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Abstract. The problem of synthesis and optimization of reversible and
quantum circuits have drawn the attention of researchers for more than
one decade. With physical technologies for realizing the quantum bits
(qubits) being announced, the problem of testing such circuits is also
becoming important. There have been several works for identifying fault
models for reversible circuits, and test generation algorithms for the
same. In this work, we aim to show that the problem of testing reversible
circuits with respect to recent fault models (like missing gate, missing
control, reduced control, etc.) is easy, and it is not really worth to spend
time and effort for generating better test patterns. To establish this point,
test generators using two extreme scenarios have been implemented: a
naive test generator that is very fast but does not guarantee optimal-
ity and a SAT-based test generator that is slow but guarantees smallest
test sets. Experiments have been carried out on reversible benchmark
circuits, which establish the fact that the size of the test patterns does
not drastically differ across the spectrum.
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1 Introduction

A circuit is said to be reversible if it provides a bijective mapping between the
input and output lines, which implies that the number of input and output
lines are equal. A reversible circuit is composed as a cascade of simple reversible
gates, without any fanout or feedback connections. Reversible circuits have been
studied extensively in the literature as an alternate computing paradigm with
some potential for low power design (see e.g. [8, 2] or, more recently, [3]) or
quantum computation [11].

Particular for the latter domain, how to implement corresponding circuits
has intensely been considered. To this end, various methods for synthesis and
optimization have been proposed (see e.g. [4, 14]). For their physical realization,
various quantum gates and methods of decomposing reversible circuits to circuits
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composed of the corresponding gate library have been reported. Here, particular
the NCV library [9] or more recently the Clifford+T [1] library received attention.
In this regard, it has to be considered that, in a quantum circuit, information
is represented in terms of qubits, which can not only be in the states 0 and 1,
but also any superposition of them. Reversible circuits however provide a good
basis for this, since every quantum gate operation is also reversible in nature.

With various technologies beginning to emerge that are able to implement
and manipulate qubits, researchers have also been looking at the various fault
effects and models that such circuits can be subjected to. In conventional gate
level circuits, where each gate is physically implemented and a signal moves
from one gate to the next, wire-level fault models like stuck-at or bridging faults
have become popular. In contrast, a quantum circuits consists of a set of qubits
whose interactions are controlled by applying a sequence of control pulses; in
other words, the same set of qubits perform the gate operations sequentially.
Therefore, wire-level fault models are not relevant to quantum circuits, and
newer fault models like missing-gate or missing-control have been proposed.

There have been several reported works that target the testing of faults
in reversible circuits – and, by this, conduct Automatic Test Pattern Genera-
tion (ATPG). Initial works [12] used the stuck-at fault models for reversible cir-
cuits; however, subsequent works relied on more realistic fault models addressing
physical realization constraints [5]. The various test pattern generation methods
that have been reported can be broadly categorized as: (a) branch-and-bound
methods [5], (b) methods based on Integer Linear Programming (ILP) [13], SAT-
based and PBO-based methods [19, 17, 18], etc. In addition, there has been sev-
eral works on design for testability (DFT), where by adding some extra gates or
controls, the faults can be tested using very few test patterns [10].

Most of these methods suffer from scalability problems as they often aim to
find the best possible, i.e. smallest possible, solution and rely on tools like ILP,
SAT, or PBO solvers that do not scale well with problem size. In this work, we
are questioning whether these efforts are really worth it. In fact, it is evident that
the problem of testing reversible circuits is much simpler as compared to that
for conventional circuits – since the problems of controllability and observability
are naturally solved by the bijective mappings for every gate operation. Because
of this, it is rather easy to implement an ATPG tool that would run very fast
and, at the same time, still would generate the desired set of test patterns which
is of moderate size.

Motivated by that, the main objectives of the proposed work is as follows:

a) Evaluate test generation methods from an effort-quality tradeoff point of
view. Specifically, how naive ATPG algorithms perform as compared to the
optimum ATPG approaches.

b) Establish the fact that it does not make much sense to spend time and effort
in minimizing the number of test patterns in reversible circuits. Because of
its inherent properties, such circuits in any case do not require too many
patterns for testing.
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Fig. 1. Example reversible circuit

The rest of the paper is organized as follows. Section II provides a brief
literature survey covering reversible circuits and gates, the fault models, and
the notable test generation works reported in the literature. Section III provides
the details for our proposed evaluation, where we discuss a naive test generation
approach that is fast but non-optimal, and a SAT-based approach that is slow but
optimal. Results of the experimental evaluation will be presented and discussed
in Section IV. Finally, Section V summarizes the work with concluding remarks
and some directions for future work.

In this section, we briefly review the basics of reversible circuits, the fault
models, and the test generation approaches that have been proposed for re-
versible circuits.

1.1 Reversible Circuits and Gates

In our work, we only consider reversible circuits that are composed of multiple-
control Toffoli (MCT) gates, also known as k-CNOT gates. A k-CNOT gate has
k + 1 inputs and outputs, with k control connections (c1, c2, . . . , ck) and one
target line t. The logic value of the target line t gets inverted only when all
the lines with control connections are at logic 1, while the logic values of all
the other lines remain unchanged. In other words, the new value of t becomes
tnew = (c1.c2 · · · ck)⊕ t.

Figure 1 shows a reversible circuit with 6 gates, comprising of one 0-CNOT
gate, one 1-CNOT gate, two 2-CNOT gate, one 3-CNOT gate and one 4-CNOT
gate.

Since the state of the target line of a k-CNOT gate is computed using the
XOR operation, it is clear that every gate is reversible; if the output vector is
applied to the output of the gate, we get back the previous input. When we
generate test vectors to detect faults in the gates, this property results in the
following unique characteristics.

a) For any state vector Si applied to the input of any gate gi, it will map to a
unique state vector in the primary outputs (PO). Any bit change(s) in Si will
result in a different unique state vector in PO. This is due to the bijective
property of reversible circuits.

b) For any state vector Si applied to the input of any gate gi, it is always possible
to get a unique state vector at the primary inputs (PI). This can be achieved
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by back-tracing from gate gi, and evaluating every gate encountered in the
reverse direction.

These characteristics help to solve the controllability and observability problems
during testing of reversible circuits, which is known to be one of the biggest
obstacles in the testing of conventional circuits.

1.2 Reversible Circuit Fault Models

It is known that reversible gates can be decomposed into quantum gates using
some quantum gate library (e.g. NCV). It has been mentioned in [11] that quan-
tum gates can be implemented using various nanotechnologies. Some of these
approaches use the quantum states of sub-atomic particles (like spin-up and
spin-down) to represent the qubits. The qubit states are modified by applying
very short-width electromagnetic pulses to implement the quantum gate func-
tions. In trapped-ion technology, for instance, individual atoms can represent the
qubits. The atomic states are altered by applying precise laser pulses of specified
frequency and duration. A sequence of such pulses has to be applied in time to
execute the gates that comprise a reversible or quantum circuit.

In some earlier works, classical stuck-at or bridging fault models at the re-
versible circuit level was considered. However, because of the dynamic nature
of evaluation of the quantum gates by application of pulses, the applicability
of such wire-oriented classical fault models is doubtful. As discussed in [5], a
suitable fault model in the quantum domain should largely be technology in-
dependent, and based on errors with regards to the application of evaluation
pulses. The following fault scenarios can result.

a) Missing Gate Fault, where due to absence of a pulse, a gate might not evaluate
at all.

b) Repeated Gate Fault, where due to multiple pulses being generated instead
of just one, a gate might be evaluated multiple (say, k) times. Since the
effect of two identical gate operations cancel each other, when k is even,
this also reduces to the Missing Gate Fault. And when k is odd, the fault is
undetectable.

c) Missing Control Fault (also known as Partial Missing Gate Fault) where a
gate gets evaluated even when some subset of the control lines is active,
because of partially misaligned or mistuned gate pulses.

d) Additional Control Fault, where some control connection gets added in addi-
tion to the already existing connections.

Earlier works have considered single missing gate fault (SMGF), and single
missing control fault (SMCF/1-PMGF) for test generation and analysis. How-
ever, SMCF can be generalized to Partial Missing Gate Fault (PMGF), where
multiple missing control faults within a gate can also occur. Inclusion of one ad-
ditional control line leads to single additional control fault (SACF). Besides that,
the considerations conducted in this work can similarity be applied to any other
fault model for reversible circuits (even those which are about to be proposed in
the future).
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1.3 Existing ATPG Solutions for Reversible Circuits

Various works on Automatic Test Pattern Generation (ATPG) for reversible cir-
cuits have been reported in the literature. The problem of test set generation and
reduction of test set has been addressed using ILP in [12, 13]. Exact approaches
that generate smallest test set has also been considered previously in [19, 18].
The authors in [7, 6] proposed approaches to derive test sets for detecting mul-
tiple missing-gate faults in reversible circuits. Besides exact approaches (using
SAT and PBO), a simulation based approach has also been considered in [17].

2 Proposed Work

In the present paper, we aim to evaluate how the effort in generating tests for
reversible circuits correlate with the quality of test vectors generated. For the
purpose of evaluation, we have considered two extremes of the spectrum with
respect to test generation in a reversible circuit:

a) A naive approach that directly generates a test for an undetected fault that
is expected to require larger number of test vectors.

b) An exact (minimal) approach that would generate the smallest possible test
set.

In the following subsections, we evaluate and compare the number of test vectors
for these two extreme scenarios.

2.1 Naive Test Pattern Generation

Consider a reversible circuit consisting of p gates {G1, G2, . . . , gp}. For every
gate Gi, i = 1 to p, we do the following:

i) Generate the fault list F consisting of all faults according to a given fault
model.

ii) Generate a set of vectors {Vi} at the input of gate Gi that can detect all
faults f ∈ F in Gi.

iii) Repeat the following steps for all vectors v ∈ {Vi}:
(a) Back propagate v to obtain the corresponding input test vector, say T .

Since every gate is reversible, for a given v, T will be unique.
(b) Carry out fault simulation with test vector T to determine the faults in

F that get detected.
(c) Remove the detected faults from F (fault dropping).

iv) Continue with Step i. The process terminates as soon as the fault list F

becomes empty.

To detect an SMCF in Gi, all control lines (except the missing one) have
to be assigned to 1, while the missing control line has to be assigned to 0. The
assignment of the remaining lines can be chosen arbitrarily. Similarly, to detect
an SMGF in Gi, all control lines have to be assigned to 1, while the remaining
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lines can be arbitrarily assigned. Again, to detect single additional control fault
(SACF) in Gi, all control lines except the additional one have to be assigned
to 1, and the additional line has to be assigned to 0. The assignment of the
remaining lines can be arbitrarily chosen.

Three alternate methods for filling up the remaining lines (i.e. the don’t care
bits) have been studied:

a) 0-filling : where a don’t care line is set to logic value 0.
b) 1-filling : where a don’t care line is set to logic value 1.
c) Random filling : where a don’t care line is randomly set to 0 or 1.

The naive test generation approach with the three alternatives for don’t care
filling have been studied for the SMGF and SMCF models. The overall runtime of
this naive approach is O(n2) (For a reversible circuit with n gate, the number of
generated test vectors encompassing all fault models is Cn, where C is a constant,
and back propagation and fault dropping for each test vector on average is n

2+n.).

2.2 Exact (Minimal) Test Pattern Generation

In this subsection we discuss an approach that uses Boolean satisfiability to
generate minimum test patterns for detecting faults in a reversible circuit. To
this end, we utilize a SAT formulation which is similar to the one proposed
in [18]. We state below the SAT formulation for SMGF and for SMCF. We
also discuss the SAT formulation of the combined SMGF+SMCF model and
the PMGF model which have not been considered earlier. By this we show that
this solution (and, hence, the considerations conducted here) can be applied to
ATPG of reversible circuits in general and does not rely on a particular fault
model.

a) SMGF: The SAT based formulation for detecting the presence of SMGF in
a circuit C is:

n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

fi(gk)

)

(1)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance fi(gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m for all missing gate, gk ∈ C.

b) SMCF: The SAT based formulation for detecting the presence of SMCF in
a circuit C is:

n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

f
′

i (gk)

)

(2)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th

circuit instance f
′

i (gk) = xi
1 ∧ xi

2 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m for all missing control

line, xi
j ∈ {xi

1, x
i
2, . . . , x

i
m}.
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c) SMGF+SMCF: We can also combine the SMGF and SMCF fault models
in a single unified formulation. The SAT formulation for the combined fault
model for a given circuit C is:

n∧

i=1

Ii ∧

SMGF
︷ ︸︸ ︷

∧

gk∈C

(
n∨

i=1

fi(gk)

)

∧

SMCF
︷ ︸︸ ︷

∧

gk∈C

(
n∨

i=1

f
′

i (gk)

)

(3)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance fi(gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m for all missing gate,

gk ∈ C and f
′

i (gk) = xi
1 ∧ xi

2 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m for all missing control line,

xi
j ∈ {xi

1, x
i
2, dots, x

i
m}.

d) PMGF: The PMGF fault model is a superset of the SMCF fault model. The
SAT based formulation for detecting PMGFs in a circuit C is:

n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

f
1

i (gk)

)

∧ . . .

(
n∨

i=1

f
n
i (gk)

)

(4)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance

f1
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m,

f2
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

k ∧ · · · ∧ xi
m,

. . . = . . . ,

fn
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m.

Here the term f1
i (gk) is identical to the term f

′

i (gk) of SMCF.

e) SMGF+PMGF: We can also combine the SMGF and PMGF fault models
in a single unified formulation. The SAT formulation for the combined fault
model for a given circuit C is:

n∧

i=1

Ii ∧

SMGF
︷ ︸︸ ︷

∧

gk∈C

(
n∨

i=1

fi(gk)

)

∧

PMGF
︷ ︸︸ ︷

∧

gk∈C

(
n∨

i=1

f
1

i (gk)

)

∧ . . .

(
n∨

i=1

f
n
i (gk)

)

(5)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance

fi(gk) = xi
1 ∧ xi

2 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m,

f1
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m,

f2
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

k ∧ · · · ∧ xi
m,

. . . = . . . ,

fn
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m.
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Fig. 2. An example circuit with multiple instances
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Fig. 3. Detecting SMGF and SMCF faults for (a) the benchmark 4gt4-v0 72 with
variables assigned before and after each gate operation, (b) input pattern detects all
possible SMGFs that may produce affected output and (c)-(f) undesired output and
corresponding specific SMCFs detected by different input patterns

The basic idea behind the generation of minimal test sets for reversible circuit
using SAT based approach is illustrated with the help of an example illustrated
in Figure 2. If the number of test vectors required required is t, then we need
to have t instances of the circuit with all the lines distinctly labeled. The figure
shows two instances C1

Impl and C2
Impl for t = 2.

For the instance C1
Impl (see Fig. 2a) the equations representing the circuit

behavior are formed as:

I1 = (x4 = x1) ∧ (x5 = x2 ⊕ x1) ∧ (x6 = x3) ∧ (x7 = x4)

∧(x8 = x5) ∧ (x9 = x6 ⊕ x4x5)

Similarly, for the instance C2
Impl shown in Fig. 2b, the equations are formed

as:

I2 = (x13 = x10) ∧ (x14 = x11 ⊕ x10) ∧ (x15 = x12)

∧(x16 = x13) ∧ (x17 = x14) ∧ (x18 = x15 ⊕ x13x14)
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The SAT formulation for SMCF as per Eqn.(2) will be

I1 ∧ I2 ∧ (x1 ∨ x10) ∧ (x4x5 ∨ x13x14) ∧ (x4x5 ∨ x13x14)

The SAT formulation for SMGF as per Eqn.(1) will be

I1 ∧ I2 ∧ (x1 ∨ x10) ∧ (x4x5 ∨ x13x14)

Given these formula as inputs, a SAT solver will provide a set of test vectors
as output.

2.3 Test Generation for Several Fault Models Using SAT Solver

If we combine the equations for SMCF and SMGF into a single set of equations,
and feed the same to a SAT solver, we shall get the test patterns required to test
both single missing-control and also single missing-gate faults. The total number
of test patterns is expected to be less in the combined approach.

We illustrate the idea with the help of a benchmark circuit, viz. 4gt4-v0 72.
Figure 3a shows the reversible logic implementation.We show the test patterns
generated under the following three fault model scenario.

a) SMGF: The SAT solver returns the following single test vector covering all
SMGFs of the circuit shown in Figure 3a:

(i) [x1, x2, x3, x4, x5] = [1, 0, 1, 1, 1], which detects SMGFs for all the gates
as shown in Figure 3b.

b) SMCF: The SAT solver returns the following 4 test vectors covering all
SMCFs of the circuit shown in Figure 3a:

(i) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 0], which detects SMCFs for the gates g1,
g2, g4, g5 and g6 as shown in Figure 3c.

(ii) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 1], which detects SMCFs for the gates g5
and g6 as shown in Figure 3d.

(iii) [x1, x2, x3, x4, x5] = [1, 0, 1, 0, 1], which detects SMCFs for the gates g4
and g6 as shown in Figure 3e.

(iv) [x1, x2, x3, x4, x5] = [0, 0, 0, 1, 1], which detects SMCFs for the gates g2,
g4 and g6 as shown in Figure 3f.

c) Combined (SMGF+SMCF): For the combined formulation, the SAT
solver returns the following 5 test vectors covering all SMGFs and SMCFs of
the circuit shown in Figure 3a:

(i) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 1], which detects SMCFs for the gates g5
and g6, and SMGFs for the gates g1, g2, g3 and g4 as shown in Figure 3d.

(ii) [x1, x2, x3, x4, x5] = [0, 0, 0, 1, 1], which detects SMCFs for the gates g2,
g4 and g6, and SMGFs for the gates g1, g3 and g5 as shown in Figure 3f.

(iii) [x1, x2, x3, x4, x5] = [1, 0, 1, 1, 1], which detects SMGFs for the gates g1,
g2, g3, g4, g5 and g6 as shown in Figure 3b.

(iv) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 0], which detects SMCFs for the gates g1,
g2, g4, g5 and g6 as shown in Figure 3c.
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(v) [x1, x2, x3, x4, x5] = [1, 0, 1, 0, 1], which detects SMCFs for the gates g4
and g6, and SMGFs for the gates g1, g2, g3 and g5 as shown in Figure 3e.

d) PMGF: The SAT solver returns 15 test vectors covering all PMGFs of the
circuit shown in Figure 3a.

e) Combined (SMGF+PMGF): For the combined formulation, the SAT
solver returns 16 test vectors covering all SMGFs and PMGFs of the cir-
cuit shown in Figure 3a.

3 Experimental evaluation

Experiments have been carried out on reversible benchmark circuits available
in [16]. The naive test generator (with fault simulator) have been implemented
in C and run on a core-i3 machine with 4GB RAM, running Ubuntu v16.04. The
test generators using SAT solvers have been implemented on the RevKit [15]
platform, using C++ and Python, and run on the same core-i3 machine.

Using these implementations, we conducted the evaluations motivated in Sec-
tion I. Table 1 and Table 2 provide a summary of some of the obtained numbers.
More precisely, Table 1 shows the results of the SAT-based ATPG implemen-
tation with combined fault models and also the naive ATPG implementation.
Results for 0-filling, 1-filling and random filling (best out of 5 runs) are also
shown. Table 2 show the results for larger benchmark circuits using the naive
ATPG tool with 0-filling, 1-filling and random-filling. Since those benchmarks
cannot be handled by the SAT-based exact approach (due to run-time limita-
tions), no corresponding numbers for this solutions are provided here.

Based on these numbers (as well as further case studies for which we cannot
present all numbers due to page limitations), the following conclusions can be
drawn:

– Exact test pattern generation using the SAT-based exact approach is time-
consuming and not scalable. While small circuits can indeed be handled
in some seconds, no results can be obtained for circuits composed of some
dozens of circuit lines and hundreds of gates. This is not very surprising
considering the exponential complexity of guaranteeing minimal test sets.

– Despite the efforts spent on guaranteeing minimality, determining the mini-
mal test set often yields only moderate improvements compared to the naive
approach. In fact, the size of the test sets obtained by the naive approach is
often only a few patterns bigger than the test sets obtained by the SAT-based
minimal approach.

These evaluations confirm that, from an effort-quality tradeoff point of view,
there is no real need to spent much effort into the optimization of test pattern
generation for reversible circuits. In fact, naive solutions as sketched in this
work already yield results which are close to the optimum. In contrast, further
improving them towards minimality often comes with an increase in the run-
time and a substantially reduced scalability so that it is often not worthwhile to
spent these efforts (for a relatively small gain).
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Table 1. Combined fault model and comparison with naive Approach

Benchmarks SAT based ATPG Naive ATPG (SMGF+SMCF)
Circuit d n c Separate SMGF+SMCF SMGF+PMGF 0-fill 1-fill r-fill T

Ftot Ptot P T P T P P P

4gt4-v0 78 13 5 1 31 8 6 0.01 16 0.04 9 7 7 0.00
4gt12-v0 86 14 5 1 34 6 5 0.01 16 0.05 10 7 8 0.00
decod24-enable 32 14 9 6 31 3 3 0.01 4 0.01 6 5 3 0.00
mod5d1 16 15 8 3 34 3 3 0.01 4 0.01 9 7 5 0.00
4 49 16 16 4 0 40 8 5 0.01 8 0.02 8 5 7 0.00
miller 5 16 8 5 40 5 5 0.02 6 0.02 8 7 7 0.00
3 17 6 17 7 4 37 4 3 0.02 4 0.01 7 5 6 0.00
mini-alu 84 20 10 6 47 3 3 0.03 4 0.01 9 6 8 0.00
rd53 131 28 7 2 52 15 10 0.04 16 0.08 14 13 14 0.00
rd84 142 28 15 7 77 7 5 0.09 5 0.04 29 10 9 0.00
sym6 63 29 14 8 72 5 5 0.05 6 0.04 17 11 9 0.00
4 49 7 42 15 11 103 5 5 0.06 6 0.06 14 11 8 0.00
ham15 108 70 15 0 195 17 11 0.17 16 0.36 12 12 11 0.00
hwb5 13 88 28 23 219 5 5 0.30 6 0.20 29 17 10 0.00
ham15 109 109 15 0 235 11 7 0.23 16 0.39 15 10 9 0.00
ham15 107 132 15 0 484 20 16 78.59 - - 37 24 23 0.04
hwb6 14 159 46 40 400 6 5 0.51 6 0.57 51 30 13 0.06
ex5p 647 206 198 1551 - - - 172 117 17 3.55

d: number of gates, n: number of lines, c: number of constant lines
Ftot: total number of faults, T : Time in seconds
Ptot: total number of test patterns (when run separately)
P : number of test patterns, r: random filling

4 Conclusion

In this paper we have carried out an evaluation of the various alternate test
generation techniques for reversible circuits, and how it impacts the quality of
the test. To observe the entire spectrum of variability, we have implemented
test generators touching the two extremes. Firstly, a naive test generator has
been implemented that is very fast and uses a greedy approach to generate
test patterns. Secondly, a SAT based test generator has been implemented that
generates the smallest test set but requires large run times. The variation in the
number of test patterns, in spite of a very large variation in run times, is not
significantly large. This summarizes the main finding of the work, namely, test
generation for reversible circuit is easy and naive solutions are often sufficient.
Vice versa, it is not worthwhile to spent much efforts on the development of
more sophisticated solutions since the possible gain will be moderate.

Although SAT-based exact approach produces smaller number of test pat-
terns compared to naive approach as shown in Fig. 4a, it takes longer duration
even for circuits with small number of gates, as shown in Fig. 4b. Here the com-
parison is made for the benchmarks with upto 109 gates reported in Table 1.
Fig. 4c shows 0-filling produces larger number of test patterns than 1-filling and
r-filling as presented for larger benchmarks in Table 2.
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Table 2. ATPG test patterns for larger benchmarks

Benchmarks Faults ATPG

Circuit d n c F1 F2 0-fill 1-fill r-fill Time(s)
9symml 195 129 10 1 474 129 222 193 194 0.2
add6 196 229 19 7 853 229 210 174 141 0.68
alu2 199 157 16 6 567 157 211 198 202 0.33
alu4 201 1063 22 8 5535 1063 1735 1549 1573 120.77
bw 291 307 87 82 432 307 49 37 13 0.26
clip 206 174 14 5 653 174 175 163 160 0.34
dist 223 185 13 5 727 185 155 144 147 0.32
e64-bdd 295 387 195 130 454 387 135 129 14 0.9
f51m 233 663 22 8 3296 663 1252 1091 1127 33.67
frg1 234 212 31 3 1343 212 928 447 697 2.78
ham15 298 153 45 30 157 153 33 26 8 0.04
hwb7 302 281 73 66 426 281 76 40 14 0.27
hwb7 62 331 7 7 582 331 66 52 47 0.29
hwb8 116 749 8 8 1317 749 126 85 77 2.62
hwb8 303 449 112 104 686 449 126 53 14 1.05
hwb9 123 1959 9 9 3596 1959 275 168 150 38.59
hwb9 304 699 170 161 1068 699 184 73 17 3.55
in0 235 338 26 11 2107 338 423 406 408 3.37
in2 236 405 29 10 2475 405 506 454 451 5.26
life 238 107 10 1 387 107 138 136 129 0.1
max46 240 107 10 1 371 107 189 172 171 0.13
mlp4 245 131 16 8 480 131 138 92 95 0.15
plus127mod8192 162 910 13 13 5704 910 1072 105 311 27.61
plus63mod8192 164 492 13 13 3064 492 765 121 286 6.65
rd84 253 111 12 4 315 111 116 116 107 0.09
sym10 262 194 11 1 818 194 307 290 313 0.71
sym9 148 210 10 1 756 210 210 10 29 0.17
sym9 193 129 10 1 474 129 222 193 195 0.21
table3 264 1012 28 14 8002 1012 978 912 946 53.52
tial 265 1041 22 8 5517 1041 1767 1625 1614 119.85
urf1 150 1517 9 9 6077 1517 259 149 148 20.56
urf1 151 1487 9 9 5878 1487 256 149 144 19.68

d: number of gates, n: number of lines, c: number of constant lines

F1: number of SMCFs, F2: number of SMGFs
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Fig. 4. Evaluation of approaches (a) comparison of number of test patterns generated
using SAT-based and naive approaches for smaller size benchmarks from Table 1, (b)
time taken by various SAT-based approaches and corresponding test pattern generated
for small size benchmark from Table 1 compared to naive approach and (c) number of
test patterns generated by different naive approaches for the benchmarks from Table 2


