
Advanced Load Balancing
for SPH Simulations on Multi-GPU Architectures

Kevin Verma∗† Kamil Szewc∗ Robert Wille†
∗ESS Engineering Software Steyr GmbH, Austria

†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
Email: {kevin.verma, kamil.szewc}@essteyr.com robert.wille@jku.at

Abstract—Smoothed Particle Hydrodynamics (SPH) is a nu-
merical method for fluid flow modeling, in which the fluid is
discretized by a set of particles. SPH allows to model complex
scenarios, which are difficult or costly to measure in the real
world. This method has several advantages compared to other
approaches, but suffers from a huge numerical complexity. In
order to simulate real life phenomena, up to several hundred
millions of particles have to be considered. Hence, HPC methods
need to be leveraged to make SPH applicable for industrial appli-
cations. Distributing the respective computations among different
GPUs to exploit massive parallelism is thereby particularly suited.
However, certain characteristics of SPH make it a non-trivial task
to properly distribute the respective workload. In this work, we
present a load balancing method for a CUDA-based industrial
SPH implementation on multi-GPU architectures. To that end,
dedicated memory handling schemes are introduced, which
reduce the synchronization overhead. Experimental evaluations
confirm the scalability and efficiency of the proposed methods.

I. INTRODUCTION

Efficient simulation of fluid-flows is an important engineer-
ing challenge today. Corresponding solutions find applications
in areas such as geo-engineering, chemical processing, or
the automotive industry (for an overview see [1]). In the
latter, a proper modeling of such flows is relevant e.g. when
designing new car bodies for water management (rain, painting
process), developing new tire treads (better friction, avoiding
aquaplaning), designing new engine parts, and many other (for
an overview of applications in the automotive industry see [2]).
The main advantage of numerical simulations is the capability
to model complex scenarios which are difficult or costly to
measure in the real world.

In general, there exist two main approaches for fluid mod-
eling:
• The most common approach is based on grid-based meth-

ods, as sketched in Fig. 1a. Here, the fluid is composed
of fluid cells, aligned in a regular grid, each of which
contains some given volume of fluid. The grid is fixed in
space and usually does not move or deform with time.
The material or fluid moves across these fixed grid cells,
while the fluid itself is constrained to stay with the grid.

• The second approach to model fluids relies on particle-
based methods. The general scheme of these methods is
sketched in Fig. 1b. The fluid is discretized by sample
points, which are identified as particles. These particles
completely define the fluid, which means that the particles
move with the fluid. Some of the most common meth-
ods belonging to the particle-based method family are:
Moving Particle Semi-implicit (MPS, [3]), Finite Volume
Particle Method (FVPM, [4]) or, Smoothed Particle Hy-
drodynamics (SPH, [5]). All of them are relatively new
and all these methods are closely related.

(a) Grid-based fluid structure.

(b) Particle-based fluid structure.

Fig. 1: Basic approaches for fluid modeling.

In general, particle-based methods have several advantages
over grid-based methods, for details see [6].

In this work, we focus on the SPH technique which received
significant interest because the mesh generation can be omitted
and the method is suitable to model flows involving complex
physics. Because of this, corresponding SPH simulations also
got established in industrial practice (see e.g. [7]).

But despite these benefits, SPH suffers from a huge nu-
merical complexity. In order to simulate real life phenomena
in appropriate resolution, up to several hundred millions of
particles are necessary. Thus, simulations of short periods
of physical time frequently require large execution times.
Because of this, High Performance Computing (HPC) methods
need to be leveraged to make SPH techniques applicable for
more practically relevant and industrial applications. In this
context, the use of methods for General Purpose Computation
on Graphics Processing Units (GPGPU) is particularly suited
since the discrete particle formulation of SPH allows for
independent computations, which can be distributed among
different GPUs and executed in a massively parallel fashion.

However, certain characteristics of the SPH method make
it a non-trivial task to properly split the workload in a way
which allows each GPU to complete the respectively assigned
computations in the same time. In fact, most approaches pro-
posed thus far suffer from overheads introduced by multi-GPU
architectures. Similar approaches are introduced for related
methods, which however can not be employed to the SPH
method due to different characteristics in terms of particle
motion (this is discussed in more detail later in Section III).

In this work, we propose an advanced load balancing
scheme for SPH simulations which addresses these shortcom-
ings. The proposed scheme frequently conducts a so-called
domain decomposition correction, which adjusts the current
distribution of the workloads among the GPUs. Since this fre-
quently requires re-allocations of memory, dedicated memory
handling schemes are introduced. Experimental evaluations
with an industrial SPH solver confirm that sophisticated mem-
ory handling allows to reduce the synchronization overhead
and, therefore, results in an increased performance.

The remainder of this paper is structured as follows: The
next section provides the background on SPH simulations as
well as their execution on multi-GPU architectures. After-
wards, Section III discusses the resulting problems which are
addressed by the proposed advanced load balancing scheme
described in Section IV. Finally, Section V summarizes the
obtained results from our experimental evaluations before the
paper is concluded in Section VI.

II. BACKGROUND

In order to keep this work self-contained, this section
briefly reviews the basics on the SPH technique as well as
the state-of-the-art on multi-GPU architectures used for this
purpose.

A. Smoothed Particle Hydrodynamics
Smoothed Particle Hydrodynamics (SPH) is a

particle-based, fully Lagrangian method for fluid-flow
modelling and simulation. This method was independently
proposed by Gingold and Monaghan [5] to simulate
astrophysical phenomena at the hydrodynamic level
(compressible flow). Nowadays, the SPH approach
is increasingly used for simulating hydro-engineering
applications – involving free-surface flows where the natural
treatment of evolving interfaces makes it an enticing approach.

The main ideas of the SPH method rely on the following
basis: Let J be the set of all considered discrete particles.
Then, a scalar quantity A is interpolated at position r by a
weighted sum of contributions from J , i.e.

〈A(r)〉 =
∑

j∈J
AjVjW (r − rj , 2h), (1)

where Vj is the volume of the respective particle j, rj
is the position of this particle, and Aj the field quantity
at position rj . W is a smoothing kernel with the so-called
smoothing length 2h as a width – defining that only particles
within a distance shorter than 2h will interact with a particle j.
This kernel function W is a central part of SPH simulations
and the appropriate choice of a smoothing kernel for a specific
problem is of great importance. At the same time, a kernel
must satisfy three conditions/properties, namely

1) the normalization condition∫
r

W (r − rj , 2h)dr = 1 (2)

stating that the integral over its full domain is unity,
2) the Delta function property

lim
h→0

W (r − rj , 2h) = δ(r − rj) (3)

stating that, if the smoothing length 2h approaches zero,
a delta distribution is applied (with δ being the Dirac
delta function), and

Fig. 2: Illustration of a 2D domain for a particle j ∈ J .

3) the compact support condition

W = 0 when |r − rj | > 2h (4)

ensuring that only particles within the smoothing length
2h are considered.

Example 1. Fig. 2 illustrates a 2D domain with a kernel
function W and smoothing length 2h for a particle j ∈ J .

For a more detailed treatment of SPH, we refer to [8], [9].

B. SPH Simulations on Multi-GPU Architectures

The discrete particle formulation of physical quantities
makes SPH suitable for parallel architectures. In particular, the
sheer number of independent per-particle computations makes
SPH a promising method for the General Purpose Compu-
tations on Graphics Processing Units (GPGPU) technology.
Corresponding solutions utilizing the computational power of
GPUs have initially been introduced by Kolb and Cuntz [10]
as well as Harada et al. [11], where the Open Graphics
Library (OpenGL) was employed. Later, SPH implementations
based on the Compute Unified Device Architecture (CUDA)
have been developed [12].

However, in order to simulate huge domains involving mil-
lions of particles, a single GPU device is usually not sufficient
anymore. In these cases, the underlying SPH implementation
needs to be distributed over several devices – yielding a
multi-GPU architecture as originally presented by Dominguez
et al. [13]. Here, CUDA and Message Passing Interfaces
(MPIs) have been employed to parallelize the SPH simulation
with up to 128 GPUs where each GPU covered the simulation
of up to 8 million particles. Besides that, a similar architecture
has also been utilized in the solution proposed in [14].

The performance of both solutions strongly depends thereby
on the fact that, in any SPH simulation, neighboring particles
need to be frequently accessed during one computational
iteration. More precisely, as defined by Eq. 1, the scalar
quantity A is interpolated by a weighted function of all
particles which are located within the influence radius 2h
(defined by the smoothing length, as reviewed in Section II-A).
Applying a straight-forward nearest neighbor search algorithm,
this requires the iteration through the entire fluid domain
– yielding a complexity of O(|J |2). Although polynomial,
the sheer number |J | of particles makes this straight-forward
approach infeasible for many practically relevant problems
(e.g. in applications such as simulations of wave interactions
with an off-shore oil rig platform, more than one billion
particles have to be considered [7]).

Fig. 3: Virtual search grid.

Hence, corresponding optimizations have been introduced
which rely on a so-called virtual search grid as illustrated in
Fig. 3. Here, the entire fluid domain is divided into a search
grid where each cell has the size of the influence radius 2h. By
this, it can be guaranteed that, for a considered particle j ∈ J
(exemplarily denoted by a red dot in Fig. 3), all neighboring
particles must be located within the adjacent cells. This way,
instead of iterating through the entire fluid domain, only a
subset of it (highlighted grey in Fig. 3) has to be considered
in order to determine the neighboring particles (denoted by
orange dots in Fig. 3).

This search grid not only allows for a fast nearest neighbor
search, but also provides a scheme how to divide the entire
fluid domain into sub-domains. For example, a spatial sub-
division based on the grid cells could be applied – leaving
every sub-domain with an equal amount of cells of the grid.
These sub-domains can then be distributed to the correspond-
ing devices on a multi-GPU architecture. However, such a
primitive approach will not result in an optimal balance of
the workload. In fact, there are a few characteristics of SPH
simulations which make determining an optimal subdivision
of the domain and, hence, load balancing a non-trivial task.
This provides the motivation of this work which is discussed
in more detail next.

III. MOTIVATION

In general, the goal for every application executed on a
multi-GPU architecture is to split the workload in a way
which allows each GPU to complete the respectively assigned
computations in the same amount of time. Since such a
behavior is usually difficult to guarantee, the alternate goal
is to minimize the gap between the longest and shortest time
consumption.

In the case of SPH simulations, the key to achieve optimal
performance is to determine the optimal positions for a sub-
divsion of the domain. However, for that purpose, important
characteristics of SPH need to be considered.

First, although the partitioning of the entire fluid domain
into sub-domains (defined by the grid cells) provides a scheme
how to distribute the corresponding workload over the respec-
tive GPU devices, it is not always useful to apply a spatial
subdivision based on the geometry of the domain only. In fact,
particles usually do not equally distribute along the domain –
making a subdivision based on the geometry unbalanced.

Example 2. Consider a scenario, where a dam break has
to be simulated using SPH techniques. At time step t = 0,

Fig. 4: Virtual search grid distributed to three GPUs.

all particles are clustered at one side of the domain, namely
the water reservoir. At the end of the simulation (after the
dam broke), most particles are likely been distributed equally
among the domain.

Therefore, a subdivision according to the distribution of
particles is essential for most applications.

Besides that, the concept of a virtual search grid for fast
nearest neighbor search also needs additional consideration
on a multi-GPU architecture. As previously discussed, the
computation of a field quantity Aj at a position r requires
frequent access to all particles within 2h. However, on a
multi-GPU architecture, the domain needs to be split into sub-
domains – each of which is assigned to one GPU device.
This yields an architecture where each sub-domain has two
neighboring sub-domains, except for those at the perimeter of
the domain, which have only one neighbor.

Example 3. Consider a particle j ∈ J at the perimeter of
one centered sub-domain (exemplarily denoted by a red dot
in Fig. 4) as well as the distribution of the respective sub-
domains to three GPUs (as denoted at the bottom of Fig. 4).
The neighbors of j within 2h are not only located in cells of
its own sub-domain (covered by GPU 1 in Fig. 4), but also
in cells of the neighboring sub-domain (covered by GPU 0).
Since the sub-domains are distributed to different GPUs, the
neighbors of j are located in a distinct device and, hence, a
different memory pool. This hinders fast neighbor access.

In order to accelerate neighbor access, each GPU should
therefore hold a copy of the data located at the edge of its
adjacent sub-domains, i.e. all cells within 2h at the perimeter
of a sub-domain (highlighted in colors in Fig. 4). These edges
are also referred to as halo of a sub-domain. An example
of a domain distribution with halo exchange is illustrated in
Fig. 5: The domain is split into three sub-domains and the
colored edges represent the halos of the sub-domains. Each
sub-domain holds a copy of the edge of its adjacent sub-
domain(s), which allows for fast neighbor access.

Finally, the inherent moving nature of the particles means
that particles do not stay within “their” respective grid, but
freely move in space – requiring to frequently update the
corresponding workload of the respective GPUs. Overall,
these characteristics make load balancing a complex task and
determining a sophisticated load balancing strategy is the key
to achieve optimal performance.

Fig. 5: Halo exchange between three sub-domains.

Unfortunately, rather few works exist on this subject thus
far. One solution has been presented in the work of [14].
Here, a simple a posteriori load balancing system is intro-
duced, which shows high robustness in the performed test
cases. However, the proposed load balancing introduces an
overhead, mainly caused by moving edges of one GPU to
another. In the work of [13] a similar method is presented –
yielding the same disadvantages. Besides that, load balancing
for particle-based simulations on multi-GPU architectures has
also been considered for classical Molecular Dynamics (MD,
see e.g. [15], [16]). But MD differs from SPH simulations
and usually deals with smaller motions and a wider variety
of particles – making the load balancing tasks significantly
different. Hence, how to employ an efficient distribution of the
workload of SPH simulations to the respective GPUs remains
an open question.

IV. ADVANCED LOAD BALANCING

In this work, we propose an approach for an advanced
distribution of the SPH simulation workload to GPU archi-
tectures. To this end, we first outline the general idea of
our solution. Afterwards, important implementation details are
covered, which need to be considered in order to minimize the
overhead.

A. General Idea

In any SPH implementation, many unpredictable factors,
such as the fluid movement, may influence the computation
time during run-time. Hence, an advanced a posteriori load
balancing methodology needs to be chosen. In our solution,
first an initial decomposition of the domain is calculated.
More precisely, the initial number of particles per GPU is
approximated by

Ni =
Nt

Ng
, (5)

where Ni is the initial amount of particles per GPU, Nt the
total amount of particles, and Ng the number of GPUs.

This distribution is used to compute the first time steps,
while recording the amount of time spent by each GPU.
After an update interval of n time steps, the algorithm iter-
ates through the time data collected from each GPU. Then,
the relative runtime difference dr between two neighboring
devices gi and gi+1 is determined by

dr =
ri+1 − ri

ri
, (6)

Fig. 6: Unbalanced state in a system composed of two GPUs.

where dr is the relative runtime difference, ri the runtime
of gi, and ri+1 the runtime of gi+1.

If dr is larger than a threshold factor p, a domain decom-
position correction from gi to gi + 1 is applied, i.e. one edge
(as introduced in Section III) is moved from the GPU with the
longer execution time to the GPU with the shorter one. If dr
is smaller than −p, a domain decomposition correction from
gi +1 to gi is applied. This process of corrections is repeated
every n further time steps again. Algorithm 1 explains this
procedure in pseudocode.

Algorithm 1 Balance

n← update interval
p← threshold
K ← time steps
Ng ← number of GPUs
for k ∈ {1, ...,K} do
Calculate Time Step
if k mod n = 0 then

for each GPUgi ∈ {g0, . . . , gNg} do
if RuntimeDifference(gi, gi+1) > p then
Decomposition Correction(gi, gi+1)

end if
if RuntimeDifference(gi, gi+1) < −p then
Decomposition Correction(gi+1, gi)

end if
end for

end if
Sort Particles

end for

Example 4. Consider the simplest case for a domain de-
composition correction: a multi-GPU architecture composed
of two GPUs as illustrated in Fig. 6. GPU gi required only 8
seconds to compute n time steps, while GPU gi+1 required 10
seconds. Hence, a relative time difference of dr = 0.25 results
– yielding an unbalanced state. In order to balance that state,
one edge of the virtual search grid is shifted from gi+1 to gi.

The basic concept of this load balancing strategy is rather
straight-forward. However, taking a more detailed look into
GPU and CUDA architectures, applying such a domain de-
composition correction with a minimum amount of overhead
is a non-trivial task. In fact, in our implementation each GPU
internally stores its particle data consecutively in an array.
Within that array, the particle data are kept sorted, in order

(a) Re-allocation of memory during a decomposition correction.

(b) Resulting synchronization step.

Fig. 7: Overhead caused by re-allocations.

maintain cell positions of the search grid. Hence, particles at
the perimeter of the domain are also kept at the perimeter
of the array. This requires re-allocations of the respective
array memories when a domain decomposition correction (and,
hence, a re-balancing) and an exchange of halos is conducted
– accomplished by a cudaMalloc-call in the considered CUDA
architecture. Unfortunately, this is a synchronous call which
causes all GPUs to synchronize. Overall, this results in a major
loss in performance.

Example 5. Consider again a multi-GPU architecture com-
posed of two GPUs and assume that data is currently allocated
in arrays as illustrated in Fig. 7a. Now, the particles of the left
edge of the sub-domain covered by gi+1 (stored in the front
of the array of gi+1) should be shifted to the right edge of the
sub-domain covered by gi. This requires the allocation of new
memory to the array storing the particles of gi.

This, however, significantly affects the execution of the
respective computations as illustrated in Fig. 7b. Here, kernel
functions (denoted by Ki0 , Ki1 , ...) are executed in parallel
among both GPUs, until cudaMalloc() causes synchronization.
Then, all computations have to pause in order to synchronize.
Assuming larger multi-GPU systems composed of hundreds
of GPUs which frequently need to allocate new memory, this
easily accumulates to a severe number of synchronization steps
in which all GPUs (even if they are not affected) have to pause
– a significant loss in performance.

Obviously, such a loss in performance should be avoided.
For that purpose, two different approaches are proposed which
are introduced and discussed in the next sections.

B. Using Internal Cache
A first solution employs an additional local cache to shift

data (as illustrated in Fig. 8). Here, cudaMemcpyAsync from
the CUDA API is used, which allows for an efficient asyn-
chronous copy of data from the local data array to a local
cache. After copying, the pointers between the array and the
cache are swapped – leaving the local array with the reduced
data and the cache with the original objects. During that

Fig. 8: Avoiding synchronization using internal cache.

process, the capacity of both, the data array and cache are
only reduced when the capacity is significantly larger than the
used memory. Instead, only the internal number of elements
is modified without actually freeing any memory. The benefit
of that method is the minimized synchronization caused by
allocating new memory, since cudaMalloc only needs to be
called when the amount of data to be processed in one GPU is
larger than the initial amount Ni of particles covered per GPU.
This drastic reduction of synchronization efforts results in a
noticeably improved performance. In case new data needs to
be shifted back to the device, the local data array is examined
if the new data fits to the already allocated data chunk. If that
check fails, new memory needs to be allocated.

Example 6. Consider again the scenario discussed in Ex-
ample 5. Employing the cache implementation as described
above, the capacity of gi+1 array is not reduced. Instead,
data is just shifted by one block. Assuming that one edge of
gi needs to be shifted back in the next domain decomposition
correction, e.g. due to unpredictable fluid structure behavior,
memory allocation can be avoided since data has not been
freed during the previous domain decomposition correction.

The obvious drawback of this method is the demand for
copying pointers and the increase of memory consumption.
However, as previously discussed, particle data always needs
to be kept sorted. For that purpose, a radix sort is employed,
which is one of the fastest sorting algorithms on GPUs. Since
radix sort is typically an out-of-place sorting algorithm, a
temporary storage buffer is required. Therefore, the memory
consumption of radix sort is O(2N + P), where N is the
length of the input data to be sorted and P the number of
streaming multiprocessors on the device. For that purpose,
the cache can be employed as a temporary storage, which
leaves the high watermark memory consumption unchanged
by radix sort. However, in case memory requirement is the
bottleneck for a given computation, a second solution with
reduced memory consumption is proposed next.

C. Using Pointers
The main drawback of the cache method is the increased

memory consumption. To avoid that memory overhead, an
alternative method is proposed in which data is not shifted
using an additional cache, but by shifting pointers to the
beginning of the data block (as illustrated in Fig. 9). For
example, in case the first two elements should be deleted, the
pointer is incremented accordingly. Of course, data is not only
removed from the front but also from the back, when data
needs to be transferred from GPUi to GPUi+1. In that case,
the pointer to end is moved accordingly.

Similar to the cache implementation, no memory needs to
be freed – leaving the capacity of the array unchanged and

Fig. 9: Avoiding synchronization using pointers.

Fig. 10: Sketch of the considered scenario (dam break).

avoiding frequent memory allocations. However, in contrast
to the cache implementation, free memory blocks can occur
in the front or in the back of the array when the pointer-
solution is applied. Because of this, there are frequent checks
for unoccupied space in the front and in the back of the array
which can be used to accordingly add data. Only when there
is not enough free space available, i.e. the amount of needed
memory is larger than the original setup Ni, new memory is
allocated.

Clearly, the advantage of this method is that internal
cache can be omitted, which results in a decreased memory
consumption. However, the inherent out-of-place behavior of
radix sort occupies a temporary storage buffer for sorting.
Therefore, the high watermark memory consumption during
sorting is defined as O(2N + P). Efficient in-place sorting
methodologies on GPUs do not provide comparable time
complexity. For example, comparing the so-called bitonic sort
for GPUs as initially proposed by Peters et al. [17]. Bitonic sort
is an efficient comparison-based in-place sorting algorithm for
CUDA. It offers a time complexity of O(N log2N) compared
to a complexity of O(N logN) for radix sort. Hence, the
decreased memory consumption is traded off by a weaker
sorting performance.

V. EXPERIMENTAL EVALUATIONS

In order to evaluate the performance of the proposed load
balancing approaches for the SPH technique, we have imple-
mented the methods described above in C++ for an industrial
SPH solver and conducted experiments whose results are
summarized in this section. As a test case, we considered a
dam break scenario with a rotating obstacle in the middle as
sketched in Fig. 10. To evaluate the scalability of the method,
this scenario has been considered using 385k, 2.38mio, and
5.26mio particles. All evaluations have been conducted on
GPU systems composed of Nvidia GTX 1080 Ti, which
contain 3584 CUDA cores with a memory bandwidth of 484
GB/s. The source code was compiled on Ubuntu v16.04 using
gcc v4.5.3 and the CUDA Toolkit v8.0.

We are comparing both, the cache and the pointer imple-
mentation (as introduced in Section IV-B and Section IV-C,
respectively) with respect to speedup and efficiency.

The speedup is defined as

S =
Ts(n)

Tp(n, p)
(7)

TABLE I: Results obtained by the experimental evaluation.
(a) Using the cache implementation from Section IV-B

Speedup Efficiency
GPUs 130k 2,40m 5.26m 130k 2,40m 5.26m
1 GPU 1 1 1 1 1 1
2 GPU 1.56 1.64 1.68 0.78 0.82 0.84
3 GPU 2.05 2.25 2.31 0.68 0.75 0.77

(b) Using the pointer implementation from Section IV-C

Speedup Efficiency
GPUs 130k 2,40m 5.26m 130k 2,40m 5.26m
1 GPU 1 1 1 1 1 1
2 GPU 1.61 1.70 1.79 0.81 0.85 0.90
3 GPU 2.14 2.36 2.45 0.71 0.79 0.82

where S is the speedup, n the size of the input (amount of
particles in the system), TS the execution time of the single
GPU implementation, Tp the execution time of the multi-
GPU implementation, and p the number of used GPUs. The
efficiency is defined as

E =
S

p
(8)

where E is the efficiency, S the speedup, and p the number
of GPUs.

Table Ia shows the speedup and efficiency using the cache
implementation. The values show that with larger number of
particles, the achieved speedup increases. This is inherently
the case, since the more particles that need to be computed
the smaller the proportion spent on communication between
GPUs.

Table Ib shows the speedup and efficiency using the pointers
implementation. The values show that in the present test
example, the pointer implementation is superior in all setups
compared to the cache implementation. This is mainly because
the dam break is an asymmetrical problem, where particles
are clustered at one side in the beginning of the process and
equally distributed in the end. Therefore, frequent communica-
tion between GPUs is necessary, since particles move quickly
between the respective sub-domains. This is suitable for the
pointer implementation which needs less overhead by copying
pointers to local cache and, hence, results in an improved
speedup.

The presented results also show that the methods proposed
in this work, scale well for smaller amount of particles. For
example, an efficiency of 0.79 is achieved when using 2,4mio
particles on 3 GPUs, but also for a tiny number of particles
of 130k on 3 GPUs, an efficiency of 0.71 is achieved.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a load balanced multi-GPU
CUDA-based implementation of an industrial SPH solver. To
this end, we employed a sophisticated domain decomposition
strategy and proposed a load balancing methodology, which
also scales well for smaller amount of particles. Important
implementation details based on the CUDA architecture are
provided, which reduce the synchronization overhead and,
therefore, result in an increased efficiency. Future work in-
cludes the implementation of a multi-node solution, hence,
the introduction of an additional level of parallelization, and
further optimization on the domain decomposition strategy to
achieve further speedups.

ACKNOWLEDGMENT

This work has been supported by the Austrian Research
Promotion Agency (FFG) within the project Industrienahe
Dissertationen 2016 under grant no. 860194.

REFERENCES

[1] J. Monaghan, “Smoothed particle hydrodynamics and its diverse ap-
plications,” Annual Review of Fluid Mechanics, vol. 44, pp. 323–346,
2012.

[2] M. Dhaubhadel, “Review: Cfd applications in the automotive industry,”
Int. J. Fluids Eng, vol. 118(4), pp. 647–653, 1996.

[3] H. Yoon, S. Koshizuka, and Y. Oka, “Direct calculation of bubble
growth, departure and rise in nucleate pool boiling,” Int. J. Multiphase
Flow, vol. 27, pp. 277–298, 2001.

[4] D. Hietel, K. Steiner, and J. Struckmeier, “A finite volume particle
method for compressible flows,” Mathematical Models and Methods in
Applied Science, vol. 10, pp. 1363–1382, 2000.

[5] R. Gingoldand and J. Monaghan, “Smoothed particle hydrodynamics -
theory and application to non-spherical star,” Monthly Notices of the
Royal Astronomical Society, vol. 181, pp. 375–389, 1977.

[6] Z. Zhang and Q. Chen, “Comparison of the eulerian and lagrangian
methods for pedicting particle transport in enclosed spaces,” Atmo-
spheric Environment, vol. 41, pp. 5236–5248, 2007.

[7] M. Shadloo, G. Oger, and D. Touze, “Smoothed particle hydrodynamocs
method for fluid flows, towards industrial applications: Motivations,
current state, and challenges,” Int. J. Computers and Fluids, vol. 136,
pp. 11–34, 2016.

[8] J. Monaghan, “Smoothed particle hydrodynamics,” Rep. Prog. Phys,
vol. 68, pp. 1703–1759, 2005.

[9] M. Liu and G. Liu, “Smoothed particle hydrodynamics (sph): an
overview and recent developments,” Arch. Comput. Methods Eng,
vol. 17, pp. 25–76, 2010.

[10] A. Kolb and N. Cuntz, “Dynamic particle coupling for gpu-based
fluid simulation,” in Int. Proc. of the 18th Symposium on Simulation
Technique, 2005, pp. 722–727.

[11] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle hydro-
dynamics on gpus,” in Proc. 5th Int. Conf. Computer Graphics, 2007,
pp. 63–70.

[12] A. Herault, G. Bilotta, and R. Dalrymple, “Sph on gpu with cuda,” Int.
J. Hydraulic Research, vol. 48, pp. 74–79, 2010.

[13] J. Dominguez, A. Crespo, and B. Rogers, “New multi-gpu implemen-
tation for smoothed particle hydrodynamics on heterogeneous clusters,”
Int. J. Computer Physics Communications, vol. 184, pp. 1848–1860,
2013.

[14] E. Rustico, G. Bilotta, A. Herault, C. Negro, and G. Gallo, “Advances in
multi-gpu smoothed particle hydrodynamics simulations,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, 2014.

[15] C. Trott, L. Winterfeld, and P. Crozier, “General-purpose molecular
dynamics simulations on gpu-based clusters,” Int. J. Computer Physics
Communications, 2010.

[16] Q. Wu, C. Yang, T. Tang, and K. Lu, “Fast parallel cutoff pair inter-
actions for molecular dynamics on heterogeneous systems,” Tsinghua
Science and Technology, vol. 17, pp. 265–277, 2012.

[17] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, “Fast in-place
sorting with cuda based on bitonic sort,” Concurrency and Computation

Practice and Experience, vol. 23, pp. 681–693, 2011.

