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Abstract—Reversible computation became established as a
promising concept due to its application in various areas like
quantum computation, energy-aware circuits, and further areas.
Unfortunately, most functions of interest are non-reversible.
Therefore, a process called embedding has to be conducted to
transform a non-reversible function into a reversible one – a
coNP-hard problem. Existing solutions suffer from the resulting
exponential complexity and, hence, are limited to rather small
functions only. In this work, an approach is presented which
tackles the problem in an entirely new fashion. We divide the em-
bedding process into matrix operations, which can be conducted
efficiently on a certain kind of decision diagram. Experiments
show that improvements of several orders of magnitudes can
be achieved using the proposed method. Moreover, for many
benchmarks exact results can be obtained for the first time ever.

I. INTRODUCTION

In the last years, reversible computation became established
as a promising concept for future directions in hardware design
as well as a basis for emerging and future technologies.
Following reversible computation means that any function
to be realized must not only allow to determine the output
assignment from a given input assignment, but also vice versa.
Typical operations such as addition do not satisfy this criteria:
having the sum only, the values of the summands cannot
uniquely be determined. This characteristic allows for plenty
of applications in various areas.

Quantum computation [9] represents one of the most im-
portant ones. This technology is theoretically capable to
solve problems in polynomial time for which conventional
computation only offers solutions with exponential complex-
ity (e.g. factorization; see [11]). First physical accomplish-
ments [14] further motivate a consideration of this technol-
ogy. Reversible computation is of interest here, since every
quantum computation is inherently reversible and, hence,
certain parts of corresponding quantum circuits can directly
be realized as reversible circuit [3].

A relation to energy consumption of hardware exists as
shown by the seminal work of Landauer and Bennett [7],
[4]. They proved that energy consumption of computations
is closely related to information loss. Since reversible com-
putation never loses information (in contrast e.g. to a non-
reversible AND operation, where two bits are transformed into
a single one – losing one bit of information), this paradigm
(theoretically) allows for chips with close to zero energy
dissipation. Also here, recent physical results confirmed these
observations [5] and corresponding concepts such as energy
recovery logic are currently considered [18], [6]. Although the
gains obtained in this regard are still negligible at the moment,
this may become a key factor for future hardware technologies
where shrinking feature sizes pose a significant thread because
of energy dissipation.

Besides that, reversible computation has successfully been
applied in further areas such as the design of encoders (in
general as done in [19] or for on-chip interconnects as done
in [15], [17]), adiabatic computation [2], the exploitation of re-
versibility in conventional design tasks such as verification [1],
and many more.

However, in order to actually exploit these benefits, many
of the applications reviewed above require the respectively
desired functionality – which usually includes non-reversible
arithmetic operations such as addition, multiplication, etc. or
logic non-reversible operations such as AND, OR, etc. – to
be realized in a reversible fashion. To this end, a process
called embedding [8] is be applied. Here, the desired (non-
reversible) function is enriched by additional inputs and out-
puts to facilitate reversibility. Unfortunately, determining an
embedding for a non-reversible function turned out to be a
coNP-hard problem (as proven in [13]). In the worst case,
all input/output relations have to be considered – yielding an
exponential complexity.

First methods aiming for the determination of embed-
dings for non-reversible Boolean functions considered truth
tables [8] – which obviously is not feasible for larger func-
tions. Recently, more efficient approaches have been proposed,
which rely on function representations such as binary decision
diagrams [13]. But also here, the exponential complexity
cannot really be tackled and, hence, results for functions
with up to 30 variables only have been obtained thus far.
Moreover, in many cases it even cannot be determined how
many additional inputs and outputs are actually required in
order to make a function reversible. Consequently, many large
reversible functions are currently realized with a number
of inputs/outputs that is magnitudes away from the actual
optimum [16].

In this work, we propose an embedding method which
tackles the underlying exponential complexity in an entirely
new fashion. To this end, we apply a matrix representation of
Boolean functions to derive the minimal number of addition-
ally required outputs and, based on this number, determine
a reversible embedding. Thereby, the embedding process is
divided into matrix operations which can easily be employed
on compact data-structures such as Quantum Multiple-valued
Decision Diagrams (QMDDs [10]). Experimental evaluations
show, that the proposed approach outperforms state of the art
methods by several orders of magnitudes in terms of run-
time. Moreover, exact results on the number of additionally
required outputs as well as on corresponding embeddings can
be obtained for some of the benchmarks for the first time ever.

The remainder of this paper is structured as follows.
Section II briefly recapitulates reversible and non-reversible
functions and their representation. In Section III, we give an
overview of the embedding process and its main challenges.
The proposed approaches for determining the minimal number
of additional outputs as well as for deriving a corresponding
reversibly embedded function are described in Section IV.
Section V presents the experimental evaluation of the pro-
posed approach compared to the state-of-the-art. The paper is
concluded in Section VI.

II. BACKGROUND

We briefly recapitulate the basics of Boolean functions and
their representation in this section.
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Fig. 1: Representations for reversible functions

A. Reversible Functions and Their Representation
Definition 1. A Boolean function f : Bn → Bm is reversible,
iff n = m and the function ensures a unique mapping from
inputs to outputs, i.e. iff it forms a bijection.

Reversible functions can be represented by permutation
matrices.

Definition 2. Let f : Bn → Bn be a Boolean reversible
function. Then, the permutation matrix M of f is a 2n × 2n

matrix with elements mi,j , 0 ≤ i, j < 2n such that

mi,j =

{
1 if f(j) = i
0 otherwise .

The columns (rows) of the permutation matrix represent the
inputs (outputs). If an input maps to an output, the entry in
the according row of the matrix is set to 1. All other entries
in the permutation matrix are set to 0. Since there exists a
unique mapping from inputs to outputs (this is always the case
for reversible functions), each column and each row contains
exactly one 1-entry.

Example 1. Fig. 1a shows the truth table of a reversible
function f . One can easily see that f is reversible, since
the numbers of inputs and outputs are equal and there exists
a unique mapping from inputs to outputs, i.e. there exist no
distinct input patterns which are mapped to the same output
pattern. An alternative to the truth table is a permutation
matrix as shown in Fig. 1b. For example, the second column
of the permutation matrix represents the input 01 which,
according to f , is supposed to map to the output 10. Hence,
the second column contains its 1-entry in the third row
(representing output 10).

B. Non-reversible Functions
Reversible functions are only a subset of all Boolean func-

tions. Since a common representation for reversible and non-
reversible function is desirable, function matrices have been
introduced.

Definition 3. Let f : Bn → Bm be a Boolean function. Then,
the function matrix M of f is a 2k × 2k, k = max(n,m),
matrix with elements mi,j , 0 ≤ i, j < 2k such that

mi,j =

{
1 if f(j) = i
0 otherwise .

Each column of a function matrix contains one 1-entry only,
but a row may contain multiple 1-entries, because more than
one input combination may be mapped to the same output
pattern.

Example 2. Consider the function of a half adder as depicted
in Fig. 2a. Two input combinations, namely 01 and 10, map
to the same output, namely 01. Hence, the function is not
reversible. Fig. 2b shows the corresponding function matrix.
The non-reversibility can be seen in the second row (output 01)
of the matrix: two 1-entries in a single row. These entries are in
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Fig. 2: Representations for the half adder function

the second and third columns and, therefore, represent input
combination 01 as well as 10. Additionally, there are only
0-entries in the last row of the functions matrix, which is also
a violation of reversibility, because no input combination is
mapped to output 11.

III. EXISTING EMBEDDING PROCESS

As discussed in Section I, reversible computation employs
several benefits for conventional and particularly emerging
technologies, but most functions of interest are not reversible.
Hence, these functions have to be embedded into reversible
ones. This section reviews this process and its main challenges.

We consider Boolean functions f : Bn → Bm with n
primary inputs and m primary outputs. If f is non-reversible,
multiple input combinations are mapped to the same output
pattern. Since reversibility requires a unique mapping from
inputs to outputs, the output pattern must be made distin-
guishable. Therefore, additional outputs – so called garbage
outputs – are added to the primary outputs. Assuming that the
most frequent output pattern occurs µ times, k = dlog2 µe
additional outputs are required to distinguish all occurrences
of the pattern.

Example 3. Consider again the half adder function as de-
picted in Fig 2a. The function is non-reversible since 2 input
combinations, namely 01 and 10, map to the same output
pattern (01). Since 01 is the most frequent output pattern and
occurs twice, k = dlog2 2e = 1 garbage output is required.

Inserting garbage outputs results in extra columns of the
truth table. Since we are not interested in the value of the
garbage outputs, they can be assigned arbitrarily. However,
there are dependencies in the assignment: they have to be
chosen in a way, such that the garbage outputs are assigned
differently for all occurrences of an output pattern. In the
following, this is represented by an asterisk (*).

Example 3 (continued). The garbage outputs of input patterns
01 and 10 depend on each other, because these inputs map to
the same output. As soon as the garbage output for one of the
input patterns is fixed to 1 (0), the garbage output for the other
input pattern must be fixed to 0 (1) to ensure reversibility.

In addition to a unique mapping from inputs to outputs,
reversibility requires that the number of inputs and outputs
have to be equal. Therefore, if n is larger than m+k, n−m−k
further garbage outputs are added and marked with *. In the
opposite case, m+k−n additional inputs (so called ancillary
inputs) have to be added to the function. Each additional input
doubles the number of rows in the truth table. If all ancillary
inputs are assigned 0, the reversible function evaluates to the
originally specified output. For all other assignments to the
ancillary inputs, again arbitrary output values can be applied –
even for the primary outputs. However, also here dependencies
have to be considered. In fact, while the output pattern indeed
is don’t care in these cases, after all, each pattern is supposed
to be applied only once in order to ensure reversibility. In the
following, this is represented by a dot (·).



TABLE I Embedding of the half adder function
(a) Degree of freedom

x y a x′ y′ g
0 0 0 0 0 *
0 0 1 · · ·
0 1 0 0 1 *
0 1 1 · · ·
1 0 0 0 1 *
1 0 1 · · ·
1 1 0 1 0 *
1 1 1 · · ·

(b) One possible embedding

x y a x′ y′ g
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Example 3 (continued). One ancillary input is needed to
ensure that the number of inputs is equal to the number of
outputs. This yields a truth table of the embedded half adder
function as shown in Table Ia. If the additional input a is set
to 0, the intended function can be obtained from the outputs x′
and y′. The values of the additional garbage output g as well
as for the remaining input assignments (i.e. for a 6= 0) can
arbitrarily be chosen (represented by * and ·, respectively) as
long as the dependencies discussed above are considered.

Finally, the embedding process is completed by assigning
precise values to all entries represented by * and · while
considering the discussed dependencies.

Example 3 (continued). Assigning * and · with precise values
eventually yields a reversible function as shown in Table Ib.

The process reviewed above seems simple if small func-
tions such as the half adder are considered. However, with
increasing function size, embedding gets costly. In fact, it has
been proven in [13] that embedding is coNP-complete. Two
main challenges exist: First, determining the most frequent
output pattern and, hence, the number k = dlog2 µe of addi-
tionally required garbage outputs requires a consideration of
all possible output patterns in the worst case – an exponential
complexity. Second, assigning all *- and ·-entries with precise
values (while respecting the dependencies) is non-trivial.

In the past, embedding has mainly been conducted by means
of truth tables [8] – obviously not feasible for large functions.
Recently, researchers started investigations towards embedding
for larger functions using Binary Decision Diagrams (BDDs).
This led to improvements e.g. in the determination of the
minimal number of actually required garbage outputs [16],
[13] as well as more elaborated embedding methods [13].
However, while exact embedding still remained intractable
for large functions, the work in [13] also solved this problem
heuristically, i.e. an embedding where the number of additional
outputs is not necessarily minimal. For these embeddings, the
number of outputs is approximated by n+m, but it remains
uncertain how far this if away from the actual minimum. Until
today, no efficient method for the exact embedding of large
functions nor a scalable method to determine the minimal
number of additionally required outputs is available.

IV. ALTERNATIVE EMBEDDING SCHEME

In this section, we propose a method which, for the first
time, allows for an exact embedding for larger functions. In
contrast to previous approaches, which rely on truth tables (or
representations of them like BDDs), our approach is based
on function matrices. Our methodology is divided into two
steps: First, the minimal number of additionally required
garbage outputs is efficiently determined. Afterwards, the
precise values for the respectively resulting *- and ·-entries
are determined. Sections IV-A and IV-B show how these steps
can be performed using function matrices. In Section IV-C, we
discuss how the respective steps can efficiently be conducted
(making the proposed method applicable for larger functions).
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Fig. 3: Determine the minimal number of additional outputs

A. Determining the Number of Garbage Outputs
As discussed in Section III, the number µ of occurrences of

the most frequent output pattern has to be determined first. If
the considered function f is represented as a function matrix,
µ is equal to the maximal number of 1-entries in a row of this
function matrix. Since all entries in the function matrix are
either 1 or 0, counting the 1-entries is equivalent to calculating
the row sum.

Example 4. Consider the function matrix of the half adder
function as shown in Fig. 2b. The row sum for output pattern
01 is 2, since two input combinations (01 and 10) are mapped
to this output pattern. The other row sums are either 0 or 1.
Hence, the number of occurrences of the most frequent output
pattern is µ = 2.

Forming the row sums of a function matrix M turns out to
be very simple: M is a square matrix composed of Boolean
values which contains exactly one 1 entry in each column.
The product of M with its transposed1 matrix MT yields a
diagonal matrix (i.e. a matrix where all entries off the main
diagonal are zero) D =M ·MT with the row sums of M in
its main diagonal.

Example 5. Fig. 3a shows the function matrix M of the
half adder function. Furthermore, Fig. 3b and 3c show
its transposed matrix MT as well as the diagonal matrix
D =M ·MT , respectively. The product M ·MT contains the
row sums of M , i.e. the number of occurrences of the output
patterns, in its diagonal. Since no input maps to output 11 the
fourth entry in the main diagonal is 0. The second entry of the
diagonal is 2, since input pattern 01 as well as input pattern
10 map to output 01. Since this is the largest entry, µ = 2.

The proposed approach is fundamentally different from
previous approaches, because the matrix multiplication allows
to consider all output patterns concurrently. Experimental
evaluation shows that our approach determines µ efficiently,
whereas state of the art approaches require a substantial
amount of run-time. More precisely, an improvement of several
orders of magnitude in terms of run-time are observed.

B. Assigning Precise Values
After determining µ, it is simple to correspondingly extend

the considered function matrix M by the respective num-
ber k = dlog2 µe of additional inputs and outputs: Each entry
of M is simply replaced with a new 2k × 2k matrix2. In
order to keep the original function, we distinguish thereby
between the corresponding 1-entries and 0-entires of M . More
precisely, the 1-entries are replaced by a matrix B1, whereas
the 0-entries are replaced by a matrix B0. The first column of
the 2k×2k matrix B1 contains *-entries only (representing that
the desired output is determined when setting the additionally

1The transposed of a matrix is obtained by reflecting all elements along
the main diagonal.

2If m + k > n > k, only k + m − n inputs and outputs have to be
added, since the function matrix already contains sufficient amount of garbage
outputs.
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Fig. 4: Embedding of the half adder using function matrices

added ancillary inputs to zero). In contrast, the first column
of the 2k×2k matrix B0 contains 0-entries only (representing
that the input pattern must not be mapped to one of these
output patterns). All remaining entries of B1 and B0 are filled
with ·-entries. After replacing the 1-entries and 0-entries with
the corresponding matrices, it remains open how to assign the
respective *- and ·-entries with actual values (while, at the
same time, respecting the dependencies). How to do this is
covered in this section. To this end, we illustrate the remaining
problem first.

Example 6. In our running example, the half adder function is
extended by one additional input/output (since dlog2 2e = 1).
Therefore, the 1-entries and 0-entries of M (cf. Fig. 3a) are
replaced by 21×21 matrices B1 and B0, respectively, as shown
in Fig. 4a (B1-matrices are highlighted by dashed squares;
all remaining 2× 2-matrices are B0 matrices). This ensures
that e.g. the desired input pattern xy = 10 still maps to the
desired output pattern xy = 01 while, at the same time, the
flexibility of whether the extended input pattern xyz = 100
has to map to the extended output pattern xyz = 010 or the
extended output pattern xyz = 011 is still guaranteed. Now,
the problem remains what output pattern shall be chosen so
that, eventually, a unique input/output mapping is guaranteed
for the entire function.

Hence, the challenge is how to assign precise values to
the *- and ·-entries such that a reversible function results,
i.e. such that each row and each column of the function matrix
contains a single 1-entry only. A primitive solution would be
to consider each row/column after each other. But again, this
would tackle the exponential complexity in an enumerative
and, thus, inefficient fashion. Hence, we aim for an alternative
by focusing on the *-entries first (their assignment requires
more dependencies to be considered). These dependencies can
be resolved by transforming the matrix into a block diagonal
matrix with blocks of dimension 2k × 2k along the main
diagonal. This can easily be achieved by swapping columns
and results in a matrix where inherently all zero entries are
located outside of the 2k×2k blocks along the main diagonal.

Example 7. Consider again the extended matrix for the half
adder function as shown in Fig. 4a. By swapping columns 100
and 011 as well as columns 110 and 101, a matrix as shown
in Fig. 4b results, where all *-entires are located inside the
2 × 2 blocks (matrices) along the diagonal (highlighted by
solid squares); all 0-entires are outside of these blocks.

Recall that all *- and ·-entries have to be assigned in
a reversible fashion (i.e. respecting the dependencies). Due
to the last step, all these entries are now arranged along a
diagonal. Hence, the desired assignment can easily be obtained
by employing the identity function, i.e. setting all entries along
the diagonal to 1. This clearly yields a reversible function (in

fact, the identity function is the simplest reversible function),
and implicitly satisfies all dependencies. At the same time,
the originally desired function can easily be determined again
by reverting the column swaps conducted before (possible
since swapping of columns is a reversible operation). This
eventually yields a complete matrix for the desired function
which fully satisfies all dependencies and, hence, constitutes
a full embedding.

Example 7 (continued). Employing the identity function to the
matrix in Fig. 4b yields an assignment to all *- and ·-entries
which satisfies all dependencies and, hence, is reversible. By
swapping again columns 100 and 011 as well as columns
110 and 101, the matrix as shown in Fig. 4c results which,
eventually, describes the original function in a reversible
fashion.

C. Implementation
In order to conduct the embedding process as proposed

above, the following operations have to be executed on a func-
tion matrix: matrix multiplication, transposition, determining
the largest value in the diagonal, extending the function matrix,
and block diagoalization. Considering the exponential size
of function matrices, this obviously is not feasible for large
functions using this representation. However, we show that
all these operations can efficiently be conducted on Quantum
Multiple-valued Decision Diagrams (QMDDs) [10] – allow-
ing to tackle the exponential complexity.This section briefly
reviews QMDDs and shows how the additionally required
operations have been implemented on top of it.

QMDDs as comprehensively described in [10] allow for an
efficient representation and manipulation of function matrices.
A QMDD represents a 2n × 2n matrix with complex entries
as a directed acyclic graph. Each node in this graph represents
a (sub-)matrix
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which is recursively decomposed into four submatrices. This
decomposition is conducted with respect to a variable x
(representing one bit of the input and the output) and yields
four successors of the node as shown in Fig. 5: The left most
edge represents a mapping of x from input 0 to output 0 and,
hence, leads to a node representing the submatrix M00. The
other edges represent, from left to right, the mapping of x from
1 to 0, from 0 to 1, and from 1 to 1 (hence, leading to nodes
representing the submatrices M01, M10, and M11, respectively.
If this decomposition yields a single matrix entry, a terminal
node is reached.
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Fig. 6: QMDD of the embedded half adder

Example 8. Fig. 6 shows a corresponding QMDD for the
function matrix of the embedded half adder (i.e. for the
function shown in Fig. 4c). Each path from the root of the
QMDD to the 1-terminal represents a 1-entry of the function
matrix, e.g. the path highlighted in bold, which represents the
mapping from xyz = 011 to 100. In contrast, a mapping from
xy = 00 to 01 terminates in a 0-stub, representing a zero
matrix (i.e. a matrix consisting of 0-entries) only, independent
of the variable z.

This representation eventually allows for a compact rep-
resentation, since many nodes (i.e. submatrices) are identical
and, hence, can be shared (as can also be seen in the example).
In fact, the number of nodes in the QMDDs is not exponential
in most cases. Moreover, this representation also allows for
an efficient matrix multiplication (as described in [10]) which
is frequently applied during the embedding process proposed
here. Furthermore, also all other operations needed for the
proposed embedding scheme can efficiently be implemented
on top of QMDDs as follows:

• The transposition of a matrix M represented by a QMDD
node can be realized as sketched in Fig. 7a. Here, the
submatrices M01 and M10 are swapped and, afterwards,
these swaps are recursively applied for all four submatri-
ces.

• The determination of the largest value µ along the
diagonal of a matrix M can be realized by a post-order
traversal of the QMDD nodes as sketched in Fig. 7b.
Here, the maximal values µi of all submatrices is recur-
sively determined and, afterwards, the maximum yields µ.

The maximal value of a terminal node is its value3. Since
the submatrices M01 and M10 are zero matrices in a
diagonal matrix, only submatrices M00 and M11 have
to be considered.

• Extending the function matrix is easy for QMDDs if
matrices B1 and B0 are modeled as QMDD as well.
Then, all edges pointing to a 1- or 0-entry are replaced by
edges pointing to B1 and B0, respectively. Without the
loss of generality, we can represent all ·-entries as 0, since
they are not considered during block diagonalization.
Hence, B0 is modeled as a zero matrix. Of course, 0-
entries must not be replaced by B0, because a 0-terminal
already represents a zero matrix. Furthermore, we can
chose the top most *-entry of B1 to be set to 1, since the
vertical position is changed after block diagonalization
anyway. Thus, B1 is represented by a QMDD which
contains exactly one node for each garbage output. This
eventually yields the extension as sketched in Fig. 7c4.

• Block diagonalization of QMDDs can be accomplished
by moving 1-entries from submatrices M01 and M10 to
submatrices M00 and M11, respectively. This is sketched
in Fig. 7d. This movement can be realized by swapping
columns with Hamming distance of 1, which can be
implemented as matrix multiplication as shown in [12].
Afterwards, the algorithm is recursively applied to the
submatrices M ′00 and M ′11 until all 1-entries are located
inside 2k × 2k blocks along the main diagonal.

V. EXPERIMENTAL RESULTS
The method as well as the implementation described above

eventually yields an alternative embedding tool which is
significantly more efficient than the state-of-the-art. To confirm
this, experimental evaluations have been conducted and their
results have been compared to previous solutions. To this
end, we implemented the methods described above in C++
on top of a QMDD implementation taken from [10] and
applied the same benchmarks to it as used in the previous
work: the ESOP-based and BDD-based approach of [13]. The
experiments with the proposed approach have been carried out
on a 3.20 GHz Intel i5 processor with 8 GB of main memory
running Linux 4.2 – a machine which is similar to what has
previously been used in [13]. That is, the obtained run-times
are comparable. Table II summarizes all results.

As discussed above, the state of the art solutions can
often not tackle the exponential complexity of the embedding
problem. In many cases, they already fail in the first step of
the embedding process, i.e. when determining the minimal
number of garbage outputs.This is reviewed in the fourth and
fifth column of Table II, which provide the run-times for the

3Note that QMDDs are implemented with a single terminal with value 1.
Values other than 1 are represented by weighs attached to the edges. These
weights serve as scalars the submatrices are multiplied with.

4Note that this process is a Kronecker multiplication of the original matrix
with the corresponding B1- and B0- matrices.
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TABLE II Experimental results and comparison
Garbage Outputs Determ. Embedding Determ.

Name PI PO k5 ESOP [13] BDD [13] Proposed ESOP [13] Proposed
co14 14 1 14 72.8 0.0 0.2 118.6 0.2
dc2 8 7 6 0.1 0.0 0.2 0.1 0.2
example2 10 6 8 1.4 0.0 0.2 1.5 0.3
inc 7 9 5 0.0 0.0 0.2 0.0 0.2
mlp4 8 8 5 0.2 0.0 0.2 0.2 0.2
ryy6 16 1 16 157.7 0.0 0.2 258.8 0.3
5xp1 7 10 0 0.1 0.0 0.2 0.1 0.2
t481 16 1 16 1717.8 0.0 0.2 2308.4 2.3
x2 10 7 9 0.1 0.0 0.2 0.1 0.2
add6 12 7 6 46.1 0.1 0.2 50.0 0.6
cmb 16 4 16 7.1 0.0 0.2 104.8 0.6
ex1010 10 10 5 2.9 1.1 0.2 9.0 0.6
pcler8 16 5 16 28.1 0.0 0.2 68.3 4.0
tial 14 8 11 1007.0 0.2 0.3 1047.3 8.3
alu4 14 8 11 1270.3 0.1 0.3 1306.4 7.1
apla 10 12 10 0.0 0.0 0.2 0.5 0.5
f51m 14 8 11 556.5 0.2 0.3 595.7 6.9
cu 14 11 14 0.0 0.0 0.2 0.8 1.8
in0 15 11 14 1.5 0.1 0.2 26.5 57.1
0410184 14 14 0 1227.8 7.4 0.4 1229.2 0.4
apex4 9 19 7 1.0 25.0 0.3 39.8 0.6
misex3 14 14 14 160.7 17.5 0.3 929.7 29.7
misex3c 14 14 7 327.2 2.8 0.2 472.0 28.9
cm163a 16 13 12 625.4 0.0 0.2 633.5 6.1
bw 5 28 4 0.0 0.0 0.3 0.1 0.3
parity 16 1 15 >5000.0 0.9 0.4 >5000.0 1.4
cm150a 21 1 21 >5000.0 0.1 2.7 >5000.0 2.7
mux 21 1 21 >5000.0 0.1 2.5 >5000.0 2.6
cordic 23 2 23 >5000.0 0.1 0.3 >5000.0 3783.8
frg1 28 3 27 >5000.0 0.0 0.3 >5000.0 1522.3
pdc 16 40 15 31.1 >5000.0 0.8 >5000.0 1937.1
spla 16 46 15 32.7 >5000.0 0.9 >5000.0 738.7
ex5p 8 63 5 0.4 >5000.0 1.2 >5000.0 2.1
apex2 39 3 39 >5000.0 5.1 1.1 >5000.0 >5000.0
e64 65 65 64 0.1 >5000.0 1.5 >5000.0 >5000.0
seq 41 35 40 >5000.0 >5000.0 1.1 >5000.0 >5000.0
cps 24 109 23 >5000.0 >5000.0 4.5 >5000.0 >5000.0

PI: primary inputs PO: primary outputs k = dlog2 µe: min. required garbage.
ESOP: Exact cube-based approach [13]; uses ESOP to det. k and an exact embedding.
BDD: BDD-based approach [13] to det. k. Proposed: approach prop. in Section IV.

ESOP- and the BDD-based approach, respectively. In contrast,
our solution can efficiently deal with this complexity – as
shown in the sixth column of Table II providing the run-times
for the solution as described in Section IV-A. While previous
work often requires hundreds of CPU seconds or even times
out in many cases, the solution proposed here is capable of
determining the number of garbage outputs in a few seconds or
often in a fraction of a second only. Moreover, for the first time
ever this allows to obtain exact values for the benchmarks seq
and cps; thus far, only a heuristic number of required garbage
outputs was known for these cases (cf. [16]).

Besides that, major improvements can also be observed for
the second step of the embedding process (the assignment of
precise values). The last two columns of Table II provide the
values for the determination of an exact embedding (including
the determination of the number of garbage outputs). Again,
the run-times needed by the current state of the art solution
(i.e. the ESOP-based approach as proposed in [13]) as well
as the run-times of the approach proposed in Section IV
are provided6. Obviously, when already the determination
of the number of garbage outputs failed, also no complete
embedding can be created. Hence, no results could have
been generated for all benchmarks which already timed out
in the first step. Besides that, the state of the art solution
significantly suffers from large run-times in the second step as
well (e.g. pdc, spla, ex5p, and e64 time out). Even though the
proposed method requires some time to tackle the exponential
complexity – in some cases even timeouts are reported –
significant improvements compared to the state-of-the-art can
be observed. In some cases, an embedding can be obtained
up to four orders of magnitudes faster than with the state-of-
the-art. For the benchmarks parity, cm150a, mux, cordic, frg1,
pdc, spla, and exp5p an exact embedding was derived for the
first time ever.

5Note that the total number of circuit lines is max(PI, PO + k).
6Note that the BDD-based approach presented in [13] is not capable of

conducting the second embedding step in an exact fashion and, hence, is not
considered here.

VI. CONCLUSIONS
In this paper, we significantly improved the process of em-

bedding non-reversible functions for reversible computation.
This is a crucial step for many future directions in hardware
design as well as for many emerging technologies which rely
on this computing scheme. Although proven as a coNP-hard
problem, a method has been presented which tackles the
underlying exponential complexity in an efficient fashion.
Experimental results showed that several major improvements
can be accomplished with the proposed method: First, all
embedding steps can been conducted significantly faster com-
pared to the current state-of-the art – improvements in the run-
time of up to four orders of magnitude have been observed.
Besides that, exact results on the number of required garbage
outputs or on the entire embedding have been determined for
several benchmarks for the first time ever. This constitutes
a major step forward considering that, thus far, many large
reversible functions are currently realized with a number of
inputs/outputs and/or an embedding which are magnitudes
away from the actual optimum [16].
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