely in line with the
postconditions.

In general, the shortcoming of declarative descrip-
tions like pre- and postconditions is that they often do
not make clear enough which model elements are al-
lowed to change during an operation call. In other
words, they do not specify what is within the frame
that might be modified by an operation—the so-called
frame problem (Borgida et al., 1995). As a con-
sequence, the resulting model/description is under-
specified and additional frame conditions need to be
formulated.

To this end, note that the frame problem also arises
in the context of software verification where a sub-
stantial body of research has focused on possible so-
lutions (see, e. g., (Beckert and Schmitt, 2003)) and
corresponding approaches have been integrated into
several verification tools like Boogie (Leino, 2008)
or KeY (Ahrendt et al., 2005). Unfortunately, these
approaches are not directly applicable to UML/OCL
for various reasons, especially due to the fact that
(a) OCL principally allows one to access arbitrary
objects via allInstances(), (b) associations are
always bi-directional (in contrast to uni-directional
pointers) such that changes to references always af-
fect both ends, and (c) object creation and deletion
can be rather random as we usually do not have a pre-
cise implementation.

Nonetheless, recently there have been several ded-
icated proposals for the specification of frame condi-
tions in UML/OCL models which are inspired by the
above approaches. More precisely, the following ap-
proaches have been suggested:
• Explicit Postconditions: A straightforward ap-

proach is to explicitly specify what is not in
the frame by extending the postconditions with
constraints like modelElem = modelElem@pre.

1 context Turnstile::checkCard(card : MagneticCard):

2 ...

3 -- FrameConditions for Class Turnstile

4 post : Turnstile.allInstances()->forAll(t |

5 t.entry = t.entry@pre

6 and t.building = t.building@pre

7 and ((self <> t) implies

8 (t.greenLightOn

9 = t.greenLightOn@pre

10 and t.redLightOn

11 = t.redLightOn@pre)

12 and t.currentlyAuthorized

13 = t.currentlyAuthorized@pre)

14)

15)

16 post : Turnstile.allInstances@pre()

17 = Turnstile.allInstances()

18 -- FrameConditions for Class Building

19 post : Building.allInstances()->forAll(b |

20 b.authorized = b.authorized@pre

21 and b.inside = b.inside@pre

22)

23 post : Building.allInstances@pre()

24 = Building.allInstances()

25 -- FrameConditions for Class MagneticCard

26 post : MagneticCard.allInstances()->forAll(mc |

27 mc.id = mc.id@pre

28)

29 post : MagneticCard.allInstances@pre()

30 = MagneticCard.allInstances()

Figure 3: Frame conditions for checkCard(..) using the
explicit postconditions approach

The corresponding conditions for the operation
Turnstile::checkCard(..) from the running
example are listed in Fig. 3. This listing, but even
more the case study in (de Dios et al., 2014), illus-
trates very impressively the drawback of this ap-
proach: it is time-consuming to manually create
the constraints in the first place and to maintain
them later on in the case of design changes.

• Modifies only statements: A complementary ap-
proach has been suggested by Kosiuczenko (Ko-
siuczenko, 2006; Kosiuczenko, 2013). The idea is
to specify the set of variable model elements, i. e.,
model elements that are allowed to be changed
during an operation call, at the same level as pre-
and postconditions in terms of modifies only state-
ments2. These are of the form

modifies only: scope::modelElement.

2Modifies only statements were originally introduced as
invariability clauses by Kosiuczenko (Kosiuczenko, 2006).
A variation of this idea is to specify the set of variable model
elements within the postconditions using an OCL primitive
modifiedOnly(Set) (Brucker et al., 2014).

4

1 context Turnstile::checkCard(card : MagneticCard):

2 ...

3 -- FrameConditions for Class Turnstile

4 modifies only : self::greenLightOn

5 modifies only : self::redLightOn

6 modifies only : self::currentlyAuthorized

7

8 context Turnstile::goThrough():

9 ...

10 -- FrameConditions for Class Turnstile

11 modifies only : self::greenLightOn

12 modifies only : self::redLightOn

13 modifies only : self.building::inside

Figure 4: Frame conditions for checkCard(..) and
goThrough() using the modifies only approach

1 self.greenLightOn

2 self.building

3 self.building.authorized

4 card.id <-> MagneticCard.id

5 self.entry

6 self.building.inside

7 self.currentlyAuthorized

Figure 5: List of model elements referenced within the
postconditions of checkCard(..)

For instance, the clause modifies only:
self::greenLightOn expresses that the opera-
tion may only change the attribute greenLightOn
of the turnstile on which the operation is called
(self). Likewise, the complete frame conditions
for the operations Turnstile::checkCard(..)
and Turnstile::goThrough() are shown in
Fig. 4. Note that the scope can also be more com-
plex than just self and may contain navigation
or collections as in Line 13. In addition, it is even
possible to allow objects of a certain class to be
created or deleted during an operation call using
the construct Class::allInstances().

This approach enables the designer to precisely
define frame conditions in a much more com-
fortable, understandable, and maintainable fash-
ion. Moreover, there exists a methodology to as-
sist the designer in the initial generation of the
frame conditions (Niemann et al., 2015a) and an
approach that does most of the work automatically
and requests feedback of the designer in ambigu-
ous cases only (Niemann et al., 2015b).

• Nothing Else Changes: Another approach to the
specification of frame conditions is to not write
them down explicitly, but automatically derive
them from the postconditions using a paradigm
such as nothing else changes (Cabot, 2006; Cabot,
2007). Following this paradigm, every model
element that is referenced within the postcondi-

tions is included in the frame of what may change
(and nothing else). In the best case, this implicit
approach requires no additional efforts by the
designer. However, in general, the resulting frame
conditions are often not exactly what the designer
intended and it can be non-trivial to adjust them
manually—which would have to be done by
rewriting the postconditions or adding further
ones. For instance, Fig. 5 lists all model elements
which are referenced within the postconditions
of the operation Turnstile::checkCard(..)
from the running example. Only the very first and
very last of them, i. e., self.greenLightOn
and self.currentlyAuthorized, are
actually meant to be affected. In addi-
tion, both self.greenLightOn and also
self.redLightOn have to be variable in order
to fulfill the invariant eitherGreenOrRedLight.
To make this implicit dependency transparent to
the automatic derivation approach, the particular
invariant is added as another postcondition as
shown in Fig. 6 (Lines 3–4). To fix the values of
the other elements, postconditions as listed in the
remainder of Fig. 6 have to be added. Note that,
as it is not clear which instance of MagneticCard
is used for the card parameter, the id attributes
of all MagneticCards are marked as variable by
the approach and, hence, have to be restricted
manually. Moreover, the additional postcondi-
tions contain calls to Class.allInstances()
(Lines 9 and 16) which again would be interpreted
as referenced model elements and allow for the
creation and deletion of objects (of Class). To
avoid this, further postconditions have to be
added (Lines 13 and 19).

Overall, frame conditions are very important for
obtaining complete model descriptions and are a
key ingredient when considering the behavior of
UML/OCL models. Various approaches to their spec-
ification exist, each with complementary strengths
and weaknesses.

4 Analysis of Frame Conditions

While using frame conditions as reviewed above
indeed solves the frame problem, properly defining
them remains a non-trivial process. To this end,
the designer needs to fully understand the considered
model as well as its dependencies. While initial ap-
proaches such as the one proposed in (Niemann et al.,
2015b) may aid him or her in this process, they cannot
guarantee that the derived frame conditions are indeed
correct or complete the specification of the model in

5

1 context Turnstile::checkCard(card : MagneticCard):

2 ...

3 -- Implicit Dependency

4 post : redLightOn = not greenLightOn

5 -- FrameConditions for Class Turnstile

6 post : self.entry = self.entry@pre

7 post : self.building = self.building@pre

8 -- FrameConditions for Class Building

9 post : Building.allInstances()->forAll(b |

10 b.authorized = b.authorized@pre

11 and b.inside = b.inside@pre

12)

13 post : Building.allInstances@pre()

14 = Building.allInstances()

15 -- FrameConditions for Class MagneticCard

16 post : MagneticCard.allInstances()->forAll(mc |

17 mc.id = mc.id@pre

18)

19 post : MagneticCard.allInstances@pre()

20 = MagneticCard.allInstances()

Figure 6: Additional postconditions for checkCard(..)
required for the nothing else changes approach

the actually intended way. In this work, we propose a
methodology for the dedicated analysis of frame con-
ditions in UML/OCL models with the particular aim
to check their correctness and adequateness. Here, we
distinguish between three primary objectives:

1. Most importantly, to judge the correctness of
frame conditions it is essential to investigate their
consistency with the originally given UML/OCL
model (i.e., do the obtained frame conditions still
allow for a valid execution of an operation?).

2. On top of that, an analysis of the effect of different
sets of frame conditions, i.e., their possible equiv-
alence or non-equivalence, is of interest in order
to judge whether they indeed complete the model
in the intended way.

3. Furthermore, for several purposes (e. g., for the
sake of obtaining a small/compact set of frame
conditions or for debugging inconsistent frame
conditions) the designer may be interested in de-
pendencies between different (sub-)sets of frame
conditions, i. e., in analyzing independence of
frame conditions.

In this section, the three above-mentioned anal-
ysis objectives are illustrated in more detail and de-
scribed in a formal way in order to allow for an au-
tomatic analysis (which will be discussed in the fol-
lowing section). To this end, we study the impact of
frame conditions on the set of valid execution scenar-
ios (cf. Section 2). Recall that this set (in the follow-
ing denoted by S) is constituted by all valid transitions
σ1

ω→ σ2 between valid system states σ1,σ2. A tran-
sition is induced by an operation call ω which con-

σ1/Cω σ2/Bω

opω =?
∈ S

⋂

⋂

σ1/Cω σ2/Bω

opω = op
∈ Sop

σ1/Cω σ2/Bω

opω = op

+F ∈ SF
op

Figure 7: Execution scenarios

sists of an object oω ∈ σ1, an operation opω that is
called on it and a (possibly empty) set of parameters.
The transition σ1

ω→ σ2 is termed valid if, and only if,
the preconditions Cω of ω are satisfied in σ1 and its
postconditions Bω are satisfied in σ2 (see the top of
Fig. 7). Note that the particular operation opω can be
arbitrary for the transitions in S.

Now, to focus on individual operations, we clas-
sify the valid execution scenarios of a model by the
corresponding operation opω. This yields a partition
of the set of all valid scenarios of a model into disjoint
subsets Sop = {σ1

ω→σ2 ∈ S | opω = op} for each op-
eration op (of any class) of the model (see the center
of Fig. 7). Note, however, that only pre- and post-
conditions, but no frame conditions have been taken
into account so far. Consequently, in order to ana-
lyze a particular set of frame conditions, we further
restrict to those execution scenarios that additionally
satisfy the given frame conditions (denoted by F) and
consider the corresponding subsets SF

op ⊂ Sop (see the
bottom of Fig. 7).

Using this notation, the analysis objectives men-
tioned above can be formalized as follows:

4.1 Consistency

The major criterion for the quality and validity of
well-defined frame conditions is that they are consis-
tent with the (original) contractual specification of the
operation. More precisely, assuming that an operation
contract in terms of pre- and postconditions is free of
contradictions and in principle allows for an execu-
tion of the operation (Sop 6= /0), this property shall be
preserved when additionally enforcing the frame con-
ditions (SF

op 6= /0). In other words, frame conditions
can only be considered consistent, if they are compat-
ible with at least one execution scenario.

To strengthen the significance of this objective,
the same compatibility can be required for a set of
pivot scenarios P⊂ Sop (provided by the designer)
that characterize the intended behavior of the oper-

6

ation, i. e., we check whether P⊂ SF
op. In a similar

fashion, one may also employ scenarios characteriz-
ing unintended behavior and, thus, being incompati-
ble to well-defined frame conditions. For most signif-
icant results, the pivot scenarios shall cover the oper-
ation’s functionality as comprehensively as possible,
i. e., affect as many model elements as possible, be as
complementary as possible, and desirably also cover
corner-cases.

Example 3. Consider the operation checkCard()
from the running example (Fig. 1) together with the
frame conditions specified in Fig. 3. The operation
contract in principle allows for an execution of the op-
eration (ScheckCard() 6= /0), since the transition from
Fig. 2 (termed ω0 in the following) is a valid execu-
tion scenario as shown above. However, the frame
conditions do not allow the changes highlighted in
red: B1::inside is required to remain constant
in Line 21 of Fig. 3 and switching the lights of T2
is prohibited by Lines 8–11. Overall, this means
ω0 /∈ SF

checkCard(). Nonetheless, the frame condi-
tions themselves are clearly consistent. For instance,
when refraining from the changes highlighted in red,
i. e., the attributes of B1 and T2 do not change, the
resulting transition (shown in Fig. 8(a)) is still a valid
execution scenario and is also compatible with the
frame conditions. A meaningful set of complemen-
tary pivot scenarios would cover the cases of leaving
and entering the building (cf. Figs. 8(a) and 8(b)) as
well as checking an authorized or unauthorized card
(Fig. 8(c)).

4.2 Equivalence

Aiming at the relationship between different sets of
frame conditions, the first important objective is to
check for equivalence. More precisely, given two sets
of frame conditions F1 and F2 we are interested to
know whether they lead to the same set of valid execu-
tion scenarios (SF1

op = SF2
op) or, if not, what the reasons

for the non-equivalence are. To this end, we aim to
find scenarios that are only compatible with one set of
frame conditions, but not with the other, i. e., scenar-
ios from the set SF1

op4SF2
op = (SF1

op \SF2
op)∪ (SF2

op \SF1
op)

(symmetric difference). The check can be performed
on sets of frame conditions that are only slight vari-
ations of each other, but also if they are specified
using different approaches/formalisms. Again, pivot
scenarios can be employed to prove equivalence on
a relevant subset of scenarios or to allow for a more
detailed analysis of the differences.

Example 4. Consider again the operation
checkCard() from the running example (as

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = 1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

T1.checkCard(M1)

(a) Entering the building with an authorized card

B1:Building
authorized = {1}
inside = {1}

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = 1
entry = false

M1:MagneticCard
id = 1

B1:Building
authorized = {1}
inside = {1}

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = true

T2:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = 1
entry = false

M1:MagneticCard
id = 1

T2.checkCard(M1)

(b) Leaving the building with an authorized card

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 2

T1.checkCard(M1)

(c) Entering the building with an unauthorized card

Figure 8: Pivot scenarios for the operation checkCard()

in the previous example). Comparing the frame
conditions from Fig. 3 (specified as explicit postcon-
ditions) and Fig. 4 (specified using modifies only
statements) shows that they are indeed equivalent.
However, if the second modifies only statement
regarding self::redLightOn would have been
forgotten in the specification, an evaluation of the
pivot scenarios from Fig. 8 shows that only the
third one is still compatible, while the first two
scenarios are no longer compatible. A deeper
analyis of the second scenario reveals that only
T2::greenLightOn and T2::redLightOn
are modified which provides a hint on the missing
modifies only statement for self::redLightOn.

4.3 Independence

The second objective aiming at analyzing the rela-
tionship between different sets of frame condition ad-
dresses dependencies between individual frame con-
ditions. To this end, two sets of frame conditions
F1,F2 are combined to a set F1 ∪F2 whose frame
of change is essentially the union of the respective
frames of F1 and F2. In other words, a model ele-
ment is allowed to be modified according to F1 ∪F2

7

if, and only if, it is allowed to be modified according
to at least one set of frame conditions.

Then, several different cases are possible:

• F1 ∪F2 is consistent (SF1∪F2
op 6= /0), although nei-

ther F1 nor F2 (considered separately) are con-
sistent. This means that F1 and F2 require each
other.

• F1∪F2 and Fi are consistent (i = 1 and/or i = 2).
This means that Fi is independent from the other
set of frame conditions F3−i.

• F1 ∪F2 is not consistent (SF1∪F2
op = /0), although

F1 or F2 (considered separately) are consistent.
This means that F1 and F2 exclude each other.

• Neither F1 ∪F2, nor F1, nor F2 are consistent.
This only implies that F1 and F2 are not sufficient
to obtain complete or consistent frame conditions.

In order to obtain more detailed information about
the particular dependencies, we can go down to the
level of model elements and analyze what happens if
particular model elements are not only allowed to be
modified, but are required to actually be subject to
changes. More precisely, we consider a set of model
elements M = {m1, . . . ,mk} (all included in the frame
of F1) together with another model element m0 /∈ M
(included in the frame of F2). If all elements from
M are actually changed in an execution scenario, m0
can either (a) be forced to be modified as well, (b)
be forced to remain constant, or (c) be allowed to be-
have either way, i. e., do not have an immediate de-
pendency to the model elements in M.

Example 5. Consider the operation goThrough()
from the running example together with the
modifies only statements as listed in Fig. 4.
Set F1 to be the first modifies only statement
(self::greenLightOn) and F2 to contain the
two remaining statements (self::redLightOn
and self.building::inside). Then, F2
requires F1 and vice versa. In fact, it can be
shown that a modification of building.inside
and/or self.redLightOn implies that also
self.greenLightOn needs to be modified. On
the contrary, a change to self.greenLightOn
also requires self.redLightOn to be modified,
but not necessarily also building.inside. In
fact, if the ID stored in currentlyAuthorized
is—by incidence—logically already inside/outside
the building, a building can be entered/left with no
change to building.inside (cf. Fig. 9). This
dependency becomes apparent at the level of frame
conditions if one moves the second modifies only
statement (self::redLightOn) from F2 to F1.
Then, F2 still requires F1, but not vice versa.

B1:Building
authorized = {1}
inside = {1}

T1:Turnstile
greenLightOn = true
redLightOn = false
currentlyAuthorized = 1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

B1:Building
authorized = {1}
inside = {1}

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = 1
entry = true

T2:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = -1
entry = false

M1:MagneticCard
id = 1

T1.goThrough()

Figure 9: Entering a building without changing the attribute
building.inside

Sop

/0 6=
P
⇒!

SF
op

6= /0

P

pivot scenarios

(a) Consistency

SF1
op

P
SF2

op

SF1
op4SF2

op =
?

/0

(b) Equivalence

F1 F1∪F2 F2

↓ ↓↓

SF1
op

?
= /0 SF1∪F2

op
?
= /0 SF2

op
?
= /0

⇐⇒

(c) Independence

Figure 10: Summary of Analysis Objectives

Overall, Fig. 10 summarizes the three proposed
objectives for the analysis of frame conditions. As al-
ready illustrated by the provided examples, the man-
ual evaluation can be a very elaborate task. Conse-
quently, the objectives need to be evaluated in an auto-
matic fashion in order to be the basis of a really useful
analysis methodology. In the following, we outline
how this aim can be achieved.

8

5 Automatic Analysis of Frame
Conditions

In order to automatically analyze the objectives in-
troduced above, we propose to employ approaches for
automatic reasoning on UML/OCL models. To this
end, we first review corresponding approaches in Sec-
tion 5.1. Afterwards, we describe in Section 5.2 how
the respective objectives can be formulated on top of
these solutions.

5.1 Automatic Reasoning on UML/OCL

In the recent past, several approaches for automatic
reasoning on UML/OCL models have been proposed
which aim at the validation and verification of struc-
tural as well as behavioral aspects (see, e. g., (Anas-
tasakis et al., 2007; Cabot et al., 2008; Cabot et al.,
2009; Brucker and Wolff, 2008; Choppy et al., 2011;
Soeken et al., 2011; Hilken et al., 2014; Przigoda
et al., 2015a; Przigoda et al., 2016b)). Here, we focus
on approaches using solvers for problems of Boolean
Satisfiability (SAT) or Satisfiability Modulo Theories
(SMT), see, e. g., (Hilken et al., 2014; Przigoda et al.,
2016b).

The general idea of these approaches is sketched
by means of Fig. 11: Instead of explicitly enumer-
ating all possible system states and operation calls,
they utilize a symbolic formulation of the given
UML/OCL model which allows to consider all pos-
sible sequences of system states and operation calls at
the same time (up to a given sequence length n).3

For this purpose, the model is expressed as a
set of variables which can describe arbitrary sys-
tem states σ1, . . . ,σn, i. e., the instantiated objects,
their attributes and associations, as well as arbitrary
transitions—each of which is triggered by a (single)
operation call ω1, . . . ,ωn−1. Note that this formu-
lation in principle also covers invalid system states
as well as invalid transitions. Consequently, in or-
der to restrict to valid states only, additional con-
straints over these variables are applied to enforce the
model’s static constraints such as multiplicity con-
straints and OCL invariants. Analogously, in order
to ensure valid transitions, pre-, post-, and frame con-
ditions of each possible operation call are also trans-
lated to constraints over the state variables, but are
only enforced if the transition ωi is chosen to be the

3In addition to limiting the sequence length, all these
approaches require further problem bounds in order to limit
the search space, i. e., they need to be provided with a fixed
number or at least a range of objects that shall be instanti-
ated as well as a finite domain for all data types.

σ1 σ2 σn. . .
ω1 ω2 ωn−1

Figure 11: Symbolic formulation for automated reasoning

corresponding operation. More precisely, the follow-
ing formulation is applied:4

Formulation 1. For a sequence of system
states σ1, . . . ,σn, let Ωi be the set of all opera-
tion calls that are available within system state
σi (i = 1, . . . ,n). Then, for each of the transitions
ωi (i = 1, . . . ,n− 1) from a system state σi to the
succeeding state σi+1 it is required that∧

ω∈Ωi

(ωi = ω)⇒ (JCωK∧ JBωK∧ JFωK)) (1)

holds, where
• JCωK is a constraint enforcing the preconditions

of ω for system state σi,
• JBωK is a constraint enforcing the postconditions

of ω for system state σi+1, maybe by using σi as
well, and

• JFωK is a constraint enforcing the frame condi-
tions for the entire transition (i. e., for both system
states).
Based on this formulation, afterwards the particu-

lar validation or verification objective can be formu-
lated in terms of further specific constraints. For in-
stance, in order to check whether a certain operation
Class::op() is executable at all, a constraint stat-
ing that ω1 = o1.op()∨ . . .∨ω1 = ok.op() (where o1
to ok are the possibly instantiated objects of Class
in σ1) needs to be added. Finally, the complete prob-
lem instance is passed to a reasoning engine (solver)
which is supposed to determine a satisfying assign-
ment to all variables, i. e., an assignment that satisfies
all of the constraints. If the solver returns SAT, i. e.,
a satisfying assignment has been determined, a corre-
sponding sequence of valid system states and transi-
tions (a so-called witness of the problem instance) can
be extracted. Otherwise, if the solver returns UNSAT,
it has been proven that no satisfying assignment exists
(within the specified problem bounds).5

5.2 Employing the Analysis Objective

In the following, we utilize the reasoning scheme re-
viewed above for the analysis of frame conditions.

4Note that, in the following, an abstract description is
provided which is sufficient for the purposes of this work.
For a more detailed treatment of the respective formulation,
we refer to (Przigoda et al., 2016b).

5Note that the solver will always conclude at some point
due to the finite search space.

9

1 σ1::T1::greenLightOn = false

2 σ1::T1::redLightOn = true

3 . . .

4 σ1::T1::building = σ1::B1

5 . . .

6 σ2::T1::greenLightOn = true

7 σ2::T1::redLightOn = false

8 . . .

9 ω1 = σ1::T1.checkCard(σ1::M1)

Figure 12: Constraints for the pivot scenario from Fig. 8(a)

For this purpose, we apply as validation or verification
objective the previously proposed analysis objectives,
namely consistency, equivalence, or independence of
frame conditions. To this end, it is important to note
that we may restrict to a single transition between two
system states and also to one particular operation (as
illustrated by the dashed box in Fig. 11). While all
effects that we are interested in are still present in this
restricted scenario, the complexity of the formulation
can be reduced significantly. Taking this into account,
the considered objectives and resulting decision prob-
lems can be formulated as follows.

5.2.1 Consistency

In order to analyze the consistency for given frame
conditions F regarding an operation op, the formu-
lation simply has to ask “Does there exist a valid ex-
ecution scenario for operation op?” (SF

op 6= /0). As
validity is ensured implicitly by the general formula-
tion, this boils down to the question whether the op-
eration op is executable at all. As already discussed
above, no further constraints have to be applied to an-
swer this question besides the restriction of ω1 to the
operation under consideration.

In order to check whether a pivot scenario ωp ∈ P
given in terms of a pair of a pre- and a poststate is
valid (ωp ∈ SF

op), the specified values of attributes,
links, etc. additionally have to be enforced in the cor-
responding state.
Example 6. In order to enforce the pivot scenario
from Fig. 8(a), the constraints listed in Fig. 12 have
to be added.

If these formulations return SAT, it has been
shown that SF

op 6= /0 or ωp ∈ SF
op, respectively, and a

valid execution scenario can be extracted from the sat-
isfying assignment. If UNSAT is returned, it has been
proven that no valid execution scenario exists or that
the given scenario ωp is not valid, respectively.

Note that it is possible to let the solver check a
set P of multiple alternative pivot scenarios at the
same time. However, in case of SAT, we would not
be able to deduce that P is entirely contained in SF

op,
as the found witness only implies that P∩SF

op 6= /0.

5.2.2 Equivalence

In order to prove the equivalence of two sets of frame
conditions F1 and F2, (SF1

op = SF2
op), we ask the solver

to find a counterexample ω∈ (SF1
op \SF2

op)∪(SF2
op \SF1

op),
i. e., a scenario that is only valid when enforcing one
set of frame conditions, but not the other. Using the
standard formulation (cf. Eq. (1)), we can only en-
force either JF1,ωK or JF2,ωK at the same time. How-
ever, as the corresponding constraints are commonly
generated in an automatic fashion from the original
description of frame conditions, there is no reason
why one should not enforce, e. g., ¬JFi,ωK instead of
JFi,ωK (i = 1,2). Then, only those scenarios would be
considered “valid” by the solver which are not com-
patible with the respective frame conditions. This can
be exploited for our purpose by enforcing the con-
straint(

(JF1,ωK∧¬JF2,ωK)∨ (JF2,ωK∧¬JF1,ωK)
)

instead of JFωK in Eq. (1).
If this formulation returns UNSAT, it has been

proven that (SF1
op \SF2

op)∪ (SF2
op \SF1

op) = /0. This is log-
ically equivalent to SF1

op = SF2
op , i. e., both sets of frame

conditions are equivalent. If SAT is returned, an ex-
ecution scenario can be extracted from the satisfying
assignment which is valid for exactly one set of frame
conditions (but not for the other). This scenario can
then be analyzed further.

Note that equivalence can either be checked for
the frame conditions of a single operation or for all
operations of the considered model at once. How-
ever, in the latter case, a possible witness will reveal
only one of possibly multiple operations for which the
frame conditions are not equivalent.

5.2.3 Independence

Determining dependencies between different sets of
frame conditions F1 and F2 essentially boils down to
performing consistency checks on F1, F2 and F1∪F2.
Unfortunately, it is in general not possible to auto-
matically derive the constraint J(F1 ∪F2)ωK for the
frame conditions F1∪F2 from the constraints JF1,ωK
and JF2,ωK. In fact, only when the frame conditions
are specified using modified only statements, the ap-
proach presented in (Przigoda et al., 2016a) can be
employed to do this automatically. More precisely,
the constraints JF1,ωK and JF2,ωK are constructed us-
ing so-called variability maps which store for each
model element whether it may be modified or not.
Then, the logical disjunction of these maps precisely
gives J(F1 ∪F2)ωK. In all other cases, F1 ∪F2 is re-
quired to be specified manually which can be a highly
elaborate and non-trivial task.

10

In order to determine dependencies be-
tween changes to model elements from a set
M = {m1, . . . ,mk} and changes to a model element
m0 /∈M, the solver is asked to determine two different
execution scenarios. In these scenarios, all elements
from the set M are required to be modified using con-
straints like modelElement <> modelElement@pre
or modelElements->exists(m | m <> m@pre)
(depending on whether a single or multiple instances
of the model element are included in the frame),
while (1) the model element m0 is required to be
modified with similar constraints in one scenario and
(2) m0 is required to keep its value (m0 = m0@pre
or m0->forAll(m | m = m@pre)) in the other
scenario.

If the solver can determine a valid execution sce-
nario in both cases, there is no dependency. If the
solver can determine a valid execution scenario only
in one case, it follows that m0 is either forced to
change or to remain constant, respectively. If the
solver returns UNSAT in both cases (and the frame
conditions are consistent in principle), one can deduce
that there already has to be a dependency between the
model elements of M such that not all of them may be
changed at once.

Having these problem formulations, the objectives
proposed in the previous section can be evaluated au-
tomatically using approaches for automated reason-
ing on UML/OCL models. In the following section,
we discuss how the resulting methodology can actu-
ally be applied and, beyond that, additionally allows
for more elaborated analyses on the considered set of
frame conditions.

6 Application and Further Potential

We implemented the presented concepts and for-
mulations for the analysis of frame conditions on
top of the model verification approach presented
in (Przigoda et al., 2016b). Here, the authors propose
to translate the verification task into an instance of a
Satisfiability Modulo Theories (SMT) problem. The
corresponding symbolic formulation is created auto-
matically in terms of the SMT-LIB bit-vector logic
QF_BV. Then, the problem instance can be solved us-
ing so-called SMT solvers (e. g., Z3 (De Moura and
Bjørner, 2008)). These solvers allow for an efficient
traversal of large search spaces and, hence, are suit-
able to determine precise assignments to the sym-
bolic formulation and, by this, a sequence of tran-
sitions satisfying the considered verification objec-
tive. A big advantage of this particular approach

regarding the analysis of frame conditions is that it
natively supports the nothing else changes approach
as well as modifies only statements according to the
symbolic formulation proposed in (Przigoda et al.,
2016a). More precisely, as already indicated above,
the constraints JF K that enforce a set of frame condi-
tions within the symbolic formulation (cf. Eq. (1)) are
realized as variability maps which, for each model el-
ement, store whether it may be modified by the corre-
sponding operation call or not. By combining several
of these maps for different sets of frame conditions,
the required constraints for analyzing equivalence or
independence can be generated in a convenient, auto-
matic fashion.

We successfully employed this implementation
for the automatic analysis of the objectives introduced
above. In fact, the whole analysis presented in Ex-
amples 2 (consistency), 3 (equivalence), and 4 (inde-
pendence) could be performed automatically and the
absence or existence of corresponding execution sce-
narios could be proven formally. This is especially re-
markable for the equivalence of the frame conditions
provided in Figs. 3, 4 and 6 (cf. Example 3) as the
required proof for the absence of a counterexample is
very elaborate (if not completely infeasible) to be con-
ducted manually. Using the deductive power and effi-
ciency of established reasoning approaches certainly
helped here.

Besides the analysis presented in those examples,
the presented methodology offers a large potential for
further applications:

• The employed reasoning approach allows to use
pivot scenarios that are only partially specified,
i. e., values of model elements can be left open
and will be assigned by the solver if, and only if,
there is a possible assignment that belongs to a
valid scenario.
For instance, Figure 13 shows a pivot scenar-
ios where only a few attribute values are actu-
ally specified, while the majority is not speci-
fied (indicated by a “?”). For the corresponding
variables, the solver determines a satisfying as-
signment (shown in blue color) which extends the
partially specified scenario to a completely speci-
fied scenario that is valid and compatible with the
given frame conditions.

• Frame conditions can be evaluated for aspects like
completeness or minimality, i. e., whether they
precisely describe the intended frame of change
and whether this is done in a somehow optimal
fashion.
For instance, if one considers the frame conditions
specified in Fig. 4 and drops either of the first two

11

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = false
redLightOn = true
currentlyAuthorized = ? (17)
entry = true

T2:Turnstile
greenLightOn = ? (true)
redLightOn = ? (false)
currentlyAuthorized = ? (3)
entry = ? (false)

M1:MagneticCard
id = ? (1)

B1:Building
authorized = {1}
inside = /0

T1:Turnstile
greenLightOn = true
redLightOn = ? (false)
currentlyAuthorized = ? 1
entry = ? (true)

T2:Turnstile
greenLightOn = ? (true)
redLightOn = ? (false)
currentlyAuthorized = ? (3)
entry = ? (false)

M1:MagneticCard
id = ? (1)

T1.checkCard(M1)

Figure 13: Partially specified pivot scenario.

modifies only statements (Line 4 or 5), one ob-
tains frame conditions that are incompatible with
any scenario in which the performed checks suc-
ceed and access is granted. Dropping the third
statement (Line 6) makes it impossible to store the
card’s ID in case of success. Overall, this shows
that the initial set of frame conditions is already
minimal. A similar methodology using consis-
tency and equivalence checks can be applied on
any model.

• The methods can be used to evaluate the proposals
for frame conditions that are automatically gener-
ated from a given model using solutions as pro-
posed in (Niemann et al., 2015b).

For instance, for the operation goThrough()
the approach from (Niemann et al., 2015b)
suggests to consider the model elements
self.greenLightOn and building.inside
as affected (with high probability) and to
have a more thorough look at self.entry,
self.currentlyAuthorized, and
self.redLightOn (which also occur in the
postconditions or may have a dependency via
invariants, respectively).

Including all mentioned model elements in the
frame of change (e.g., using corresponding modi-
fies only statements) yields consistent frame con-
ditions, but allows for much more changes than
intended by the designer. Consequently, the im-
pact of the individual statements, e.g., on the va-
lidity of pivot scenarios, needs to be analyzed and
unnecessary statements have to be dropped.

Overall, the proposed method allows for an effi-
cient, automatic analysis of frame conditions with re-
spect to the three primary analysis objectives of con-
sistency, equivalence and independence, and also pro-
vides potential for a variety of further applications be-
yond that.

7 Conclusions

In this work, we considered the analysis of frame
conditions in UML/OCL models. While several pro-
posals and formalisms for specifying frame condi-
tions exist, it remains non-trivial to define them prop-
erly. In fact, no corresponding methods or tools have
been developed so far which can guarantee that the
derived frame conditions indeed complete the model
description in the intended way. We addressed this
gap by proposing a set of analysis objectives (consis-
tency, equivalence, and independence) together with a
formulation that allows for performing corresponding
analyses using automated reasoning engines. More-
over, we implemented the proposed concepts on top
of an established approach for model validation and
verification. By this, a method and also a correspond-
ing tool becomes available that allows for the dedi-
cated analysis of frame conditions with a similar per-
formance as many established approaches for the val-
idation and verification of UML/OCL models in gen-
eral. More precisely, the method benefits from the
same deductive power of automatic reasoning engines
as well as the same efficiency and scalability, but now
additionally targets frame conditions rather than pure
UML/OCL descriptions only.

Acknowledgments

This work was supported by the German Federal
Ministry of Education and Research (BMBF) within
the project SELFIE under grant no. 01IW16001
and the German Research Foundation (DFG) within
the Reinhart Koselleck project under grant no.
DR287/23-1.

REFERENCES

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese,
M., Hähnle, R., Menzel, W., Mostowski, W.,
Roth, A., Schlager, S., and Schmitt, P. H. (2005).
The KeY tool. Software and System Modeling,
4(1):32–54.

Anastasakis, K., Bordbar, B., Georg, G., and Ray,
I. (2007). UML2Alloy: A challenging model
transformation. In MoDELS, pages 436–450.
Springer.

Beckert, B. and Schmitt, P. H. (2003). Program ver-
ification using change information. In SEFM,
page 91.

12

Borgida, A., Mylopoulos, J., and Reiter, R. (1995).
On the Frame Problem in Procedure Specifica-
tions. IEEE Trans. Software Eng., pages 785–
798.

Brucker, A. D., Tuong, F., and Wolff, B. (2014).
Featherweight OCL: A Proposal for a Machine-
Checked Formal Semantics for OCL 2.5.
Archive of Formal Proofs.

Brucker, A. D. and Wolff, B. (2008). HOL-OCL:
A formal proof environment for UML/OCL. In
FASE, pages 97–100.

Cabot, J. (2006). Ambiguity issues in OCL postcon-
ditions. In OCL Workshop, pages 194–204.

Cabot, J. (2007). From Declarative to Imperative
UML/OCL Operation Specifications. In Con-
ceptual Modeling, pages 198–213.

Cabot, J., Clarisó, R., and Riera, D. (2008). Verifi-
cation of UML/OCL Class Diagrams using Con-
straint Programming. In ICST, pages 73–80.

Cabot, J., Clarisó, R., and Riera, D. (2009). Verifying
UML/OCL Operation Contracts. In Integrated
Formal Methods, pages 40–55.

Choppy, C., Klai, K., and Zidani, H. (2011). Formal
Verification of UML State Diagrams: A Petri
Net based Approach. Softw. Eng. Notes, 36(1):1–
8.

de Dios, M. A. G., Dania, C., Basin, D. A., and
Clavel, M. (2014). Model-driven development of
a secure ehealth application. In Engineering Se-
cure Future Internet Services and Systems - Cur-
rent Research, pages 97–118.

De Moura, L. and Bjørner, N. (2008). Z3: An Effi-
cient SMT Solver. In TACAS, pages 337–340.

Demuth, B. and Wilke, C. (2009). Model and Object
Verification by Using Dresden OCL. In IIT-TP,
page 81. Technical University.

Gogolla, M., Büttner, F., and Richters, M. (2007).
USE: A UML-based specification environment
for validating UML and OCL. Science of Com-
puter Programming, 69(1-3):27–34.

Gogolla, M., Kuhlmann, M., and Hamann, L. (2009).
Consistency, Independence and Consequences in
UML and OCL Models. In TAP, pages 90–104.

Hilken, F., Niemann, P., Gogolla, M., and Wille, R.
(2014). Filmstripping and unrolling: A com-
parison of verification approaches for UML and
OCL behavioral models. In TAP, pages 99–116.

Kosiuczenko, P. (2006). Specification of Invariability
in OCL. In MoDELS, pages 676–691.

Kosiuczenko, P. (2013). Specification of invariabil-
ity in OCL - Specifying invariable system parts
and views. Software and System Modeling,
12(2):415–434.

Leino, K. R. M. (2008). This is Boogie 2. Technical
report.

Meyer, B. (1992). Applying design by contract. IEEE
Computer, 25(10):40–51.

Niemann, P., Hilken, F., Gogolla, M., and Wille, R.
(2015a). Assisted Generation of Frame Condi-
tions for Formal Models. In DATE, pages 309–
312.

Niemann, P., Hilken, F., Gogolla, M., and Wille, R.
(2015b). Extracting frame conditions from oper-
ation contracts. In MoDELS, pages 266–275.

OMG – Object Management Group (2014). Ob-
ject Constraint Language. Version 2.4, February
2014.

Przigoda, N., Filho, J. G., Niemann, P., Wille, R., and
Drechsler, R. (2016a). Frame conditions in sym-
bolic representations of UML/OCL models. In
MEMOCODE, pages 65–70.

Przigoda, N., Hilken, C., Wille, R., Peleska, J., and
Drechsler, R. (2015a). Checking concurrent be-
havior in UML/OCL models. In MoDELS, pages
176–185.

Przigoda, N., Soeken, M., Wille, R., and Drechsler, R.
(2016b). Verifying the Structure and Behavior in
UML/OCL Models Using Satisfiability Solvers.
IET Cyber-Physical Systems: Theory & Appli-
cations, 1(1):49–59.

Przigoda, N., Stoppe, J., Seiter, J., Wille, R., and
Drechsler, R. (2015b). Verification-driven de-
sign across abstraction levels: A case study. In
DSD, pages 375–382. IEEE Computer Society.

Rumbaugh, J., Jacobson, I., and Booch, G., editors
(1999). The Unified Modeling Language refer-
ence manual. Addison-Wesley Longman Ltd.,
Essex, UK.

Soeken, M., Wille, R., and Drechsler, R. (2011). Ver-
ifying Dynamic Aspects of UML models. In
DATE, pages 1077–1082.

13

